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Abstract. In blind source separation (BSS), multiple mix-
tures acquired by an array of sensors are processed in 
order to recover the initial multiple source signals. While a 
variety of Independent Component Analysis (ICA)-based 
techniques are being used, in this paper we used a newly 
proposed method: The Degenerate Unmixing and Estima-
tion Technique (DUET). The method applies when sources 
are W-disjoint orthogonal; that is, when the time-frequency 
representations, of any two signals in the mixtures are 
disjoint sets. The method uses an online algorithm to per-
form gradient search for the mixing parameters, and 
simultaneously construct binary time-frequency masks that 
are used to partition one of the mixtures to recover the 
original source signals. Previous studies have demon-
strated the robustness of the method. However, the investi-
gation in this paper reveals significant drawbacks 
associated with the technique which should be addressed 
in the future. 
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1. Introduction 
The goal of blind source separation (BSS) is to re-

cover a set of unobserved signals or “sources” from a set of 
observed mixtures. Typically the observations are obtained 
at the output of a set of sensors, where each sensor receives 
a different combination of the source signals. The adjective 
“blind” stresses two facts [1]: 

1) The source signals are not observed. 

2) No information is available about the mixing 
system.  

The lack of prior knowledge about the source signals 
and the mixing system is always compensated by assump-
tions that should be met by the unknown sources [1]. Some 
common assumptions are that the sources are statistically 
independent [2], are statistically orthogonal [3], are non-
stationary [4], or can be generated by finite dimensional 
model spaces [5]. 

This paper investigates the Degenerate Unmixing and 
Estimation Technique (DUET), a method that applies when 
sources are W-disjoint orthogonal; that is, when the time-
frequency representations, of any two signals in the mix-
tures are disjoint sets. The method uses an online algorithm 
to perform gradient search for the mixing parameters, and 
simultaneously construct binary time-frequency masks that 
are used to partition one of the mixtures to recover the 
original source signals. Exploiting the W-disjoint orthogo-
nality property, the method requires only two mixtures to 
separate an arbitrary number of sources. 

Previous publications (e.g. [6], [7]) have demon-
strated the robustness of the method even when tested with 
real data; up to 19 dB SIR (signal to interference ratio) gain 
has been achieved with instantaneous mixtures, up to 5 dB 
with echoic real mixtures, and separation of 3 sources 
using only 2 mixtures was realized emphasizing the main 
advantage of the method. 

In this paper we investigate the method in more de-
tails. Our investigation reveals significant drawbacks, con-
sideration of which is important for improving the DUET 
method in the future. The slowness of convergence and 
presence of artifacts constitute two of these drawbacks. 
Additionally, the presence of white noise was seen to vio-
late the basic assumption which leads to failure when 
dealing with noisy mixtures. 

The organization of this paper is as follows. Section 2 
defines the source assumption. Section 3 shows how the 
source assumption is used to define the signal model. In 
Section 4, we present a method for estimating the mixing 
parameters. A summary of the algorithm is given in Sec-
tion 5. In Section 6, we describe the demixing process. 
Section 7 presents and discusses the results. Finally, Sec-
tion 8 concludes the paper. 

2. Source Assumptions 
The main assumption for DUET is that, the time-fre-

quency representations of the source signals contained in a 
mixture should be disjoint (or non-overlapping). This con-
dition generated a concept which is referred to as the W-
disjoint orthogonality [3], [2]. Given a windowing function 
W(t), two signals si(t) and si(t) are said to be W-Disjoint 
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Orthogonal (W-DO) if the supports of the short-time 
Fourier transforms (STFTs) of si(t) and si(t) are disjoint [6], 
[8].  

The STFT of si(t) is defined as [9] 
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The support of Sj(ω,τ) is denoted as the set of the (ω,τ) 
pairs for which Sj(ω,τ) ≠ 0. 

Since the W-disjoint orthogonality assumption is not 
exactly satisfied for many categories of signals, the concept 
of approximate W-disjoint orthogonality introduced in [8] 
provides a practical version for the basic assumption. 
Approximate W-disjoint orthogonality assumes that at each 
point of the time-frequency representation of a mixture, the 
power of, at most, one source signal will be dominant. In 
other words, the assumption that sources other than the 
active (or the dominant) source has zero energy is replaced 
by the assumption that these sources have relatively low 
energy compared to the dominant source. 

