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Abstract. In this paper, a technique based on hybrid parti-
cle swarm optimiser with breeding and subpopulation is 
presented for optimal design of reconfigurable dual-beam 
linear array antennas and planar arrays. In the amplitude- 
phase synthesis, the design of a reconfigurable dual-pat-
tern antenna array is based on finding a common ampli-
tude distribution that can generate either a pencil or sector 
beam power pattern, when the phase distribution of the 
array is modified appropriately. The goal of this study is to 
introduce the hybrid model to the electromagnetic commu-
nity and demonstrate its great potential in electromagnetic 
optimizations. 
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1. Introduction 
Optimizations of linear antenna arrays have received 

great attention in the electromagnetic community for many 
civilian and military applications. Multiple-beam antenna 
arrays have important applications in communications and 
radar. Reconfigurable antenna array that are capable of 
radiating with multiple patterns using a single power di-
vider network are desirable for many applications. Re-
cently, evolutionary algorithms have been successfully 
applied to antenna array synthesis problems like null steer-
ing in phased arrays by positional perturbations [1], recon-
figurable phase differentiated array design [2], [3], and the 
corrugated horn antenna design [4]. To solve the antenna 
array pattern synthesis problems, among a number of opti-
mization procedures, the artificial intelligence techniques 
such as genetic, simulated annealing and tabu search algo-
rithms owing to their simplicity, flexibility and accuracy 
have received much attention in recent years. Genetic algo-
rithm (GA) is a search technique based on an abstract 
model of Darwinian evolution. Simulated annealing (SA) 

technique is essentially a local search, in which a move to 
an inferior solution is allowed with a probability, according 
to some Boltzmann-type distribution, that decreases as the 
process progresses. Tabu search (TS) algorithm has been 
developed to be an effective and efficient scheme for com-
binatorial optimization that combines a hill-climbing 
search strategy based on a set of elementary moves and a 
heuristics to avoid to stops at sub-optimal points and the 
occurrence of cycles. Recently, particle swarm optimiza-
tion algorithm (PSO) is proposed for solving global nu-
merical optimization problem. The search techniques men-
tioned above are the probabilistic search techniques that 
are simple and easily be implemented without any gradient 
calculation. This study uses a new electromagnetic optimi-
zation technique, hybrid particle swarm optimizer with 
breeding and subpopulation [5], to design a linear recon-
figurable dual-beam antennas array and planar array anten-
nas. The result shows that the hybrid model can find a high 
quality solution even for a very high dimensional problem. 

2. Problem Formulation 
The design of a reconfigurable dual-pattern antenna 

array is based on finding a common amplitude distribution 
that can generate either a pencil beam or sector beam, 
when the phase distribution of the array is changed 
appropriately. All the excitation phases are kept constant at 
0° to generate a pencil beam, and are varied in the range -
180°≤θ≤ 180° to form a sector beam [2]. 

If the array element excitations are conjugate 
symmetrical about the center of the linear array, the far 
field factor of this array with even number of uniformly 
spaced isotropic elements (2N) can be given by (1)[6]. 
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where N is the element number; λ is the  wavelength; δk are 
phases of the elements (-180°≤θ≤ 180°); ak  the  amplitude 
of the elements; dk the distance between position of ith 
element and the array center;  θ the scanning angle. 



40 H. CHAKER, S. M. MERIAH, F. T. BENDIMERAD, OPTIMIZATION OF MICRO STRIP ARRAY ANTENNAS USING HYBRID PSO … 

Evolutionary algorithms use the concept of fitness to 
represent how well an arbitrary solution satisfies the design 
parameters. Each of the parameters used to calculate the 
fitness is referred to as a fitness factor. The fitness factors 
must together quantify the solution. 

For the reconfigurable dual-beam optimization, the 
fitness function must quantify the entire array radiation 
pattern. One possible method of doing so would be to 
compare the calculated pattern point-by-point with the 
desired pattern as follows: 
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The fitness can be seen as the difference area between 
the desired pattern and obtained pattern. The greater value 
of the fitness function, the better match between the 
obtained pattern and the desired one. Equation (2) is used 
for evaluating the fitness value during the optimization 
process. 

