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Abstract. This paper deals with RC active biquad working 
in the so-called current mode (CM). The design approach 
uses only three transconductors (OTA) with the minimum 
necessary number of outputs and with only three passive 
grounded elements. The proposed filter has simple circuit 
configuration providing all standard transfer functions 
such as high-pass (HP), band-pass (BP), low-pass (LP), 
band-reject (BR) and all-pass (AP). Electronic tuning and 
independent adjusting of the quality factor and bandwidth 
of BP filter is possible. The presented circuits are verified 
by PSpice simulations utilizing OTAs on transistor level of 
abstraction. The linear parasitic effects of the real active 
elements in each suggested circuit are briefly discussed. 
Experimental verification is also given. Designed networks 
can be used in many applications such as antialiasing 
filters, in high-speed data telecommunication systems, for 
signal processing in the cable modems, in regulation and 
measurement techniques etc. 
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1. Introduction 
Recent trends focused on adjustable applications re-

quire modern electronically controllable active building 
blocks, i.e. blocks where main transfer parameter can be 
controlled by external dc voltage or current. For example 
in the case of voltage amplifiers this parameter is voltage 
gain, current amplifiers are characterized by current gain, 
for transconductance amplifiers it is transconductance, etc. 
There is also possibility of using single OTA as electroni-
cally controlled resistors as it is demonstrated in [1], [2]. 
Digital potentiometers and D/A converters are suitable for 
electronically adjustable applications. The advantage of 
digital potentiometers is easy controlling of their value 
through a personal computer. However, several serious 
drawbacks such as low maximal amplitude of signal, high 
parasitic capacitance (tens of pF) resulting into decreased 
maximal frequency of processed signal (few MHz) make 
them less useful. Also low number of steps in some types 

of the digital potentiometers can cause problems. There are 
many active blocks well suited for electronic control pur-
poses in the interesting publication [3]. Unfortunately the 
majority of them is hypothetical and can not be bought in 
shop.  

For many low frequency applications, classical active 
RC filters [4] based on voltage operational amplifiers are 
often used. However at higher frequencies and for tunable 
applications, it is better to replace the conventional opamps 
by some OTAs [5], [6], [7], current differencing transcon-
ductance amplifiers (CDTAs) [8], dual or multi-output 
current-controlled current conveyors (DO-CCCIIs) [9], 
[10], [11], or current-controlled current feedback amplifi-
ers (CC-CFAs) [12]. Uncommon devices mentioned above 
have advantageous features like higher speed of signal 
processing and implementation in full integration form 
using modern bipolar, CMOS, BiCMOS and GaAs tech-
nologies. The transconductance (gm) of OTAs and CDTAs 
can be electronically tuned by means of current ISET 
allowing the desired external control of circuit parameters 
without need to change values of passive elements. The 
circuits based on OTAs and working in the voltage mode 
(VM) are already covered by the flock of journal and book 
articles [4]-[7] since it is a topic of interest for many years. 
These structures contain mostly voltage amplifiers, voltage 
integrators and voltage feedback. Differential-input single-
output OTAs (OTA-DISO) are usually used in these inte-
grators and amplifiers [13], [14]. It is still believed that CM 
signal processing [5] applications have wider bandwidth, 
higher speed, lower dc voltage, lower power biasing and 
bigger simplicity of a final circuit. Instead of the DISO 
type of OTA, the OTA with single-input and multiple-
outputs is used. The multiple-output transconductors are 
not off-the-shelf components which are commonly 
employed in practice. On the other hand it is profitable to 
have an active block with more than one output, especially 
in the case of CM circuits. This can be solved by a parallel 
connection of OTA-DISO inputs but at the cost of 
increasing complexity of the circuit, too expensive circuit 
realization and also higher power consumption. Also pos-
sibility of miniaturization is lost. Nevertheless it is not 
technologically difficult to implement several current out-
puts inside the internal structure of OTA block. The major 
part of the previously published solutions utilizes different 
technologies like CMOS or BiCMOS which are not acces-
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sible in general. In this paper OTA with high-speed 
commercially available bipolar transistor array is used for 
PSpice verifications. 

