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Abstract. This paper deals with modeling of scientific and 
multimedia images in the wavelet domain. Images trans-
formed into wavelet domain have a special shape of prob-
ability density function (PDF). Thus wavelet coefficients 
PDFs are usually modeled using generalized Laplacian 
PDF model (GLM), which is characterized by two pa-
rameters. The wavelet coefficients modeling can be more 
efficient, while the Gaussian mixture model (GMM) is 
utilized. GMM model is given by addition of at least two 
Gaussian PDFs with different standard deviations. The 
equation system derived by moment method for GMM 
model parameters estimation will be presented. The equa-
tion system was derived for an addition of two GMM 
models. So it is suitable for advanced denoising systems, 
where an addition of two GMM random variables is con-
sidered (e.g. dark current). This paper presents a con-
tinuing of previous work [11], deals with dark current 
elimination (novel approach) and shows a better way of to 
modeling light image and dark current. 

Keywords 
Gaussian mixture model, discrete wavelet transform, 
moment method, ML method, dark current. 

1. Introduction 
Various types of image models exist in the wavelet 

domain. A typical histogram of wavelet coefficients is 
shown in Fig. 1. GLM introduced [1] at the end of 80s was 
one of the most common used model in image denoising 
area. It can be expressed in the following way  
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where parameter s controls the width of the PDF and 
parameter p controls the shape. The Z(s,p) function is given 
by 
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where Γ(x) presents the gamma function. The details about 
several image models in the wavelet domain can be seen in 
[2]. 
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Fig. 1. Histogram of wavelet coefficients, subband HH3, dark 

frame DARK_10_60_-34.fit. 

Our interest lies in the area of astronomical images. 
The astronomical images are characterized by special 
image content and by a large number of bits per pixel (bpp) 
(commonly 14-16 bpp) in comparison with the multimedia 
one. These scientific data usually contain the objects (e.g. 
stars, nebulae, galaxies etc.), which present the subjects of 
interest and investigation. In the case of a night sky data 
acquired at low luminance, the acquiring process caused 
image contamination by various types of noises. This 
process should be modeled using Poisson noise or using 
addition of Poisson noise and Gaussian readout noise [3]. 

Furthermore, if an astronomical camera is darkened, a 
signal is detected at the camera output. This output signal 
comes from the thermally generated charge (dark current) 
in the crystalline lattice. Thus, considering very low tem-
perature (approx. -100°C) of a CCD sensor the thermally 
generated charge becomes negligible. Hence, astronomical 
cameras are usually cooled to partially suppress thermal 
charge. A sensor cooling is often done by Peltier effect. As 
can be seen in Section 2, dark current can be removed by 
so-called dark frame.  

In the case of astronomical images decomposed into 
the wavelet domain, the wavelet coefficients occasionally 
do not satisfy the generalized Laplacian random variable 
well. This problem is caused by a sparse histogram of 
astronomical images in space domain. Image data with 
a sparse histogram cannot generate generalized Laplacian  
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random variable correctly. A typical histogram of light 
astronomical image is depicted in Fig. 2. This image his-
togram illustrates that a dynamic range (0 – 65536) of 
an image is filled very sparsely. Furthermore, scientific 
image cannot be processed using nonlinear transfer 
functions to equalize histogram. Since GLM is in certain 
number of cases unsuitable for astronomical image 
modeling, we chose GMM. GMM allows to model wavelet 
coefficients of scientific images even in its simplest form 
(addition of two Gaussians). 
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Fig. 2.   Histogram of 16bits light image, 2g0831a.037.fits. 

2. Image Data 

2.1 Scientific Image Data 

Scientific images with 16 bpp were chosen (fits and 
dat format) for the simulations. FITS (Flexible Image 
Transport System) is primarily designed to store scientific 
data sets. These scientific analyzed data has been taken 
during work of the international (Czech-Spanish) experi-
ment BOOTES (Burst Observer Optical Transient Ex-
ploring System). The BOOTES [4] has been in service 
since 1998 as the first Spanish robotic telescope for the sky 
observation.  

This system is one of three similar and fully opera-
tional systems in the world. The main aim of the project is 
an observation of the extragalactic objects and detection of 
a new optical transient (OT) of gamma ray burst (GRB) 
sources.  
 

