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Abstract. In this paper we analyze the relationship 
between integer Lifting scheme and Rounding transform as 
means to compute the wavelet transform in signal 
processing area. We bring some new results which better 
describe relationship, reversibility and equivalence of 
integer lifting scheme and rounding transform concept. 
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1. Introduction 
At present time, there is still an effort to introduce a 

new general concept of an integer-to-integer transform. 
The most known is the integer version of the lifting scheme 
[1], [2], [3] (see Fig. 1.) - the integer lifting scheme (ILS) 
[1], [2], [3] (see Fig. 2.). Lifting factorizes wavelet trans-
form into successive invertible steps. 

 
Fig. 1.  Lifting scheme. 

Applying rounding operators after each step, the ILS can 
be obtained [9]. 

 
Fig. 2. Integer lifting scheme. 

Besides the ILS, there is also a variety of transforms 
that operate as integer-to-integer transforms [10 - 13]. 
Although some of them are ad-hoc solutions, some have 
more generic construction. We’ve more closely examined 
the idea of Prost and Jung. Their concept is based on the 
floor operator applied after the forward transform and the 
ceil operator applied after the backward transform. They 
refer to this concept as the Rounding transform (RT) [4], 
[5], [7], [8]. The forward transform of RT is defined as 
following: 

⎣ ⎦Hxy = . (1) 
The backward transform is defined: 

⎡ ⎤ ⎣ ⎦⎡ ⎤HxVVyx ==  (2) 

where matrix V is defined as inverse matrix to H. Later 
they introduced the overlapped Rounding transform (ORT) 
[6], where terms in (1) and (2) contained polynomials. 
Despite of the interesting idea, the authors were unable to 
show general solution that would satisfy (2). Instead they 
presented several types of matrices that satisfy the men-
tioned equation. Later, these particular matrices have been 
revisited by Adams and Kossentini [14] and have been 
found lifting equivalent. 

We have examined the relationship between integer 
lifting and its rounding counter part (Fig. 3). First we show 
the set of equivalence, i.e. set where RT and ILS produce 
identical outputs for identical inputs with respect to p ,u, 
p’, u’. This is shown in section 2. Then in section 3 we 
show, when the rounding transform is reversible and how 
important the relationship between the two approaches is. 

2. Relationship between Integer 
Lifting and Rounding Transform 
To show the relationship between ILS and RT, we’ve 

chosen a version of the ILS with one predict and update 
step (without the normalization step). This scheme is com-
pared against its RT counterpart (rounding operation 
applied at the end of the forward transform) as it is shown 
in Fig. 3. 
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a) 

 
b) 

Fig. 3. Forward and backward part of a) Integer lifting, 
b) Rounding transform 

Altough RT shown here is not a general RT (the H matrix 
for it is not a general one as we’ll show later), it is a 
sufficient example to demonstrate how RT and ILS are 
related. Because both transforms are integer-to-integer 
transforms and the result should be represent able in a 
machine with finite precision, we will assume 

Zxx oe ∈,  and Qupup ∈',',, . (3) 

In appendix A it is shown, that there is no case, where 
both approaches would produce identical outputs for all 
possible (and identical) inputs, when p ≠ p’ and u ≠ u’ 
Then according to Fig. 3. the outputs for the ILS are 
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and the outputs produced by the RT scheme are 
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From Fig. 3., it is clear, that  y2 = y2’. To analyze the 
equivalence of ILS and RT, we’ll need to find all p, u 
satisfying the equation 

 ,11 yy =  (6) 
for all possible xe, xo. The equation to solve is: 

⎣ ⎦{ }⎣ ⎦oee xpxux ++  = { }⎣ ⎦oee xpxux ++ . (7) 

According to (3), we can express u and p in the following 
form  
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Equation (7) is satisfied only when  

P1 = 1  for U1 < 0  or  
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We call the set of p and u, where (9) holds, the set of 
equivalence. It is depicted in Fig. 4. 

 
Fig. 4. Set of equivalence of ILS and RT. White area depicts 

where the equation (9) holds and black area where it 
doesn’t. Displayed is range p,u ∈<-5, 5>. 

