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Abstract. New expressions are derived to calculate the 
reactive energy stored in the electromagnetic field 
surrounding an electromagnetic device. The resulting 
expressions are 1. very simple to interpret, 2.  general, 
3. rigorous in terms of the currents flowing on the device, 
and 4. fast since they involve integrals solely over the 
device generating the field. The new technique is very 
feasible to be used in cases where the electric and 
magnetic reactive energies are important in practice, for 
example in the case of resonators, or in the case of 
radiating structures. Used there, they allow to study in 
a rigorous way the effect of the shape of the device on the 
amount of reactive energy, and thus for example on the Q 
of the device. The implementation of the new expressions in 
numerical CAD tools is extremely simple and straight-
forward. In this paper, the expressions are derived for 
sources in the homogeneous medium vacuum, but this is 
not a fundamental restriction. 

Keywords 
Electric and magnetic energy, Q factor, small an-
tennas. 

1. Introduction 
The reactive energy stored in the electromagnetic 

field surrounding the device generating the field is an 
important parameter. From this parameter, important 
characteristics can be derived, for example the Q factor of 
the system. Many authors have considered the problem of 
determining the Q factor of an antenna. For the general 
case, this goes back to the paper of Collin [1], where 
a spherical mode decomposition is used to calculate the 
reactive energies. For the special case of an electrically 
small antenna, the paper of Chu [2], using ladder networks, 
is the basic paper. Many other authors have followed the 
same paths. Fante [3] extended the results of Collin. 
McLean [4] re-examined the case of small antennas. Sten 
studied the case of a small antenna near a ground plane [5]. 
The spherical mode approach actually calculates the 
reactive energies, both electric and magnetic, stored in the 
space outside a spherewith radius a. There are two  

important disadvantages linked to this approach: 1. the 
reactive energy within this sphere is neglected, and, related 
to this, 2. the exact shape of the volume of the radiating 
source is not taken into account. The result is that the 
reactive energies calculated are only approximations and 
that the effect of the topology of the source is hard to 
investigate. 

Relatively recently, Geyi [6] published a technique to 
calculate the reactive energies taking into account the exact 
topology of the, in this case, small radiator considered. He 
used a combination of the Poynting theorem in frequency 
and time domain to separate the electric and magnetic re-
active energy. Shlivinski performed a study of the reactive 
energy completely in the time domain, aiming at 
applications involving pulsed fields [7]. A brute force 
technique is used in [8], where the authors calculate the 
reactive energy using the FDTD method. A very complete 
paper is [10]. This paper gives a state-of-the-art overview 
of techniques and formulas to calculate impedances, 
bandwidths, and Q factors of antennas. However, the 
method suggested to calculate the reactive energies is 
based on the classical approach 

The main goal of this research is to propose new 
efficient expressions for the reactive energies surrounding 
an arbitrary source (or device). In this paper, the arbitrary 
source is embedded in vacuum. However, this is not 
a fundamental limitation. The extension to sources 
embedded in complex environments, involving dielectric 
and magnetic media, is subject of further research. 

It is assumed that all the currents are solved for the 
structure. This can be done using a wide range of available 
techniques, such as MoM (Method of Moments). This step 
is not explicitly considered in this paper. Then, the 
classical expressions for electric and magnetic reactive 
energy are combined with the mixed-potential integral 
equation expressions for the fields in terms of the currents 
in order to eliminate these fields. This is the “expansion 
step”. The “condensation step” involves the use of a series 
of special analytic integrals allowing to simplify the 
problem enormously, leading to the final expressions. The 
physical interpretation is that the procedure followed 
allows to perform the integration over observation space 
analytically. This last point is the key novelty. 
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2. Energies Stored 
In vacuum, the energy stored in the electric field is 

calculated based on the classical expression 
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where V is the entire space. The procedure starts by in-
serting the mixed-potential integral expression formulation 
for the electric field generated by an arbitrary current 
distribution J inside a source volume Vm 
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Straightforward manipulation, involving reordering the 
terms and changing the order of integration yields 
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where the subscripts 1 and 2 both replace the subscript m 
and indicate source coordinates, linked to the first 
evaluation of integral expression (2), for the electric field 
itself, and the second evaluation of integral expression (2), 
for the complex conjugate of the electric field: 
V1 = V2 = Vm. Using vector field algebra, (3) can be 
transformed into 
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where S is the surface containing V, which for entire space 
goes to infinity. The magnetic energy is 

