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Abstract. In the paper, a novel instance of the real-coding 
genetic algorithm (RCGA), called the Mean-adaptive real-
coding genetic algorithm (MAD-RCGA), is applied along 
with other RCGAs, to selected problems in microwaves. 
The problems include the design of a microstrip dipole, the 
design of frequency-selective surfaces, and the design of 
a Yagi antenna. Apart from other things, the purpose of 
this paper is to compare these instances with MAD-RCGA 
on problems having some technical relevance. 
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1. Introduction 
The content of this paper is devoted to applications of 

the Mean-adaptive real-coding genetic algorithm (MAD-
RCGA), being put forward in [14], along with other RCGA 
instances to solving complex problems in microwave 
technique. These RCGA instances, representing the state of 
the art in single-objective optimization, include: 

• The minimal generational gap model (MGG) featuring 
the multi-parent unimodal normally distributed 
recombination operator (UNDX) ([4], [5], [6], [7], 
[8]). We will refer to this instance as MGG-UNDX. 

• The generalized generational gap model (G3) featuring 
UNDX and the parent-centric recombination operator 
(PCX) ([4], [5], [6], [7], [8]). We will refer to these 
instances as G3-UNDX and G3-PCX. 

• A two-loop RCGA with adaptive control of mutation 
step sizes (TRAMSS) featuring blend crossover 
(BLX-α) and fuzzy recombination (FR) [9]. We will 
refer to these instances as TRAMSS-BLX and 
TRAMSS-FR. 

• The scaled probabilistic crowding RCGA (SPC) with 
parent-centric normal crossover (PNX) [1]. We will 
refer to this instance as SPC-PNX. 

• A real-coding memetic algorithm (RCMA) with 
crossover hill-climbing (XHC) [11]. We will refer to 
this instance as RCMA-XHC. 

The mission of this paper is threefold: 

• To demonstrate the applicability of the algorithms to 
complex problems arising in electromagnetics. 

• To exemplify the usage of the algorithms by their ap-
plying to a set of real-life problems. 

• To compare MAD-RCGA with other RCGA instan-
ces, as regards their performances, on problems ha-
ving some technical relevance.  

The problems to be optimized include: 

• The design of a planar (microstrip) dipole (MD). 
• The design of a Yagi antenna (YA). 
• The design of frequency-selective surfaces (FSSs). 

Within the experiments conducted in this paper, we have 
derived the settings for the configuration parameters asso-
ciated with MGG-UNDX, G3-PCX, G3-UNDX, RCMA-
XHC, TRAMSS-BLX, TRAMSS-FR and SPC-PNX on the 
basis of those used and proposed in the original literature.  

2. Setting the Experiments 
Prior to starting off the experiments, we will briefly 

summarize the used configurations of the algorithms. For 
clarity, the symbols used in this section are the same as 
those used in the original literature.  

• MGG-UNDX: It is set up on the basis of the 
parametric study carried out in [4], [5], [6], [7], [8] as 
follows: 

o The population size is fixed to 100. 
o The number of offspring is set to 6. 
o The number of parent is set to 3. 
o In UNDX, both of the used standard deviations 

are set for all of the problems as recommended. 
o The number of individuals selected for repla-

cement is fixed to 2. 

• G3-PCX: It is set up on the basis of the parametric 
study carried out in ([4], [5], [6], [7], [8]) as follows: 
o The population size is fixed to 100. 
o The number of offspring is set to 2. 
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o The number of parents is set to 3. 
o In PCX, both of the used standard deviations are 

set to: 
 0.5 when applied to the design of an MD (it is 

due to using discretely-changing parameters). 
 A recommended value of 0.1 when applied to 

the rest of the problems. 
o The number of individuals selected for repla-

cement is fixed to 2. 

• G3-UNDX: It is set up on the basis of the parametric 
study carried out in ([4], [5], [6], [7], [8]) as follows: 

o The population size is fixed to 100. 
o The number of offspring is set to 2. 
o The number of parents is set to 3. 
o In UNDX, both of the used standard deviations 

are set for all of the problems as recommended. 
o The number of individuals selected for repla-

cement is fixed to 2. 

• RCMA-XHC: It is configured as used in the original 
paper [11].  