3. Hybrid Particle Swarm Optimizer 
with Breeding and Subpopulations 
Both Eberhart and Angeline conclude that hybrid 

models of the standard GA and the PSO could lead to 
further advances. We present such a hybrid model. The 
model incorporates one major aspect of the standard GA 
into the PSO, the reproduction. In the following work we 
will refer to the used reproduction and recombination of 
genes only as “breeding”. Breeding is one of the core 
elements that make the standard GA a powerful algorithm. 
Hence our hypothesis was that a PSO hybrid with breeding 
has the potential to reach better results than the standard 
PSO. In addition to breeding we introduce a hybrid with 
both breeding and subpopulations. Subpopulations have 
previously been introduced to standard GA models mainly 
to prevent premature convergence to suboptimal points [7]. 
Our motivation for this extension was that the PSO models, 
including the hybrid PSO with breeding, also reach subop-
timal solutions. Breeding between particles in different 
subpopulations was also added as an interaction 
mechanism between subpopulations. The traditional PSO 
model, described by [8], consists of a number of particles 
moving around in the search space, each representing a 
possible solution to a numerical problem. Each particle has 
a position vector Xi=(xi1,…,xid,…, xiD), a velocity vector 
Vi=(vi1,…,vid,…, viD), the position Pi=(pi1,…,pid,…, piD), 
and fitness of the best point encountered by the particle, 
and the index (g) of the best particle in the swarm. In each 
iteration the velocity of each particle is updated according 
to their best encountered position and the best position 
encountered by any particle, in the following way: 

)(())(() 21 idgdidididid xprandcxprandcvwv −××+−××+×=  (3) 

w is the inertia weight described in [9], [10] and pgd
 is the 

best position known for all particles. c1 and c2 are random 

values different for each particle and for each dimension. If 
the velocity is higher than a certain limit, called Vmax, this 
limit will be used as the new velocity for this particle in 
this dimension, thus keeping the particles within the search 
space. The position of each particle is updated in each 
iteration. This is done by adding the velocity vector to the 
position vector; 

ididid vxx += . (4) 

The particles have no neighborhood restrictions, 
meaning that each particle can affect all other particles. 
This neighborhood is of type star (fully connected net-
work), which has been shown to be a good neighborhood 
type in [11]. Fig. 1 shows the structure illustration of the 
hybrid model. 

Begin 
          Initialise 
          While (not terminate-condition) do 
              Begin 
                   Evaluate 
                   Calculate new velocity vectors 
                    Move 
                    Breed 
              End 
End 

Fig. 1. The structure of the hybrid model. 

The breeding is done by first determining which of 
the particles that should breed. This is done by iterating 
through all the particles and, with probability pb equal to 
0.6 (breeding probability); mark a given particle for 
breeding. Note that the fitness is not used when selecting 
particles for breeding. From the pool of marked particles 
we now select two random particles for breeding. This is 
done until the pool of marked particles is empty. The 
parent particles are replaced by their offspring particles, 
thereby keeping the population size fixed. The position of 
the offspring is found for each dimension by arithmetic 
crossover on the position of the parents: 

)()0.1()()( 211 iiiii xparentpxparentpxchild ×−+×= , (5) 
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where pi is a uniformly distributed random value between 0 
and 1. The velocity vectors of the offspring are calculated 
as the sum of the velocity vectors of the parents normalized 
to the original length of each parent velocity vector. 
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The arithmetic crossover of positions in the search 
space is one of the most commonly used crossover 
methods with standard real valued GAs, placing the off-
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spring within the hypercube spanned by the parent parti-
cles. The main motivation behind the crossover is that 
offspring particles benefit from both parents. In theory this 
allows good examination of the search space between par-
ticles. Having two particles on different suboptimal peaks 
breed could result in an escape from a local optimum, and 
thus aid in achieving a better one. We used the same idea 
for the crossover of the velocity vector. Adding the ve-
locity vectors of the parents results in the velocity vector of 
the offspring. Thus each parent affects the direction of each 
offspring velocity vector equally. In order to control that 
the offspring velocity was not getting too fast or too slow, 
the offspring velocity vector is normalized to the length of 
the velocity vector of one of the parent particles. The 
starting position of a new offspring particle is used as the 
initial value for this particle’s best found optimum ( ip ). 
The motivation for introducing subpopulations is to restrict 
the gene flow (keeping the diversity) and thereby attempt 
to evade suboptimal convergence. The subpopulation hy-
brid PSO model is an extension of the just described 
breeding hybrid PSO model. In this new model the parti-
cles are divided into a number of subpopulations. The 
purpose of the subpopulations is that each subpopulation 
has its own unique best known optimum. The velocity 
vector of a particle is updated as before except that the best 
known position ( gp  in the formula) now refers to the best 
known position within the subpopulation that the particle 
belongs to. In terms of the neighborhood topology sug-
gested by Kennedy in [11], each subpopulation has its own 
star neighborhood. The only interaction between subpopu-
lations is, if parents from different subpopulations breed. 
Breeding is now possible both within a subpopulation but 
also between different subpopulations. An extra parameter 
called probability of same subpopulation breeding psb de-
termines whether a given particle selected for breeding is 
to breed within the same subpopulation (probability psb 
equal to 0.6), or with a particle from another subpopulation 
(probability 1- psb). Replacing each parent with an off-
spring particle ensures a constant subpopulation size. The 
number of subpopulations used in our simulation is three 
with an initial population of 40 particles. 

