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Abstract. We present a new method to estimate the Hurst 
parameter. The method exploits the form of the autocorre-
lation function for second-order self-similar processes and 
is based on one-pass digital filtration. We compare the 
performance and properties of the new method with that of 
the most common methods. 
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1. Introduction 
Although known for decades, self-similarity of ran-

dom processes (in the distributional sense) gained a great 
deal of attention in the early 90’s, when Leland et al 
showed in [1] that self-similarity plays a significant role in 
Local Area Network traffic. Until then, it was thought that 
network traffic behaves like telephony traffic and follows 
the traditional Poisson models. Not only has it been proven 
that this assumption is wrong, other evidence for self-
similar behavior in different environments has been gath-
ered and presented [2], [8], [9], [10]. 

One of the most important things about self-similar 
behavior of network traffic and self-similar processes is the 
much higher utilization rate produced in contrary to the 
Poisson like models [4]. This has an obvious consequence 
for buffer design and has a big impact on the overall per-
formance of a system. Another important point is whether 
an underlying process is self-similar or not and, if it is, then 
how much is it self-similar.  

The article is divided as follows: Section 2 gives 
a short introduction into self-similarity for a discrete ran-
dom process and discusses the known methods for deter-
mining the degree of self-similarity. Section 3 explains 
how the autocorrelation function (ACF) and digital filter-
ing can be used to estimate the self-similarity parameter. 
Section 4 provides results and a summary. 

2. Self-similarity, Theoretical 
Background 
We call a second-order stationary random process X 

exactly second-order self-similar (for details please refer to 
[3], [4], [5], [6], [7]), when it satisfies 
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where r(m)(k) denotes the ACF of the aggregated process 
X(m) defined as 
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and the parameter H is called the Hurst parameter or the 
self-similarity parameter. A weaker form of self-similarity 
is known as the asymptotical self-similarity. This happens 
when (1) and (2) hold for m→∞. 

Because of its practical importance, we stick close to 
the fractional Gaussian noise (fGn) (for details please refer 
to [3]) which satisfies both (1) and (2). It’s clear that fGn 
remains the same (in the sense of its statistical properties), 
over all scales (aggregation levels) and so are the impacts 
of the self-similar behavior. The range ½ < H < 1 is espe-
cially of interest, as the process exhibits another interesting 
property – the long-range dependence. In this case, the 
correlations decay slowly to zero. The decay is hyperbolic 
rather than exponential and the variance of time averages 
tends more slowly to zero as one would expect. From (2) 
it’s clear that the Hurst parameter “determines” the long 
term behavior of the process. The higher is the value of the 
Hurst parameter, the more is the process self-similar (for 
further important implications of self-similarity please refer 
to [4]). 

Besides the autocorrelation structure described by (2), 
the self-similarity manifests itself in other forms, such as 
the variances of the aggregated process (1), or in the spec-
tral domain via the power spectral density. These proper 
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ties form the basis for Hurst parameter estimation. The 
analysis is done either in the time domain (Variance-time 
plots, R/S plot) or in the spectral domain (Periodogram, 
Whittle’s estimator, Abry-Veitch estimator using wavelets 
to analyze the process). Please refer to [4] for further 
details.  

Although a number of methods working in the time 
domain exist, only few are known to directly analyze the 
ACF. The Correlogram [3] is useful for an initial heuristic 
analysis of the data as the decay of the correlations is hy-
perbolic, but it is not suitable for accurate estimation. In 
[11] a moment estimator has been introduced by Kettani 
working with lag 1 of the ACF. The concept has been re-
visited in [12], where an iterative approach has been used 
to analyze the ACF for one arbitrary chosen lag. In the next 
section we will show how the ACF can be analyzed using 
digital filtration. 

3. Analysis of the Autocorrelation 
Function 
A straightforward estimation of H involving the ACF 

would be to find the best-fit r(k) (and thus H) for a sample 
ACF )(ˆ kr . It may be obtained as 
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where N is the sample length, μ̂  and 2σ̂  are the sample 
mean and sample variance, respectively. Using the method 
of least squares (MLS), the equation to solve is  
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However an analytic solution of (5) seems not to exist and 
the corresponding H has to be found iteratively. To avoid 
this, a suitable transform domain can be used. 

We propose a Z–transform approach. The idea behind 
is similar to the approach above, but the estimator is based 
on one-pass digital filtration of the ACF. Moreover, the 
result is expected to have a constant function form, so no 
complicated regression is needed. We see that the basis for 
the r(k) is the term k2H (from (2)). Therefore, we rewrite the 
ACF as 

 [ ])1()(2)1(
2
1)(

2
1)( ++−−+= kxkxkxkkr δ , 0≥k  (6) 

where δ(k) is the Kronecker delta function and x(k) is 
a function with form 
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Using (two-sided) Z-transform, (6) can be transformed into 
Z-domain 
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where X(z) = Z{x(k)}. Filtering both sides of (8) with 
a digital filter defined by the transfer function F(z) or 
equivalently by the impulse response f(k)  
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leads to 
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or equivalently in the time domain we get 

 ( ) ( )* ( )x k f k r k k= −  (11) 

where * denotes the linear convolution. The computation 
of (11) can be done with complexity of O(n) by using 
following formula 
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where x(0) = 0 and x(1) = 1 (from (11)). Let’s now define  
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Using (7) we see, that H(k) = H. Analogically to (11), for 
a self-similar data set, the ˆ( )x k  can be obtained from )(ˆ kr . 
Then the function 
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is expected to be a constant function with the value of the 
Hurst parameter as we expect )(ˆ kr  to follow r(k) and thus 
ˆ( )x k  to follow x(k). Since the ACF of a real process never 

exactly fits to (2), the Ĥ(k) will likely not be exactly con-
stant for all k ≥ 2. In this case, the estimation of H from 
(14) can be made, for example, by choosing the sample 
mean of Ĥ(k). We will refer to this estimate as Ĥ. 