ASTRONOMICAL  
IMAGE 

EXPOSURE 
DATE 

dd/mm/yyyy 

EXPOSURE 
TIME  
[sec] 

CCD 
TEMP 
[°C] 

2dark300.000.dat 19/03/1999 1000 +4.21 

2g0831a.002.fits 31/08/1998 128 +4.21 

2g980831.d00.fits 01/09/1998 180 +4.21 

Tab. 1. Image parameters. 

An example of a light image (image with objects, 
nebulae, stars etc.) and a dark frame (correction image) is 
depicted in Fig. 3. Tab. 1 contains parameters of astro-
nomical images used in our simulations.  

 

 
Fig. 3. Astronomical images (inverted gray scale), top: 

2g980831.d00.fits dark frame, exposure time = 180 
sec, CCD temperature = 4.21 °C, bottom: 1m11.01.dat 
light image, exposure time = 300 sec, CCD 
temperature = 4.21 °C. 

A dark frame maps thermally generated charge [5] in 
the CCD sensor. It should be seen as a type of an additive 
noise and it should be acquired at the same conditions 
(exposure time, temperature) as a corresponding light 
image.  

2.2 Multimedia Image Data 

The four 8 bpp testing images (non-compressed tiff 
format) were used in the simulations. The brada, woman, 
boat and cameraman image are depicted in Fig. 4. 

   

   
Fig. 4. Multimedia testing images. 
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2.3 Discrete Wavelet Transform 

A dyadic decomposition was used as a special form of 
The Discrete Wavelet Transform (DWT) in this work [1]. 

A Dyadic decomposition allows non redundant decompo-
sition of a signal (in contrast to The Continuous Wavelet 
Transformation - CWT). An application of DWT will be 
denoted in accordance with Section 3.1 (i.e. DWT{.}). 

There is a basic structure for dyadic decomposition in 
Fig. 5 where Hi respectively Lo presents the impulse re-
sponse of a high pass filter respectively a low pass filter, 
2↓ means down sample by factor 2. If  the signal is filtered 
using the scheme in Fig. 5 then the four subbands (matri-
ces) are obtained, e.g. diagonal details (HH) γDp+1(d), 
vertical details (HL) γDp+1(v), horizontal details (LH) 
γDp+1(h) and signal approximation (LL) γAp+1. The matrix 
γA0 presents the signal which is to be decomposed. 
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Fig. 5. Top: implementation of 2-D dyadic decomposition, 

bottom: magnitudes of wavelet coefficients of 
cameraman image, LL1 – top left, HL1 – top right, 
LH1 – bottom left, HH1 – bottom right. 

Important tasks are which wavelets to chose and why 
[6]. Firstly, it is known that image denoising becomes 
simpler in a sparse wavelet representation (i.e. only a small 
number of wavelet coefficients with large magnitude). This 
statement [6] holds mainly for decimated wavelet 
transform (e.g. dyadic decomposition). Secondly, it is 
necessary to give attention to the image quality.  

Thus, the goal is to produce as many as possible 
wavelet coefficients that are close to zero. This depends on 
the vanishing moments Nv and on the support size K of the 
analysis wavelet. For the image quality, the regularity and 
symmetry of the synthesis wavelet are important. 

In the orthogonal case, it is difficult to achieve a large 
number of vanishing moments and a small support size at 
the same time. The theoretical limit is K = 2Nv − 1 and is 
achieved in the Daubechies wavelets, usually denoted as 
dbNv. 

Decomposition filters [7] were estimated from the 
wavelet Daubechies10 and Coiflet4. The wavelet Coiflet4 
gives satisfactory denoising results in the sense of MSE 
(Mean Square Error) [8] and the wavelet coefficients gen-
erated by wavelet Daubechies10 satisfy derived equation 
system well. It was found empirically. 