• TRAMSS: It is configured as used in the original 
paper [9]. As mentioned in Section 1, we have used 
two TRAMSS instances differing in a choice of a 
recombination operator i.e., one instance takes 
advantage of the FR operator ([2], [10]) and the other 
takes advantage of the BLX-α operator. Moreover, 
we decreased the maximum number of generations, 
denoted as G0, allowed in the inner loop from 100 to: 

o 50 when applied to the design of an MD, 
o 20 when applied to the rest of the problems. 

• SPC-PNX: It is configured on the basis of the original 
paper [1] as follows: 

o The population size is fixed to 40. 
o The number of offspring is set to 2. 
o In PNX, the coefficient η is set to 2. 

• MAD-RCGA [14]: It is configured as follows: 

o As a parent selection mechanism, binary tourna-
ment selection (BTS) is used. All parents to which 
BTS is applied are sampled uniformly randomly 
without replacement so that there is no parent 
participating in BTS twice at a given generation. 

o The number of parents χ taking part in parameter-
wise recombination (PWX) is set to 4.  

o The number of offspring λ is set to:  

 40 when applied to the design of an MD, 
 10 when applied to the rest of the problems. 

o The population size Npop is set to: 

 60 when applied to the design of an MD (i.e., 
the ratio λ/Npop is equal to 2/3), 

 30 when applied to the rest of the problems 
(i.e., the ratio λ/Npop is equal to 1/3). 

o maxGMASS-CVM is set to 30. 
o maxMAM is set to 5. 
o The coefficient β is set to 0.1. 
o The mutation rate pm is set to: 

 0.1 when applied to the design of an MD, 
 0 when applied to the rest of the problems (i.e., 

eliminating the effects of the GMASS-CVM 
operator). 

o The initial upper step size bound s is set to 10.  
o The learning rate τ (i.e., the mutation strength on 

the global step size level) is set to 0.05. 
o The vector mstep, keeping mutation step size 

values, is initialized as stated in Section 3. 
o The vector freduction, keeping reduction factor va-

lues associated with the respective mutation step 
sizes, is filled up with twos. 

In all the experiments, the initial population is scattered 
uniformly randomly over the search space. If a new solu-
tion happens to become outside a pre-defined region, it is 
returned back to the very point of its leaving the region i.e., 
the part of the solution exceeding the boundaries of the 
region is cut away. For each optimization problem, each 
algorithm is run 20 times. The maximum number of fitness 
function evaluations, representing a termination criterion, 
is fixed to: 

• 2⋅104 for optimizing an MD, 
• 2⋅103 for optimizing a YA, 
• and 103 when applied to FSSs. 

The best results achieved at the end of each run are re-
corded. The mean and standard deviation computed from 
these results serve as the only performance metric used for 
comparison of the algorithms when applied to the design of 
an MD and the design of a YA. In case of applying to the 
design of FSSs, the performance metric is defined as the 
best, median and worst number of function evaluations 
desired for achieving a function value that is equal to or 
less than 10-1 (i.e., it serves as an additional termination 
criterion) in a maximum of 103 evaluations. 

3. The Design of a Microstrip Dipole 
In this section, the instances of the aforementioned 

algorithms will be applied to the optimization of an MD. In 
order to accelerate the overall optimization process, a 
neural model of an MD has been developed. The neural 
model consists of 4 inputs and 3 outputs. The input 
parameters are as follows (see Fig. 1): 
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• The length of an MD – A. 
• The width of an MD – B. 
• The height of a substrate – h. 
• The dielectric constant of a substrate – εr. 

The two output parameters are represented by the real R 
and imaginary X parts of the input impedance of an MD. 
Training patterns were computed by means of the Method 
of Moments for a frequency of 30 GHz [3] under the as-
sumption that the metallic parts of an MD are made of 
perfect conductors. 

B

A

h εr 

 
Fig. 1. Structure and parameters of the optimized MD. 

The objective of the optimization process is to find such 
values of parameters A, B, h, εr that are associated with an 
input impedance of (200 + j 0) Ω. The corresponding fit-
ness function is defined by the following dimensionless 
form: 

( ) ( )1.200 22 XRf fitness +−=  

The optimization process is restricted to the following 
search space: 

• Allowed substrate heights are h ∈ {1.0 mm, 1.5 mm}. 
• Allowed permittivities are εr ∈ {1.0, 1.6, 2.0, 2.2}.  
• Allowed dipole lengths are A ∈ [10 mm; 80 mm]. 
• Allowed dipole widths are B ∈  [0.01 mm; 0.50 mm].  