4. Results 
We consider an array of 20 isotropic elements spaced 

0.5 λ apart in order to generate a pencil beam and a sector 
beam with a common amplitude distribution and varying 
phase distribution. Because of symmetry, here only ten 
phases and ten amplitudes are to be optimized. Acceptable 
side lobe level (SLL) should be equal to or less than the 
desired value, and there are no side lobes exceeding the 
specified values, -40 dB for pencil beam and -30 dB for 
sector beam. Fig. 2 shows normalized absolute power pat-
tern in dB for pencil beam and Fig. 3 for sector beam. 
After 250 iterations, the fitness value reached to its maxi-
mum, and the optimization process ended due to meeting 
the design goal as shown in Fig. 4. This again demonstrates 

the efficiency of the hybrid model. Amplitude and phase 
distributions in degree are shown in Tab. 1. 
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Fig. 2. Optimized pencil-shaped radiation pattern of a 20-

element linear array. 
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Fig. 3. Optimized sector-shaped radiation pattern of a 20- 

element linear array. 
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Fig. 4. Convergence curve.  
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Fig. 5. The element excitation required to achieve the desired 

pattern. 
 

Pencil Beam Sector Beam Element 
N° Amplitude 

(Volt) 
Phase 

(Degree) 
Amplitude 

(Volt) 
Phase 

(Degree) 
1 0.0607 0.0000 0.0607 29.0547 
2 0.1241 0.0000 0.1241 -65.3286 
3 0.1983 0.0000 0.1983 -64.0510 
4 0.3075 0.0000 0.3075 -97.5690 
5 0.4390 0.0000 0.4390 -48.9306 
6 0.5647 0.0000 0.5647 44.7308 
7 0.7036 0.0000 0.7036 75.3726 
8 0.7965 0.0000 0.7965 57.1296 
9 0.89 0.0000 0.89 39.1330 

10 0.9214 0.0000 0.9214 11.7284 
11 0.9214 0.0000 0.9214 -11.7284 
12 0.89 0.0000 0.89 -39.1330  
13 0.7965 0.0000 0.7965 -57.1296 
14 0.7036 0.0000 0.7036 -75.3726 
15 0.5647   0.0000 0.5647   -44.7308 
16 0.4390 0.0000 0.4390 48.9306 
17 0.3075 0.0000 0.3075 97.5690 
18 0.1983 0.0000 0.1983 64.0510 
19 0.1241 0.0000 0.1241 65.3286 
20 0.0607 0.0000 0.0607 -29.0547 

 
Tab. 1. Amplitude and phase distributions. 

In order to evaluate the performance of the proposed 
algorithm, we compare the numerical results calculated by 
the hybrid model, and the genetic algorithm using floating-
point [12]. For comparison, a reconfigurable dual-beam 
linear array antenna is considered. We show the 
comparison of the far-field patterns among the hybrid 
model simulation results, and the genetic algorithm 
simulated results in [12]. The hybrid algorithm side lobe 
level is -40.43 dB and -31.01 dB for pencil and sector 
beams respectively, this results remain comparable to the 
genetic algorithm:  -25.05 dB and -25.56 dB for pencil and 
sector beams respectively, An improvement of about 
15.38 dB and 5.45 dB in the side lobe level of pencil beam 
and sector pattern is obtained. For the simulation 
convergence comparison between hybrid model and 
genetic algorithm, the hybrid model is run for 250 
generations and the genetic algorithm is run for 1200 
generations. Obviously, the hybrid algorithm is much faster 
than the genetic algorithm for array pattern synthesis. 