2.4 Image Model 

In this paper, we consider an addition (4) of two in-
dependent random variables. Both random variables are 
modeled using Gaussian Mixture Model 

 .nxy    (4) 

Variable x presents image data and n denotes additive noise 
(e.g. dark current). GMM [9] is generally given by 
a mixture of certain number of Gaussian PDFs with vari-
ances σk and mean values μk 
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αk are the proportions of mixture and parameter αk satisfies 
the constraint ΣK

k=1ak=1. If k = 2, GMM is given by 

        2
22

2
11 ,;1,;  xNxNxp  .  (6) 

The model given by equation (6) will be utilized in this 
paper for image and noise modeling while μ1 and μ2 are 
equal to zero. 

3. Model Parameters Estimation 
The equation system derived by the moment method 

will be presented [10] and also equations derived by the 
maximum likelihood method [10]. Since it is problem to 
estimate GMM parameters of useful signal x directly from 
noisy observation, it is necessary to make a noise analysis. 
We investigated two ways how to estimate noise GMM 
parameters. The first method is based on statistical analysis 
of dark current represented by a set of dark frame images 
acquired at certain temperatures of the CCD sensor and the 
second one is based also on statistical analysis of dark 
frames and on Parseval’s theorem. 

3.1 Moment Method 

The moment method, which is based on comparing of 
the sample moments with theoretic moments, belongs to 
the powerful parameters estimating methods. 
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We consider additive noise in the wavelet domain  
Y = X + N, where X = DWT{x} and N = DWT{n}. The 
central theoretic moments of X is given by 

     2
2

2
12 1 XXXXXm    , (7) 

     4
2

4
14 133 XXXXXm     (8) 

where σ1X denotes the first model variance of useful signal 
and σ2X presents the second model variance. Similarly we 
can define central theoretic moments of noise. These 
moments will be practically identical with equations (7-8). 
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where σ1N denotes the first model variance of noise and σ2N 
presents the second model variance. Necessary moments 
are derived. Now we need to find appropriate r-th 
theoretical moments mr(Y). If variables X and N are 
independent, the PDF pY of Y is given by convolution 
integral 

        dxppxp NXY  




.  (11) 

Central theoretical moments of Y were derived using 
equation (11) 

      NmXmYm 222   , (12) 

          NmXmNmXmYm 42244 6  .  (13) 

We derived two equations with six unknowns. Three 
parameters of noise GMM should be estimated using the 
known temperature dependency of sample moments [11]. 
Since we still have two equations with three unknowns, 
a kurtosis will be defined. Kurtosis κX is given by 

  
 Xm

Xm
X 2

2

4   (14) 

  
    4

2
22

2
2
1

4
1

2

4
2

4
1

112

133

XXXXXXXX

XXXX
X 





  (15) 

where theoretical moments can be substituted by sample 
moments M2(X), M4(X) computed using equations (12-13). 
The first term after division should be equal to κX ≈ 3/αX  
(αX - 1 → 0). We empirically found that only this the first 
term after division can be used for estimation of αX. The 
variances σ1X and σ2X will be estimated utilizing equations 
(7-8) 
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The parameters estimation highly depends on the estima-
tion quality of sample moments. 

3.2 Maximum Likelihood Method 

The maximum likelihood estimation is given by 
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where pN denotes the noise PDF and pX presents the PDF 
of useful signal. The equation (18) was evaluated 
numerically. 

4. Statistical Analysis of Dark Current 

4.1 Dark Current Analysis Using Parseval’s 
theorem 

As was mentioned above we investigated two ways 
how to estimate noise model parameters. The first way is to 
make an analysis of dark frame images acquired at certain 
temperatures. The results of dark frame analysis can be 
seen in [11]. The second method based on Parseval’s theo-
rem and also based on previous mentioned measurements 
on cameras is discussed in the next section. 

Since the stored moments dependencies are repre-
sented by a large number of values, we used the Parseval’s 
theorem for a problem simplification. It is generally known 
that a generated charge in CCD sensors depends linearly on 
an exposition time. The moment temperature dependency 
acquired at certain exposure time should be renormalized 
to another exposure time. Furthermore, it is possible to 
model temperature dependencies of second sample moment 
acquired at suitable exposure time and than the values of 
second sample moments using Parseval’s theorem in the 
wavelet domain evaluated. Unfortunately, the fourth 
sample moments have to be evaluated from measured 
temperature dependencies in the wavelet domain. Let be 

nnn ii '  noise with subtracted mean value and let be 
}'{' ii nDFTN   noise in the wavelet domain. In 

accordance with Parseval’s theorem it should be written 
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where I denotes a number of matrix elements. The equation 
(19) caused the following moment equality 
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If we consider iid (Independent and Identically Distributed) 
random variable, all wavelet subbands have the same 
second moment at the first decomposition level 
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The number of matrix elements equal to I/4 denotes that 
the second moment is computed in one subband only.  