In other words, h and εr represent discrete parameters, 
whereas A and B represent continuous parameters. 

3.1 Results 
Because there are two parameters, h and εr, in the 

model taking on a finite number of non-contiguous values 
only, they have to be appropriately transformed in order for 
the model to be directly exploitable in continuous optimi-
zation. This transformation is simply accomplished as 
follows. Each value a given discrete parameter can take on 
is assigned an index from one to the maximum number of 
possible values the parameter can have so that after making 
this assignment, h can take on values 1 (corresponds to 1.0 
mm) and 2 (corresponds to 2.0 mm), εr can take on values 
1 (corresponds to 1.0), 2 (corresponds to 1.6), 3 (corre-
sponds to 2.0) and 4 (corresponds to 2.2). Thereafter, the 
optimization process is expected to treat these two pa-
rameters as they were defined in continuous intervals of [1; 
2] for h and [0.5; 4.495] for εr. Prior to evaluation, the 
values of the parameters are rounded and transformed back 

to their original values by means of obtained indices. The 
boundaries of the intervals are chosen with respect to giv-
ing each integer value in the intervals approximately the 
same chance of being obtained by rounding. The above 
steps provide a simple way of transforming a finite set of 
non-contiguous values to a continuous interval, which 
allows the exploitation of any meta-heuristic for continu-
ous optimization. 
 

Fitness function values  
EA 

Mean Standard 
deviation 

Success 
[%] 

MGG-UNDX 1.4715e+001 8.9751e+000 0 

G3-PCX 1.7966e+001 4.3188e+001 45 

G3-UNDX 3.8811e+000 7.3798e+000 50 

SPC-PNX 2.4402e+000 1.2946e+000 20 

RCMA-XHC 1.2573e+000 1.5798e+000 55 

TRAMSS-FR 8.2538e+000 5.5155e+000 0 

TRAMSS-BLX 1.8011e+001 3.5661e+001 0 

MAD-RCGA 2.8288e+000 9.6744e-001 10 

Tab. 1 Performance comparisons carried out on the MD model 
between the instances of the following algorithms: 
MGG-UNDX, G3-PCX, G3-UNDX, SPC-PNX, RCMA-
XHC, TRAMSS-FR, TRAMSS-BLX and MAD-RCGA. 
“Success” in the last column refers to how many runs 
reached the prescribed accuracy. The best results are 
printed bold. 

In these experiments, the vector mstep, belonging to the 
configuration of MAD-RCGA (see Section 1), was filled 
with the following initial values of mutation step sizes (i.e., 
each per parameter): 

• 3 for the parameter A, 
• 0.02 for the parameter B, 
• 0.5 for the parameter h, 
• 2 for the parameter εr. 

The values of the step sizes were chosen to be approxima-
tely as large as halves of their allowed ranges (i.e., trans-
formed ranges in case of the discrete parameters). The 
termination criterion regarding the maximum number of 
function evaluation was extended by another criterion 
prescribing a target accuracy of 10-10 so that if any of these 
two criteria is satisfied, the related run will be ended. 

This additional criterion is used for estimating the 
computational reliability of the algorithms on this model 
(i.e., judged with respect to all the pre-defined restraints). 
The results those have been obtained using all of the algo-
rithms on the neural model of an MD are summarized in 
Tab. 1; the best and worst values are given in Tab. 2. 

Looking into Tab.1, we can see that the best results 
have been achieved by RCMA-XHC. This gain in perfor-
mance can be put down to the fact that apart from doing 
good exploration work, RCMA-XHC also performs exten-
sive local search by means of XHC. Nonetheless, the re-
sults provided by MAD-RCGA are comparable to those 
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obtained by RCMA-XHC, SPC-PNX and G3-UNDX. The 
differences in performance between these algorithms are 
not so significant. Therefore, we can conclude by saying 
that the quality of results achieved by MAD-RCGA is able 
to keep in step with that obtained by the other algorithms 
on this optimization problem. The standard deviation 
values in Tab.1 along with the best and worst values sum-
marized in Tab. 2 also show that the spread of fitness 
function values obtained by MAD-RCGA, RCMA-XHC 
and SPC-PNX over all their runs is the least when compa-
red to the other algorithms. A comparison of typical con-
vergence behavior of the used algorithms made for their 
best-performing runs is depicted in Fig. 2. 