 *

0

1 ( )
4

m

V

W dV
μ

= ⋅∫ B B .  (5) 

Using 

 
0

m

m
V

GdVμ
⎡ ⎤

= − ×∇⎢ ⎥
⎢ ⎥⎣ ⎦
∫B J   (6) 

this gives 

 
1 2

* *0
1 1 2 2 1 2( ) ( )

4
m

V V V

W G G dVdV dVμ
= ×∇ ⋅ ×∇∫ ∫ ∫ J J . (7) 

Using vector field algebra, this can be transformed into 
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It is seen that in (4) and (8) one integral over S and two 
integrals over V (i.e. over entire space) remain. The key 
novelty is the analytical evaluation of these integrals. 

      
Fig. 1. Auxiliary coordinate system. 

We have proven that a correct solution is obtained by 
choosing for each couple of points 1 and 2 an auxiliary 
coordinate system with the origin in the middle of the 
points 1 and 2 and the x-axis directed from point 1 to point 
2. The proof is quite involved and beyond the scope of this 
paper. The surface integral yields 
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It is easily calculated that in the far field 

 0 rG jk G∇ = − i  (12) 
so that the first term in (11) can be calculated analytically 
as 
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With r21 the distance between the two source points. Also, 
it is well-known that the free space Green’s function 
satisfies the relation 
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with ∂ the Dirac impulse function. Inserting (13) and (14) 
in (11) yields 
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G21 is G1 evaluated at r2, i.e. for R = r21. This reduces (10) 
to the second integral to evaluate 
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For large r the integrand is decaying purely as 1/r2. This 
integral is linked to the radiation field. It is well-known 
that the radiation field gives an infinite contribution to the 
stored energies and in general does not have to be 
considered. A discussion on this technique can be found in 
[1], [6], [10]. There the problem is formally solved by 
subtraction of the term limr→∞(r/2c·Prad) in both electric 
and magnetic energy.  

As pointed out by Geyi [6], it is not possible to 
calculate numerically the stored energy in a finite sphere, 
subtracting the term given, with the corresponding r, and 
taking the limit for the finite sphere going to infinity. In 
this case the numerical rounding errors become 
increasingly significant. 

Other authors treat the radiation field based on 
a spherical mode decomposition [1], [3], [4]. In the case 
that only one mode is considered, thus neglecting higher 
order modes, this gives rise to unique closed form 
expressions for the radiation field at all r-distances. It is 
then easy to sub-tract the corresponding energy density. 
The approach used in this paper is different. The technique 
suggested by Collin [1] is used, and the problem pointed 
out by Geyi is avoided by incorporating the term within the 
integrand, in this way subtracting the radiation energy at 
every point in space. 

The calculation procedure starts by realizing that the 
complex conjugate of (16) yields the same expression, 
which means that the integral is real, and only the real part 
of the integrand has to be kept. The integral becomes 
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The absolute maximum value of (r2 – r1) over entire space 
is actually the distance r21 between the two source points. 
Since k0 (r2 – r1) remains finite over the entire space, the 
cosine can be expanded in Taylor series around 
k0 (r2 – r1) = t = 0. 
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Normalization of the integral with respect to r21 through 
a coordinate transformation yields 
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r1n and r2n can be considered ‘normalized’ distances. 
Another transformation to cylindrical coordinates around 
the x-axis and evaluation of the resulting elementary φ 
integrals, and taking into account the fact that the integrand 
is even in x, yields 
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The next step is using the Taylor series expansion. 
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A series of integrals has to be evaluated. It can be proven 
that taking into account the subtraction of the radiation 
contribution (the proof is beyond the scope of this paper), 
the following integrals are obtained: 
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are the normalized distances from the observation point 
considered to the source points 1 and 2, and the origin, 
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respectively. It can be proven that R(2n) = –1/(4n + 2), 
yielding the final result 
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Insertion of the expressions for the integrals Is, Ia and Ib in 
the expressions for the reactive electric and magnetic 
energies and straightforward reordering gives 
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The tilde sign above the energies indicates that the 
“radiation” contribution is excluded. Specific about (26) 
and (27) is that their first term can be identified with the 
“charge” and the “current” part, respectively, of the mixed 
potential integral expression for the electric field, but using 
only the real part of the Green’s function. For 
completeness, the corresponding expression for the 
radiated energy is given, without proof 
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Using the Taylor series expansion for cos(k0r21) and 
sin(k0r21) yields 
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Note that keeping only the leading term of the series 
involved yields the expressions for the reactive energies as 
formulated by Geyi for small devices [6]. 