5. Results 
The results obtained by moment and maximum like-

lihood method applied on the GMM data contaminated by 
GMM will be presented. The estimated models should be 
compared with models estimated on data without the noise. 
A Jeffrey divergence was used as an evaluative criterion. 
The Jeffrey divergence is an empirical measure of the 
distributions similarity based on their relative entropy [12]. 
The Jeffrey divergence is given by 
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where p(1) denotes the model PDF and p(2) the PDF of 
measured data. 

The proposed equation systems were tested using all 
testing images from Section 2.1 and 2.2. If we consider 
fifth decomposition level maximally (used in [11]) then we 
have fifteen subbands of wavelet coefficients to model (for 
every testing image). Hence, the next sections contain 
chosen results to illustrate algorithm performance. 

5.1 Image Data (GMM) without the Noise 
Contamination Modeled Using Moment 
Method 

Now we consider image data without any noise con-
tamination, because we need to know the model parameters 
as well as can be.  

In the case, the image data are without the noise, the 
process of model parameters estimation should be simpli-
fied using the following equality σ1X = x0.999/3, where x0.999 
denotes the 99.9th percentile.  

The modeled PDF of wavelet subband of multimedia 
image can be seen in Fig. 6 and the modeled PDF of 
wavelet subband of scientific image can be seen in Fig. 7. 
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Fig. 6. Model of PDF of woman.tiff in the wavelet domain, 

top: subband HL3, σ1X = 124.9, σ2X = 38.3, αX = 0.20,  
JD = 0.0067; bottom: subband HH3, σ1X = 64.4,  
σ2X = 11.5, αX = 0.36, JD = 0.0102. 
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Fig. 7. Model of PDF of dark frame 2dark300.000.dat in the 

wavelet domain, top: subband HL3, σ1X = 252.4,  
σ2X = 39.0, αX = 0.16, JD = 0.0042; bottom: subband 
HH3, σ1X = 386.1, σ2X = 54.6, αX = 0.12, JD = 0.0030. 

5.2 Image Data (GMM) without the Noise 
Contamination Modeled Using Maximum 
Likelihood 
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Fig. 8. Model of PDF of woman.tiff in the wavelet domain, 

top: subband HL3, σ1X = 124.9, σ2X = 24.1, αX = 0.30,  
JD = 0.0038; bottom: subband HH3, σ1X = 64.4, σ2X = 
9.1, αX = 0.40, JD = 0.0094. 

There are the modeled PDFs of wavelet subbands of 
multimedia image woman.tiff in Fig. 8. 
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Fig. 9. Model of PDF of dark frame 2dark300.000.dat in the 

wavelet domain, top: subband HL3, σ1X = 383.0, σ2X = 
58.0, αX = 0.10, JD = 0.0026; bottom: subband HH3, 
σ1X = 253.3, σ2X = 43.0, αX = 0.20, JD = 0.0039. 

There are the modeled PDFs of wavelet subbands of 
dark frame 2dark300.000.dat in Fig. 9. 

5.3 Image Data (GMM) Contaminated by 
Noise (GMM) 

In the case of multimedia images, the results obtained 
by several methods serve mainly for algorithm optimiza-
tion. The results obtained by moment method in combina-
tion with maximum likelihood method will be presented. 
The moment method gives an estimation of σ1X and αX and 
σ2X is founded using maximum likelihood. The reason of 
that is quite intuitive. We need to estimate three parame-
ters, but in the case of negative numerator of (17), a stan-
dard deviation σ2X is complex.  

A certain image from the addition of multimedia 
images can be formally seen as the noise and the second 
one as the useful signal. The choice of so-called image-
noise is not so critical. If we chose the second image as the 
noisy one, the estimating process will be similar and the 
parameters of the useful signal will be estimated.  