 
Fig. 2. Examples of typical convergence behavior of the 

algorithms on the neural model of an MD provided for 
ones of their best-performing runs. 

 
 

Fitness function values  
EA 

Best Worst 

MGG-UNDX 3.9539e+000 3.2165e+01 

G3-PCX ≤ 10-10 1.4242e+002 

G3-UNDX ≤ 10-10 2.9348e+001 

SPC-PNX ≤ 10-10 3.1431e+000 

RCMA-XHC ≤ 10-10 3.1431e+000 

TRAMSS-FR 1.1226e-005 2.1661e+001 

TRAMSS-BLX 8.1813e-007 1.4242e+002 

MAD-RCGA ≤ 10-10 3.1431e+000 

Tab. 2. The best and worst values achieved by the algorithms on 
the MD model within 20 runs. The symbol ≤ 10-10 means 
that an algorithm succeeded in reaching the precision 
limit. The best results are printed bold. 

4. The Design of Frequency-Selective 
Surfaces 
In this section, the instances of the aforementioned 

algorithms will be applied to a numeric model of FSSs 
([12], [15]). In brief, FSSs are periodic structures that con-

sist of equidistantly distributed metallic elements placed on 
a dielectric substrate. At certain frequencies, FSSs behave 
like perfect conductors reflecting the bulk of the energy of 
incident electromagnetic waves. On the other hand, there 
are frequencies at which FSSs behave like dielectric layers 
having no metallic parts i.e., they transmit the bulk of the 
energy of incident waves.  

A

B 

a

b

 
Fig. 3. Structure and parameters of the optimized FSS. 

The numerical model has been developed by means of the 
Spectral-domain method of Moments [15] under the follo-
wing assumptions: 

• The metallic parts of the optimized FSS are made of 
perfect conductors. 

• The conductive element is positioned in the center of 
a discrete cell of the infinite plane having the same 
electrical parameters as the surrounding environment. 

The model was designed to have four input and one output 
parameters. The input parameters are as follows (Fig. 3): 

• The height of a conductive element – a. 
• The width of a conductive element – b. 
• The height of a cell – A. 
• The width of a cell – B.  

The module of the reflection coefficient ρ of the Floquet 
mode (0, 0) for an incident wave at frequency f represents 
the output parameter of the model.  

The objective of the optimization process is to search 
for such values of parameters a, b, A, B of the FSS that 
maximize the module of ρ (i.e., |ρ | = 1) for a frequency of 
12 GHz so that its 3-dB decrease is observed at frequencies 
of 9 GHz and 15 GHz. The fitness function is defined as 
follows: 

( )2.1−= ρfitnessf  

The optimization process is restricted to the following 
continuous search space: 

• Allowed element heights are a ∈ [0.5 mm; 20 mm]. 
• Allowed element widths are b ∈ [0.5 mm; 3.0 mm].  
• Allowed cell heights are A ∈ [20 mm; 30 mm]. 
• Allowed cell widths are B ∈  [3 mm; 10 mm]. 
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4.1 Results 
As stated in Section 1, the termination criterion re-

garding the maximum number of function evaluation was 
extended by another criterion prescribing a target accuracy 
of 0.1 so that if any of these two criteria is satisfied, the 
related run will be ended. This additional criterion is also 
used for estimating the computational reliability of the 
algorithms on this model (i.e., judged with respect to all the 
pre-defined restraints).  
 

Fitness function evaluations  
EA 

Best Median Worst Success 
[%] 

MGG-
UNDX 234 653 

949 
(0.198) 

65 

G3-PCX 116 186 381 100 

G3-UNDX 103 121 325 100 

SPC-PNX 229 326 899 100 

RCMA-
XHC 619 788 

935 
(0.101) 

90 

TRAMSS-
FR 215 215 

215 
(0.289) 

5 

TRAMSS-
BLX 

- 
(0.205) 

- 
- 

(0.370) 
0 

MAD-
RCGA 78 98 167 100 

Tab. 3. Performance comparisons carried out on the FSS model 
between the instances of the following algorithms: 
MGG-UNDX, G3-PCX, G3-UNDX, SPC-PNX, RCMA-
XHC, TRAMSS-FR, TRAMSS-BLX and MAD-RCGA. 
The best, median and worst number of function evalua-
tions needed for achieving a solution with a prescribed 
accuracy of 0.1 within a maximum number of 103 
evaluations. “Success” in the last column refers to how 
many runs reached the prescribed accuracy. Using a hy-
phen in cells means that an algorithm was not able to ar-
rive at a solution with the prescribed accuracy in any run. 
The numbers in parentheses state the worst or best func-
tion values provided an algorithm was not able to arrive 
at a solution with the target accuracy in every run. The 
best results are printed bold. 