The existing publications involving similar problems 
from the area of direct state-variable synthesis of the active 
filters [15] with OTA are still indispensable aimed on 
OTA-DISO. Moreover many authors design their circuits 
on the low frequency band about several kHz where VM 
approaches are valid and CM is not reasonable. This 
proposition holds not only for filters (for example [16]) but 
also for the rest of applications. The universal filter pre-
sented in [17] can work in VM as well as CM but contains 
up to seven active OTA-DISO blocks. Evident possibility 
of electronic adjusting is not verified. It is obvious that 
only simple modifications are necessary to change our 
proposed filter from CM to VM. In detail, input voltage to 
current converter and adequate output resistive loads are 
needed. The circuitry representing multiple-input and sin-
gle-output universal filter with five OTAs is provided in 
[18]. To reach BR and AP transfer functions another active 
block known as current distributor is necessary. Its func-
tion is to copy input current to several corresponding 
nodes. The proposed solution is better also from this view-
point since BR and AP filter can be obtained by intercon-
nection of OTA outputs without any other component. 
Filter with four OTA is given in [19] where some multiple-
output OTAs are already presented. In spite of this, elec-
tronic adjusting of the filter parameters is still missing. If 
compared to our network slightly similar structure with 
five-output OTA is provided. In our work it is proved that 
three outputs are sufficient for universal filter design. 
Using a pair of OTAs and single VM differential difference 
current conveyor (DDCC) as universal filter is given in 
[20]. This is indeed an interesting network but its proper 
function is a question since there are no simulations or 
measurements. CM filter consisting of four dual-input 
dual-output OTA (OTA-DIDO) is given in [21]. Unfortu-
nately, to obtain some transfer functions it is necessary to 
feed input current to several network nodes simultane-
ously. The structure similar to the one presented (four-
output OTAs) in this paper is shown in [22]. It is quite 
difficult to compare both filters since there are no results in 
this publication. Multiple-input filter with three OTA inte-
grators with five outputs is presented in [23]. In our case 
there are separate outputs for all responses if compared to 
[8]. The possibility to electronically tune BP filter’s band-
width also beats [8]. Multiple-input single-output filter 
with CDTA modeled on bipolar transistor level can be 
found in [24]. KHN filter employing only two OTAs with 
three and five outputs is given in [25]. Its drawback is the 
missing electronic control of quality factor and bandwidth 
in the case of BP filter. The modification removing this 
obstacle is in [26]. But this structure needs up to five active 
blocks.  

2. Transconductor OTA-SIMO 
This active block is very suitable for applications 

in CM filters. Commercially available OTAs can work on 
high frequencies, for example OPA 860 [27], LT 1228 
[28], etc. However, the disadvantage of these parts is in the 
lack of outputs, these devices mostly have only one current 
output what is insufficient for many CM circuits. 
Schematic symbol of the OTA-SIMO is shown in Fig. 1. 

Such device has two positive and two negative out-
puts. Note that only three outputs are necessary in the fur-
ther text. In the ideal case, OTA is voltage-controlled cur-
rent source and it is described by the following equations 

 INPmoooo VgIIII ⋅=−=−== 4321 .   (1) 

The transconductance denoted as gm can be controlled by 
external dc current ISET providing the possibility of elec-
tronic control of the OTA based circuit’s parameters. 
Typical values of gm are in the range of tens to hundreds of 
μS for CMOS technology and up to few mS for BJT 
technology.  

 
Fig. 1. Symbol of four-output transconductor. 

Input and output resistances of real OTA are very high 
(from hundreds of kΩ  to tens of MΩ). Parasitic input and 
output capacitances are very small (few pF). These compo-
nents can operate in the frequency range of several hun-
dreds of MHz. The structure in Fig. 2 was adopted from [2] 
while making only small changes - inverting input was 
grounded and another current mirror stages were added. 
A similar circuit in the CMOS technology with five outputs 
was given in [25]. 

 
Fig. 2. Inner structure of four-output transconductor. 
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The active block in Fig. 2 was simulated by using 
professional models of transistor array [29] with parame-
ters summarized in Fig. 3. The main advantage of this OTA 
is in very linear dependence of gm on dc control current 
ISET. The transconductance is gm ∼ 20. ISET in range be-
tween 10 μA to 1 mA and for VCC = ± 2.5 V. GBW is 
about 250 MHz. Input-output characteristics of this device 
are given in Fig. 4 and open-loop frequency curves are 
visible by means of Fig. 5 for few values of ISET and gm 
respectively. To this end, gm as a function of ISET is pro-
vided by Fig. 6. 

Thanks to the used array’s bipolar technology OTA´s 
input resistance Rinp [25] is lower than in the case of 
CMOS realization and is dependent on ISET (Ibias) and fre-
quency. To be more specific it is about 1.5 MΩ down to 
several tens of kΩ, i.e. decreases with increasing ISET, 
similar as it is for commercially available OTA [2]. Output 
resistance Rout varies from hundreds of kΩ up to several 
units of MΩ. The problems associated with the parasitic 
properties will be analyzed in detail in specific chapter. 