With such an assumption, and if the set of time-fre-
quency points where one source dominates all the other 
sources is sufficient to represent the dominant source, 
masking the remaining time-frequency points (points 
where the dominant source has relatively low energy) sug-
gests a good method for extracting the dominant source 
one of the mixtures. 

3. Signal Model 
Let’s assume that we have N sources, sj, 

j∈{1,2,…,N}, that arrive at two sensors to compose two 
mixtures, x1(t) and x2(t) defined as 
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where aj1 and aj2 are attenuation factors corresponding to 
paths between source j and sensor 1 and 2, δj1 and δj2 are 
delays corresponding to paths between source j and sensor 
1 and 2. In this case we can absorb the attenuation and 
delay parameters of the first mixture x1(t) into the 
definition of the sources, (2) and (3) can then be expressed 
as  
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where the relative parameters  aj = aj2/aj1  and  δj =δj2 –δj1. 

We will refer to (aj,δj) as attenuation-delay parameters, 
or simply, mixing parameters.  

In time-frequency domain, (4) and (5) can be written 
as 
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4. Attenuation-Delay Estimation 
For W-disjoint orthogonal sources, it is noticed that at 

most one of the N sources will be non-zero for a given 
time-frequency point. Therefore, (6) can be written as 
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where j corresponds to the active source. Solving (7) gives 
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 ρj should be zero if sj(t) is the active source at point (ω,τ). 

It is noticed that at least one ρ must be zero, which 
implies that the minimum value of the set {ρ1,…,ρN}is 
always zero. We define 
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As proved in [8], minimizing J(τ) is equivalent to 
maximizing the log-likehood of the mixing parameters 
estimates. Again as in [8], (10) can be approximated as  
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where λ is a smoothing parameter, which has partial 
derivatives, 
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where Im( ) and Re( ) are the imaginary and real parts of a 
complex value, and | | is the complex magnitude. 
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5. Algorithm 
The complete algorithm that is used for learning the 

mixing parameters is summarized as follows: 
• Initialize the amplitude-delay estimates ))(ˆ),(ˆ( kka jj δ  

to random values, where k is a time index, 
j∈{1,2,…,N}, N is the number of sources which is 
assumed to be known. 

• Calculate jj ∀,ρ  using ))(ˆ),(ˆ( kka jj δ  and (9). 

• Calculate the gradients from (12) and (13).  
• Update the mixing parameters estimates according to 

j
jj a

Jkaka
∂
∂

−−=
)()1(ˆ)(ˆ τμ   (14) 

j
jj

Jkk
δ
τμδδ

∂
∂

−−=
)()1(ˆ)(ˆ   (15) 

where μ is a learning constant. 

6. Demixing 
The ρ estimates can be used to construct binary time-

frequency masks. We use the following equation to calcu-
late the elements of a mask: 
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As illustrated in Fig. 1, the time-frequency 
representation of one source can be obtained using 
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Finally, using the inverse transform the original 
sources can be recovered.   

 
Fig. 1. Using binary time-frequency masking to recover the 

time-frequency representation of one source from the 
time- frequency representation of one mixture. At blue 
points source 1 is active, at green points source 2 is 
active, at white points no source is active. Note that the 
green points are completely masked. 

7. Results 
First we tested the approximate W-disjoint orthogo-

nality of the source (speech) signals. For measuring the 

approximate W-disjoint orthogonality of speech signals, 
we used the measure introduced in [8]. Fig. 2 shows the 
values of the approximate W-disjoint orthogonality for one 
speech source for different threshold levels. For threshold 
x, a source is assumed to be the dominant (or approxi-
mately the only active) source if it is x dBs above the other 
(assumed non-active) source. The percentage value of the 
W-Disjoint Orthogonality (W-DO %) is the percentage of 
energy of the source that are contribution of the time-fre-
quency points where it dominates the other source by x 
dBs. Fig. 1 clearly reflects the fact that speech sources are 
sufficiently W-DO for large range of thresholds. 

 
Fig. 2. Measuring the approximate W-Disjoint Orthogonality 

(W-DO) of a sample speech source. On the horizontal 
axis there are the values of different thresholds used in 
the measurement. The W-DO % values are the 
percentage of energy of the source that are contribution 
of the time-frequency points where it dominates the other 
source by a number of dBs equal to the value of the 
threshold. The figure shows that speech signals are 
sufficiently W-DO at different thresholds. 