The results that have been obtained by applying the algo-
rithms to the numerical FSS model are tabulated in Tab. 3. 
When looking at the results summarized in Tab. 3, we can 
see that the best values, in terms of the performance metric 
used, are obtained by MAD-RCGA. Nonetheless, compa-
rably good results were also obtained by G3-UNDX and, to 
some extent, by G3-PCX. The table also reveals that both 
of TRAMSS instances totally failed when trying to hit the 
precision limit within the maximum number of function 
evaluations. Nonetheless, the function values of both of the 
instances exhibited a descending tendency as the search 
advanced, so that if we increased the limit on the maximum 
number of function evaluations, the computational reliabil-
ity of these instances would probably grow. In order to 
have some notion of their performances, the best and worst 
function values obtained over all their runs are stated in 

parentheses. A comparison of typical convergence be-
havior of the used algorithms made for their best-perform-
ing runs is depicted in Fig. 4. In the figure, none of graphs 
originates at the beginning of coordinates because of dif-
ferent population sizes used by the algorithms. 

 
Fig. 4. Examples of typical convergence behavior of the algo-

rithms on the FSS model provided for ones of their best-
performing runs. 

5. The Design of a Yagi Antenna 
For the purpose of other tests of the RCGAs on real-

life electromagnetic structures, a numerical model of a 
nine-part YA has been developed using the Method of 
Moments [3]. The model of the antenna was made under 
the following simplifying assumptions: 

• The wires of the antenna are made of perfect conduc-
tors. 

• The current flowing through the wires is concentrated 
along with the charge in the axes of the conductors. 

• Each part of the antenna is split in segments of the 
same length. The reflector is by two segments longer 
than the active dipole (i.e., one per side) and each of 
the directors is by two segments smaller than the 
active dipole (i.e., one per side).  

The parameters that have permission to vary during the 
optimization process are as follows (see Fig. 5): 

• The length of the active dipole – l. 
• The radius of the active dipole – a. 
• Mutual distances between the wire parts of the an-

tenna – dij (i.e., it stands for distances between the 
particular antenna elements with subscripts having 
defined as depicted in Fig. 5). 

The main goal of our optimization is to find such values of 
the parameters that minimize the input reactance X of the 
antenna (i.e., to get closer to the resonance of the antenna). 
In the experiments, the antenna is supposed to be excited 
by a source having a wavelength of 0.68 meters. Minimi-
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zing the input reactance of the antenna is accompanied by 
satisfying the following additional objectives: 

• The gain g of the antenna has to be equal to or higher 
than g0 = 12 dB. 

• The area of the surface of backward lobes η has to be 
equal to or less than η0 = 10 (i.e., it is a non-nor-
malized value). 
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Fig. 5. Structure and parameters of the Yagi antenna. 

Based on all the objectives of the optimization, the cor-
responding fitness function is defined by the following 
dimensionless form: 

( ) ( )2
02

2
01

2 ηη −+−+= wggwXf fitness  (3) 

In (3), w1 and w2 are defined as follows. If (g  ≥  g0) or 
(η  ≤  η0), the corresponding symbol, i.e., w1 or w2, is 
switched to zero. Otherwise, it is set to one. The optimiza-
tion process is permitted to vary the values of the parame-
ters in the following continuous intervals: 

• l ∈ [0.2 m; 0.5 m]; a ∈ [0.5 m; 1.5 m]⋅10-3. 
• drd ∈ [0.2 m; 0.25 m]; dd1 ∈ [0.2 m; 0.25 m]. 
• d12 ∈ [0.27 m; 0.40 m]; d23 ∈ [0.42 m; 0.55 m]; 

d34 ∈ [0.57 m; 0.70 m]. 
• d45 ∈ [0.72 m; 0.85 m]; d56 ∈ [0.87 m; 1.00 m]; 

d67 ∈  [1.02 m; 1.15 m]. 