 
Fig. 3.  Individual parameters of the transistors. 
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Fig. 4. Input-output characteristics of the OTA. 
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Fig. 5. Open loop gain frequency responses of the OTA. 
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Fig. 6. Transconductance versus ISET. 

3. Proposed Universal Filter 
The multifunctional biquad under inspection is given 

in Fig. 7. Note that it is composed of three multiple-output 
OTAs and three grounded passive elements. Symbolical 
analysis reveals that it is possible to obtain all transfer 
functions including second-order band reject (BR) filter. 
Modification for obtaining of all pass filter response (AP) 
is shown in Fig. 8. The transfer functions of the filter 
provided in Fig. 7 and Fig. 8 are 
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For the AP filter in Fig. 5 the transfer function is 
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The characteristic frequency and quality factor is 
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Fig. 7. Current mode biquad. 

 
Fig. 8. Modification for AP filter. 
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As follows from equations (7) and (8) if gm1 = gm2 holds 
characteristic frequency ωC and quality factor Q can be 
tuned independently on each other.  

In practice, synchronous change of both transconductances 
is not always an easy task because it is affected by 
matching errors of the current outputs of OTAs as well as 
by control mechanism. By adjusting R or better gm3 quality 
factor and bandwidth (3), (8) of BP response can be 
changed.  

4. Simulation Results 
The proposed filter is designed for the characteristic 

frequency fC = 1 MHz, quality factor Q = 1. To reduce 
computations there are some additional assumptions like 
gm3 R = 1, gm1 = gm2 = gm. Passive elements were chosen as 
R = 100 Ω and C1 = C2 = C = 1 nF. Then gm3 = 10 mS leads 
to ISET3 = 500 μA and the value of gm calculated using (7) 
is 6.3 mS resulting into ISET1 = ISET2 = 315 μA. Finally, the 
magnitude responses are shown in Fig. 9. The value of fC 
obtained by simulation is about 977 kHz with associated    
Q = 1.1. An example of adjusting BR filter is given by 
simulation in Fig. 10. Characteristic frequency range is 
between 455 kHz and 3 MHz (see Tab. 1).  
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Fig. 9. Magnitude responses of the filter in Fig. 4. 
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Fig. 10. Tuning of the BR response. 

Transfer constant K0 is varying simultaneously with 
quality factor Q what makes adjusting of BP bandwidth  
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possible as it is documented in Fig. 11. The important 
values are summarized in Tab. 2.  

The frequency characteristics of the AP filter are 
shown in Fig. 12 and group delay is depicted by means of 
Fig. 13. It seems that changes of gm3 affect except other 
transfer function’s quality factors also their basic constant 
K0 as it is visible in Fig. 14. Although this event evidently 
concerns also the filter presented in [22] it is not mentioned 
here. In the case of other widely used LP and HP filters the 
bandwidth is changed together with fC which is very easy if 
condition gm1 = gm2 is fulfilled. Transient response of the 
BP filter is visible in Fig. 15 and stability testing with 
rectangular input signal is shown in Fig. 16. 

 
Tab. 1.  Values of fC from Fig. 10. 

-30

-25

-20

-15

-10

-5

0

5

1,0E+04 1,0E+05 1,0E+06 1,0E+07 1,0E+08

f [Hz]

KI [dB] V CC = ± 2.5 V
R L = 50 Ω
I SET1 = I SET2 = 315 uA
f C = 977 kHz

1 2 3 4 5

 
Fig. 11. Adjusting  Q and bandwidth of BP response. 
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Fig. 12. Frequency characteristics of the AP filter. 
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Fig. 13. Group delay of the AP filter. 

 
Tab. 2. Values for Fig. 11. 
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Fig. 14. Influence of gm3 on K0, Q and filter bandwidth. 
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Fig. 15.  Transient response of the BP filter. 
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Fig. 16. Detail of the LP filter jump-function response. 

5. Influences of Parasitic Elements 
The network model given in Fig. 17 is adopted for 

studying parasitic properties. Intuitively, the parasitic input 
or output resistances of OTA device are represented by 
conductances Gout and Ginp where a number specifies 
a concrete OTA. The parasitic capacitances are denoted 
analogously as Cinp and Cout. For individual combinations 
of input and output admittances the following formulas can 
be derived  
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where the denominator can be expressed as 
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It is evident that these terms are quite complicated even if 
the parasitics are inside substitutions Y. 
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Fig. 17. Important parasitic admittances in the proposed 
structure. 