This section presents a design method for planar 
arrays that permits control of the SLL and the beam width 

in the two principal planes corresponding to E plane 
(φ=0°) and H plane (φ=90°) respectively. As an illustrative 
example, we first consider the example problem that 
applied the hybrid model is the optimization of a 100 
element planar array. Excited by a flat phase, the objects 
that should be optimized are the relative excitation 
amplitude on each element, along with the distance 
between elements, λ/2. In the plane φ=0°, the SLL is set to 
-35 dB, and in the plane φ=90° the SLL is set to   -35dB 
too, as indicated in Fig. 6. The best fitness value returned 
versus the number of calls to the fitness evaluator was 
achieved after 200 as plotted in Fig. 7. The optimized 
excitations magnitudes elements according to the two axis 
are show in Fig. 8. Tab. 2 shows the element excitation 
value required to achieve this pattern. This figure shows 
the main beam accompanied by a decrease in the number 
of side lobes. In fact, the desired beam width is achieved 
and the specified SLL is respected. 
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Fig. 6. Radiation pattern (both E and H plane) of a 100-element 

planar array. 
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Fig. 7. Convergence curve. 
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Fig. 8. The element excitation required to achieve the desired 

pattern. 
 
 

Amplitude (Volt) Element N° 

Ox direction Oy direction 

1&10 0.0894 0.0855 

2&9 0.2436 0.2506 

3&8 0.4556 0.4733 

4&7 0.6535 0.7116 

5&6 0.7906 0.8468 

Tab. 2. Amplitude distribution. 

For the next example, we take an array with 64 ele-
ments, in amplitude-phase synthesis, the design of this 
array is based on finding the amplitude and phase distribu-
tion of each element, in the plane φ=0°, the SLL is set to  
-30dB, and in the plane φ=90° the SLL is set to -30 dB. 
Fig. 9 shows normalized absolute power pattern in dB, 
there is a very good agreement between desired and 
obtained results. The hybrid model is run for 200 iterations 
with an initial population of 40 as indicated in Fig. 10. The 
optimized excitation magnitudes and phases (degree) ele-
ments according to the two axis are shown in Fig. 11, and 
values are presented in Tab. 3. It is clear from Fig. 9 that in 
the shaped region, the patterns in the two planes have good 
performance, and there is no side lobe that exceeds the 
specified values. This property of the proposed design 
enables to choose the size (area) of the region to be cov-
ered by the main beam while keeping radiation in the other 
directions below a desired level. 
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Fig. 9. Normalized absolute power pattern generated by 64 

element planar array.  

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Fitness Evaluation

B
es

t F
itn

es
s

 
Fig. 10. Convergence curve.  
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Fig. 11. The element excitation required to achieve the desired 

pattern. 
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Amplitude (Volt) Phase ( Degree ) Number 
N° Ox 

direction 
Oy 

direction 
Ox 

direction 
Oy 

direction 

1 0.1012 0.2624 -32.332 -31.0658 

2 0.1501 0.5930 11.4305 10.1471 

3 0.1944 0.5363 -57.0952 25.6227 

4 0.5982 0.5325 -24.5971 1.1459 

5 0.5982 0.5325 24.5971 -1.1459 

6 0.1944 0.5363 57.0952 -25.6227 

7 0.1501 0.5930 -11.4305 -10.1471 

8 0.1012 0.2624 32.332 31.0658 

Tab. 3. Amplitude and phase distributions. 

5. Conclusion 
In this paper, Hybrid particle swarm optimizer with 

breeding and subpopulation is successfully used to the 
design of a reconfigurable dual-beam array and planar 
arrays. Results show that there is an agreement between the 
desired specifications and the synthesized one. This 
demonstrates the effectiveness of the proposed procedure. 
Advantages of this technique are ease of implementation, 
flexibility, accuracy, and can be very useful to antenna 
engineers for the pattern synthesis of antenna arrays. 
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