5.1 Results 
The results that have been obtained by applying the 

algorithms to the numerical model of the antenna are tabu-
lated in Tab. 4. Here we can clearly see that the best result, 
in terms of the performance metric used, is achieved by the 
proposed algorithm. Nonetheless, the differences between 
three best-performing algorithms, i.e., MAD-RCGA, 
RCMA-XHC and SPC-PNX, are not significant. For 
demonstrational purposes, the best and worst values at 
which the algorithms arrived within the experiments are 
summarized in Tab. 5. Looking into the table, we can no-
tice that the entirely best value was obtained by SPC-PNX. 
On the other hand, the best of the worst values was ob-
tained by the proposed algorithm. The tables also show that 
the three best-performing algorithms produced the least 
spread of fitness function values over all their runs. 

A comparison of typical convergence behavior of the 
used algorithms made for ones of their best-performing 
runs is depicted in Fig. 6. Moreover, an example of a 
radiation pattern belonging to the “E” plane and being 

obtained by MAD-RCGA after having completed 2⋅103 
function evaluations is given in Fig. 7. In this figure, the 
direction r1 from Fig. 5 corresponds to an angle of 270°. 
This example is associated with a fitness value of 7.26 and 
the following values of output parameters X, η and g: 

• |X| = 3.08 Ω, 
• η = 16.68, 
• g = 13.13 dB. 

 

Fitness function values  
EA 

Mean 
Standard 
 deviation 

MGG-UNDX 1.9787e+001 3.2797e+000 

G3-PCX 1.6637e+001 5.1579e+000 

G3-UNDX 1.4054e+001 5.8149e+000 

SPC-PNX 9.0093e+000 1.4303e+000 

RCMA-XHC 8.8998e+000 9.1235e-001 

TRAMSS-FR 1.5538e+001 2.8152e+000 

TRAMSS-BLX 1.6137e+001 3.8192e+000 

MAD-RCGA 8.5203e+000 1.0761e+000 

Tab. 4. The results of performance comparisons carried out on the 
YA model between the instances of the following algo-
rithms: MGG-UNDX, G3-PCX, G3-UNDX, SPC-PNX, 
RCMA-XHC, TRAMSS-FR, TRAMSS-BLX and MAD-
RCGA. The best results are printed bold. 

 

Fitness function values  
EA 

Best Worst 

MGG-UNDX 1.3152e+001 2.6051e+001 

G3-PCX 1.0091e+001 3.3341e+001 

G3-UNDX 7.6690e+000 2.9545e+001 

SPC-PNX 5.6218e+000 1.2277e+001 

RCMA-XHC 7.5689e+000 1.1219e+001 

TRAMSS-FR 1.0001e+001 2.1622e+001 

TRAMSS-BLX 1.1157e+001 2.7232e+001 

MAD-RCGA 7.2658e+000 1.0861e+001 

Tab. 5. The best and worst values achieved by algorithms on the 
YA model within 20 runs. The best results printed bold. 

6. Conclusions 
The central story of the second part of this paper was 

applications of MAD-RCGA along with advanced and 
well-proved RCGA instances to problems in microwave 
technique, including their mutual comparison as regards 
the quality of achieved results. All the algorithms were 
applied to the design of an MD, the design of FSSs and the 
design of a YA. Except for the case of an MD where a 
neural model was used, all of the structures were repre-
sented by numerical models. As can clearly be seen by 
looking into the tables collecting the relevant data, all the 
RCGA instances were able to arrive at results of satisfac-
tory quality under the predefined constraints. Nonetheless, 
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the instances of MAD-RCGA, RCMA-XHC and SPC-PNX 
were able to provide consistently-good results over the 
entire set of technical problems. Moreover, the proposed 
algorithmic solution, MAD-RCGA, outperformed the 
others on two of the three technical test problems with 
respect to the performance measures chosen. 

 
Fig. 6. Examples of typical convergence behavior of the algo-

rithms on the  YA model provided for ones of their best-
performing runs. 

 
Fig. 7. An example of a radiation pattern obtained by MAD-

RCGA for one of its typical runs on the YA model. 

On the basis of the results achieved on the three technical 
“test” problems, we can conclude by saying that all of the 
presented algorithms have the real potential of being suc-
cessfully applied to electromagnetic optimization. More-
over, the proposed algorithmic solution – MAD-RCGA – 
was able to provide ones of the best results, which is evi-
dence of robustness of this algorithm. 
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