More valuable insight into these problems brings 
study of the equations in Matlab together with the PSpice 
simulations where the final effects are visible directly on 
module characteristics. Capacitive element Yp1 given by 
Cinp3 and Cout1 introduces parasitic pole and subsequent 
usability of the filter in the high-frequency domain (see 
Fig. 18). The capacitive elements Yp2 composed of 
Cinp1+Cout2+Cout3 and also Yp3 given by Cout1 + Cinp2 cause 
frequency shift fC as it is illustrated in Fig. 19. 

The effect of the resistive part of the admittance Yp1 is 
obvious in Fig. 20. Thanks to the low value of R (R << 
1/Gp1) it is almost negligible. Only its value approaching 
hundreds of Ω can make similar changes as the change of 
Q using gm3 or R on purpose. The influence of the resistive 
part of Yp2 on frequency response is evident in Fig. 21. The 
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main problem is that there is a significant drop of attenua-
tion in the reject band of the BR filter for low values under 
10 kΩ. Changes of Q are also visible. 
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Fig. 18. Influences of Cp1 = Cout1+Cinp3 (Yp1). 
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Fig. 19. Influences of Cp2 and  Cp3. 
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Fig. 20. Influences of Gp1 = Gout1+Ginp3 (Yp1).  

Another interesting effect is lowering the resistance of the 
node 3 (Yp3) as it is given in Fig. 22. This phenomenon is 
followed by a dramatic deformation of the frequency re-
sponse, especially in the case of BP filter. Note that there is 
a finite attenuation in the reject band. Fundamental prob-
lem is if each OTA has this bad feature since these effects 
are cumulative. The influence of the output resistance on 

the HP filter frequency curve is given in Fig. 23. If the 
input resistance of each OTA is changed simultaneously its 
effect on fC and Q is lower but still causes a finite attenua-
tion in the reject band. This statement is confirmed via Fig. 
24. It follows from the previous results that if input and 
output resistances of the used OTAs are bigger than tens of 
kΩ (CMOS technology allows much greater values) their 
effects are minimal. One can also conclude that a limited 
attenuation of HP and BP filters is dominantly affected by 
the values of Gp2 and Gp3. 
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Fig. 21. Influences of Gp2 = Ginp1+Gout2+Gout3 (Yp1).  
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Fig. 22. Influences of Gp3 = Gout1+Ginp2 (Yp3).  
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Fig. 23. Influences of Rout (1/Gout) all OTA simultaneously.   
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Fig. 24. Influences of Rinp (1/Ginp) all OTA simultaneously. 

It turns out that the effects caused by the input and 
output resistances of OTAs are much more important than 
effects caused by the input and output capacitances. For 
working capacitances about units of pF the parasitics can 
shift fC slightly but this can be compensated by controllable 
OTAs. Note that the parasitic capacitances can be added to 
the working ones which are designed to be large enough. 
Thus these parasitics need not be considered. For example 
there is 23 kHz offset relative to fC designed to be 1 MHz 
for simulation using BJT models.  

If only effects of parasitic resistors and capacitors 
acting at the same nodes as the working capacitors the 
equation for characteristic frequency and quality factor is 
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6. Experimental Verification 
The universal filter circuit structure shown in Fig. 7 

was measured with transconductors MAX 435 [30].  
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Fig. 25. Measured magnitude responses of the universal filter. 

As suggested in the text for multiple OTA outputs 
inputs were connected to parallel. The measured magnitude 
responses are in Fig. 25, a short example of tuning of the 
LP filter is provided in Fig. 26 and adjusting of the BP 
response is in Fig. 27. Transient response of the BP filter is 
shown in Fig. 28. 
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Fig. 26. Measured tuning of the LP filter. 
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Fig. 27.  Measured adjusting of the quality factor of the BP. 
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Fig. 28. Transient response of the BP (fC = 1.05 MHz), above is 

the input signal and below is the output signal.  

7. Conclusion 
In this paper the design of multifunctional biquad was 

presented employing OTAs with single input and three 
outputs as the active devices. For PSpice simulation 
models of OTAs on transistor level of abstraction with fast 
bipolar technology were used. Simple circuit structure 
(only three active and passive elements), easy electronic 
tuning of the cutoff frequency and possibility of adjusting 
of the BP filter bandwidth can be considered as main 
advantages of this multifunctional biquad. It is shown that 
three active blocks with three current outputs are sufficient 
for universal filtering circuit. Experimental results hinted 
that the filter is suitable for working in video band fre-
quency range. Resistance R can be easy realized by OTA, 
so that realization of this structure in integrated form (IC-s) 
is possible. Mentioned results confirmed theoretical 
assumptions.   
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