3. Discussion 
Expressions (26) and (27) rigorously formulate the 

unique relation between currents and energies in a direct 
and explicit way. To the knowledge of the author, they are 
not yet available in literature. They are easy to understand 
and interpret, since they only involve double integrations 
over the source volume. The integrations concern either the 
current on the device, or its divergence (which corresponds 
to the charge on the device). 

4. Applications and Examples 

4.1 Analytical Calculation of Reactive 
Energies and Q Factors 
Consider a loop with radius a, made of wire with 

diameter d. The loop is located in the xy plane and the 
origin is in the center of the loop. In cylindrical co-
ordinates, the current on the loop is given by 

 ϕ
ϕ iI jmeI  =  . (32) 

For m = 0, actually a magnetic dipole is obtained. For 
m = 1 a ring type electric dipole configuration is obtained. 
All integrals in (29), (30), and (31) can be evaluated 
analytically. Inserting the current and the known topology, 
using the thin wire approximation, and after some 
straightforward manipulation, the following expressions 
are obtained. For the electric dipole type (m=1) 
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For very small wire diameters, only the logarithmic terms 
have to be kept. In this case it can be seen that  
 m eW W−% %   

goes to zero, yielding a reactance also equal to zero, for 
a = λ/(2π). Using the expressions, the deterioration from 
this simple result in terms of growing wire diameters can 
be studied. The Q of the antenna becomes 
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For the magnetic dipole (m=0) 
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Here, the reactance cannot be made zero for wire diameters 
going to zero. The Q of the magnetic dipole becomes 
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This example illustrates a very important conclusion. The 
new expressions allow to study antenna Q in terms of 
antenna size in a rigorous way. 

Keeping only the highest order term in the expression 
(40) yields the approximating expression for small 
antennas, derived by Geyi in [6]. 

4.2 Numerical Calculation of Reactive 
Energies and Q Factors 
Expressions (26), (27), and (28) are extremely easy to 

implement in software tools. In this section, the case of 
a dipole antenna is analyzed. The current on the dipole is 
obtained using our in-house developed tool MAGMAS [9]. 
MAGMAS solves the integral equations describing the 
structure using the method of moments. The antenna 
considered is a strip-dipole. The strip has length L = 1 cm 
and width W = 0.1 mm. For the analysis, the strip was 
subdivided in 100 segments along its length. A feeding 
current of 1 A is imposed in the middle of the antenna. 
Since both the “small antenna” regime and the half-
wavelength dipole regime have to be covered, the dipole is 
analyzed in the frequency band 1 – 30 GHz. The energies, 
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Fig. 2. Radiated power Prad = R|I|2/2 and difference between 

magnetic and electric energies 2ω(Wm – We) = X|I|2/2 
for a strip dipole antenna of 1 cm. 
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Fig. 3. Magnetic and electric energies for a strip dipole 

antenna of 1 cm. 
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Fig. 4. Q factor for a strip dipole antenna of 1 cm, calculated 

with the new expressions (Q), and following the 
technique introduced in [10] (Qz), respectively. 

calculated with the new formulas (26), (27), and (28), are 
studied in Fig. 2 and Fig. 3. The curves 2ω(Wm – We) and 
Pr correspond perfectly with the reactance and the 
resistance of the dipole, quantities that are calculated in 
a completely different manner by the software. Below 
5 GHz the antenna behaves as a small antenna. The electric 
and magnetic energies show the correct behavior in ω. The 
half-wavelength dipole behavior is observed around 
15 GHz, where the electric and magnetic energies become 
equal, which results in a zero reactance. 
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