3. Reversibility of Rounding 
Transform 
To examine the reversibility of RT, we’ll have to 

examine the whole scheme, not only the forward part of it 
(as in section 2). The scheme in the Fig. 3b corresponds to 
(2) with the following forward and backward matrix: 
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Then for outputs ex̂  and ox̂ it holds: 
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The reversibility is achieved when ee xx =ˆ  and oo xx =ˆ . 
Solution of (11) is not trivial, but a closer look on the 
reconstruction of xe in ILS and RT approach reveals that it 
is done in the same way. Based on Fig. 3.  for lifting 

⎡ ⎤ ⎣ ⎦uyyuyyxe 2121 −=−+=  (12) 

and rounding 

⎣ ⎦uyyxe 21' −= . (13) 
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Equation (12) always holds, since the integer lifting is 
reversible. Following this, (13) can hold only if y1 = y’1. 
Considering y2 = y’2 this finally tells us: if the RT is re-
versible, then it is possible to write it in an ILS form. 

4. Conclusion 
From what we have shown in section 3, one can see 

that the forward part of RT is in fact ILS in our case. 
Nothing is said about the reconstruction of ox̂ . Solving 

oo xx =ˆ  from (11) is difficult, since the backward part of 
RT is different than in ILS. Following results that we’ve 
derived in section 3, it’s obvious that the set of reversibility 
will be not greater than the set of equivalence. Expansion 
of this statement to a polynomial case should be straight-
forward. 

Appendix A - Equivalence of ILS and 
RT Approach 

The output of ILS, according to Fig. 3. is 
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and for RT we have 
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The equivalence is achieved when  

y2 = y’2, i. e. ⎣ ⎦ oe xpx +  = ⎣ ⎦ oe xxp +'  (A1) 

y1 = y’1, i. e. ⎣ ⎦{ }⎣ ⎦oee xpxux ++  = { }⎣ ⎦oee xxpux ++ ''  (A2) 

where p, u, p’, u’∈Q (since working with finite precision). 
In the following we’ll use these properties: 
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Solution (A1) 

We can rewrite p’ as p’ = p+Δp so we obtain  

⎣ ⎦epx  
!
=  ⎣ ⎦epe xpx Δ+ . It’s clear that the right term of 

(A1) will grow over all limits with nonzero Δp. The 
equation (A1) would not hold for all xe in this case. 

Therefore, to fulfill (A1) we have to choose: Δp = 0, which 
means p’ = p. 

Solution (A2) 

Instead of using pxe+x0, we’ll express it as 
x = pxe+x0 = (P1/P2)xe +xo. This shows that x is either 
integer or an integer plus a fraction of P2. This way, x can 
be expressed also as x = ⎣x⎦ + Δx whereby Δx ∈{0,1,…., 
(P2-1)/P2}. If we write u’ = u+Δu we can express (A2) as 
follows 

⎣ ⎦⎣ ⎦xu  = ⎣ ⎦⎣ ⎦xuxu ux Δ+Δ+ . (A3) 

u⎣x⎦ can be expressed as 

⎣ ⎦ ⎣ ⎦
22

1 )()(
U

xxx
U
Uxu βα +==   

whereby 
⎭
⎬
⎫

⎩
⎨
⎧ −

∈
2

2 1,...,1,0)(
U

Uxβ .  The (A3) changes then to 

⎥
⎦

⎥
⎢
⎣

⎢
Δ+Δ++=⎥

⎦

⎥
⎢
⎣

⎢
+ xu

U
xx

U
xx ux

22

)()()()( βαβα  (A4) 

and since 
⎥
⎦

⎥
⎢
⎣

⎢

2

)(
U

xβ =0 further 

⎥
⎦

⎥
⎢
⎣

⎢
Δ+Δ+= xu

U
x

ux
2

)(0 β . (A5) 

Substituting one more time ⎣ ⎦ xxx Δ+=  we obtain 
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That means, that we’ll have to satisfy 
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The “problematic” term from (A6) is Δx (u+Δu) + Δu ⎣x⎦, 
since β(x)/U2 is always within a well defined range. Inputs 
Δx, ⎣x⎦ are not related to parameters u and Δu, so to prohibit 
growing of Δx (u+Δu) + Δu ⎣x⎦  beyond all limits, we’ll have 
to choose Δu = 0. That is, having u = u’. (A6) has then the 
following form 
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which is the basic equation for equivalence between the 
ILS and its RT counterpart. To satisfy (A7) we have to find 
minimum and maximum of  
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This can be split in two cases: U1 ≥ 0 and for U1 < 0. 

For U1 ≥ 0 we have  

min{v} equal to zero (β(x) = 0 and Δx = 0) and 
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To satisfy (A7) we have to fulfill 
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For U1 < 0 we have 
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To satisfy (A7) in this case we’ll have to fulfill 
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which obviously is P2 = 1 since U1 < 0. 
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