The algorithm was tested using both instantaneous mix-
tures and echoic mixtures. Up to 19 dB SIR (signal to 
interference ratio) gain was achieved with instantaneous 
mixtures, up to 5 dB with echoic real mixtures, and separa-
tion of 3 sources using only 2 mixtures was realized 
emphasizing the main advantage of the method. For the 
two-from-two case, we have found that normally more than 
90% of the energy of each source is recoverable. Tab. 1 
shows the (original) source recovery ratios and also the 
contribution of the original sources in the each output from 
a sample test.  
 

 Input Source 1 Input Source 2 

Output 
Source 1 

92.1% 6.1% 

Output 
Source2 

7.9% 93.9% 

 100.0% 100.0% 

Tab. 1. The source recovery ratios and source contribution ratios 
in BSS of 2 sources from 2 mixtures using DUET. The 
first column shows that the energy from input source 1 is 
divided among two different output sources. The first 
row shows the percentage contributions of energy from 
input sources that are recovered in output source 1. The 
two less values are considered as interference. The table 
also indicates that the DUET performs BSS by portion-
ing of mixture energy. 
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We measured the time required by the algorithm to reach 
the average value of the SIR gain for different inputs, and 
we found that the average value for this time is approxi-
mately 1.4 seconds. From a convergence point of view, we 
think this is quite slow. Fig. 3 shows the improvement 
(gain) in the SIRs during the convergence process from a 
sample test. The slowness of convergence may be due to 
the approximation introduced in eq. (11). We noticed that 
this approximation with a specific value of λ, is accurate 
only for a limited range of ρ values and will not be accurate 
any more if the range changes. Further, analyzing the real ρ 
values that are produced by the algorithm has shown that 
the approximation introduces a large error (see Fig. 4). We, 
therefore, suggest introducing a variable or adaptive ampli-
fication factor (λ). 

We also noticed that, with a relatively high level of 
white noise the algorithm normally fails. White noise de-
stroys the approximate W-disjoint orthogonality assump-
tion. This is due to the fact that white noise occupies the 
entire time-frequency domain. Improving the performance 
of the algorithm in noisy environments and studying the 
effect of different noise levels on the W-disjoint orthogo-
nality property are important for real usability of the DUET 
method. 

 
Fig. 3. The evolution of the SIR gains for two sources separated 

from two instantaneous mixtures. The overall average 
SIR gains are around 10 dB which is less due the con-
vergence process in the first iterations of the algorithms. 
The average convergence time from different tests is 1.4 
sec. 

An important drawback that should also be addressed by 
future research is the presence of artifacts in the form of 
distortions especially when dealing with echoic mixtures. 
Using continuous masks instead of binary masks is sup-
posed to solve this problem. Thus, new criteria for calcu-
lating the masks elements are needed for this purpose. 

Araki et al. [7] were able to reduce the artifacts by combing 
the method with ICA. In their approach, they used 
directivity pattern based continuous masks instead of 
binary mask. Still, the effectiveness of introducing ICA is 
questionable. 

 
Fig. 4. Min(ρ1 , ρ2) for ρ values produced by the DUET for two 

mixtures of two sources; blue: the actual min. values 
from Matlab function min(.,.); red:  min. value from 
approximation Min(ρ1 , ρ2) = - ln{exp(- λ ρ1) + exp(- λ ρ2) 
}/λ introduced in the algorithm for λ=10 which gives the 
best algorithm performance. The blue graph shows that 
Min(ρ1 , ρ2) is truly being minimized by the maximum 
likehood learning method despite the inaccuracy of the 
approximation. The accuracy of the approximation can 
be increased by having λ a function of ρ1 and ρ2. 

8. Conclusions 
The focus of this paper is on blind source separation 

applied to speech signals. The Degenerate Unmixing and 
Estimation Technique is used for this purpose. The 
approach utilizes binary time-frequency masks as tools for 
source separations. This paper demonstrates the 
powerfulness of the basic DUET approach that uses a 
simple intuitive idea to estimate the mixing parameters, and 
the powerfulness of time-frequency masks as an efficient 
tool for signal separation. However, the paper has also 
revealed significant drawbacks associated with the 
technique and that should be addressed in the future. 
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