4. Results and Conclusions 
To show the performance of the new method we have 

synthesized several fGn traces with the R statistical envi-
ronment [15] using the Paxson’s algorithm [13], [14]. For 
each value of H = {0.6, 0.7, 0.8, 0.9}, 100 different traces 
have been analyzed, each trace with sample length of 
16384. That means, that for each data set (with known H) 
we have obtained 100 estimates of the Hurst parameter Ĥn  
(n=1,2…100). The sample mean of Ĥn  has been calculated 
and is given in Tab. 1. Besides that, other reference data 
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have been analyzed as well: the Nile River levels data 
listed in [3] and two Bellcore (BC) data sets that were 
analyzed in [1]. Our results are compared to other most 
common methods of estimation. 
 

Method / 
Trace FACF MLS RS VT PG WH AV 

fGn (H=0.6) 0.5991 0.5993 0.6479 0.5948 0.6049 0.6002 0.6023 

fGn (H=0.7) 0.6963 0.6952 0.7154 0.6895 0.7060 0.6998 0.6774 

fGn (H=0.8) 0.7901 0.7864 0.7767 0.7753 0.8080 0.8000 0.8056 

fGn (H=0.9) 0.8726 0.8658 0.8299 0.8519 0.9113 0.9000 0.9057 

Nile 0.8353 0.8291 0.8395 0.8467 0.9927 0.8374 0.9031 

BC (Aug89) 0.8332 0.8322 0.5581 0.8196 0.8570 0.8282 0.8049 

BC (Oct89Ext) 0.9021 0.9001 0.8224 0.8906 0.9581 0.8943 0.9769 

Tab. 1. Estimators comparison. FACF – filtration of the ACF, 
MLS – method of least squares, RS – rescaled statis-
tics, VT – aggregated variance-time plot, PG – perio-
dogram, WH – Whittle’s estimator, AV – Abry/Veitch 
estimator. 

We see that for the synthesized data, the estimator 
performs well overall and gives accurate estimations. For 
H = 0.9 the algorithm seems to underestimate the Hurst 
parameter. In this case the spectral density fits the theoreti-
cal form (an assumption under which the spectral-domain 
estimators are derived), but the dependence between the 
samples in the time-domain is no longer correct and the 
ACF does not follow (2) as expected. This issue is ad-
dressed in [16] and is also present in [13], [14]. For longer 
sequences, this is not a problem and both time and spectral 
characteristics of the generated fGn traces are correct. We 
consider this not to be a problem of the estimator, but 
rather a synthesis issue, where the method provides ap-
proximation of the fGn only. For Nile data, the estimator 
gives estimates very close to those suggested by Beran in 
his analysis. Even though this data set is small, it is Gaus-
sian and the assumption (2) holds. The Bellcore data fol-
lows the model very closely and the estimates are H = 0.83 
and H = 0.9 respectively. 

Tab. 2. lists the empirical 95% Confidence Intervals 
(CI) analysis Ĥn. For CI calculations [17], we assumed Ĥn  
to have normal distribution, which has been confirmed by 
χ2 tests. The width of CIs is rather narrow compared e.g. to 
[11]. This may be due to the fact that our method uses 
several lags of the ACF when estimating the Hurst 
parameter. 
 

 
fGn 

(H=0.6) 

fGn 

(H=0.7) 

fGn 

(H=0.8) 

fGn 

(H=0.9) 

Mean of Ĥn  0.5991 0.6963 0.7901 0.8726 

95% CI [0.5978,0.6004] [0.6947,0.6980] [0.7883,0.7919] [0.8705,0.8747] 

Tab. 2. Confidence intervals for Ĥn. 

Our simulations have shown that the estimator is al-
ready accurate for small number of lags. It is therefore not 
necessary to calculate the whole ACF and the correspond-
ing Ĥ(k). Using very large number of lags may lead to the 
estimation error. This is caused by data versus model inac-

curacies for very high lags and use of finite signal length. 
The estimated values of the Hurst parameter are correct so 
long as the assumption (2) holds and the data approxi-
mately follows the theoretical model. In this case, the num-
ber of lags is not an issue and the differences noted when 
using a different number of lags are negligible. The results 
presented in the tables have been obtained using the first 
64 lags. The results also show that our presented method 
provides estimations very close to the MLS, but without 
the need for an iteration as in [12]. It also exploits the 
whole form of the ACF and not just the asymptotic behav-
ior or a particular lag as in [11]. Due to (12) we consider 
this to be a fast estimator, which we think could be used as 
real-time estimator e.g. in a network traffic classification 
system [18]. An obvious extension of this work will be to 
use this approach for analysis of the asymptotical self-
similar processes. 
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