The parameters of HH3 subband of brada.tiff are  
σ1N =35.6, σ2N = 4.1, αX = 0.23, JD = 0.0436 and for HL3 
subband are σ1N=69.3, σ2N = 16.5, αX = 0.33, JD = 0.0786. 
There is the woman.tiff contaminated by brada.tiff in 
Fig. 10 and modeled PDF in Fig. 11. 

 
Fig. 10. Woman.tiff contaminated by Brada.tiff 
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Fig. 11. Model of PDF of woman.tiff estimated from addition 

of woman.tiff and brada.tiff in the wavelet domain, 
top: subband HL3, σ1X = 93.3, σ2X = 19.0, αX = 0.47,  
JD = 0.0027; bottom: subband HH3, σ1X = 66.3,  
σ2X = 11.0, αX = 0.35, JD = 0.0101. 

Furthermore, another image can be added to 
woman.tiff and the model parameters can be estimated. 
Tab. 2 contains parameters of woman image estimated 
from addition of woman and cameraman image. 

There is a part of 2g0831a.002.fits image contami-
nated by dark frame 2g0831a.d00.fits in Fig. 12. Modeled 
PDF’s can be seen in Fig. 13, whereas the fit quality is 
satisfactory in the sense of Jeffrey divergence. 
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PARAMETERS HL2 LH2 HH2 

σ1X 219 103 16 

σ2X 10 7 4 

αX 0.0817 0.1495 0.2250 

JD 0.0948 0.0818 0.0552 

PARAMETERS HL3 LH3 HH3 

σ1X 105 145 79 

σ2X 16 10 10 

αX 0.3879 0.4038 0.2363 

JD 0.0081 0.0081 0.0154 

PARAMETERS HL4 LH4 HH4 

σ1X 336 414 213 

σ2X 25 67 19 

αX 0.3537 0.3494 0.3555 

JD 0.0042 0.0011 0.0051 

Tab. 2. Model parameters of woman.tiff estimated from 
addition of woman.tiff and cameraman.tiff. 

 
Fig. 12. Cut of 2g0831a.002.fits contaminated by cut of dark 

frame 2g0831a.d00.fits. 
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Fig. 13. Model of PDF of 2g0831a.002.fits estimated from 

addition of 2g0831a.002.fits and 2g0831a.d00.fits in 
the wavelet domain, top: subband HL4, σ1X = 1085,  
σ2X = 142, αX = 0.12, JD = 0.0016; bottom: subband 
HH4, σ1X = 680, σ2X = 121, αX = 0.13, JD = 0.0012. 

Furthermore, another dark frame 2dark300.000.dat 
can be added to the light image 2g0831a.002.fits and the 
parameters of light image can be estimated. Parameters of 
chosen wavelet subbands of light image 2g0831a.002.fits 
estimated from the addition of 2g0831a.002.fits and 
2dark300.000.dat can be seen in Tab.3. The Jeffrey diver-
gence illustrates the quality of estimation well. 
 
 
 

PARAMETERS HL2 LH2 HH2 

σ1X 1134 978 561 

σ2X 100 74 68 

αX 0.0130 0.0529 0.0338 

JD 0.0070 0.0032 0.0018 

PARAMETERS HL3 LH3 HH3 

σ1X 1094 1543 724 

σ2X 106 100 100 

αX 0.0308 0.1760 0.0482 

JD 0.0021 0.0036 0.0026 

PARAMETERS HL4 LH4 HH4 

σ1X 1224 2982 734 

σ2X 100 139 121 

αX 0.0783 0.2941 0.1300 

JD 0.0030 0.0027 0.0014 

Tab. 3. Model parameters of light image 2g0831a.002.fits 
estimated from addition of 2g0831a.002.fits and 
2dark300.000.dat. 

6. Conclusion 
This paper showed the possibilities of GMM for 

scientific and multimedia images modeling. Furthermore, 
the moment equations were derived for the case of addition 
of two GMM random variables. Hence, the statistical 
analysis of dark current was done and the algorithm for 
second moment evaluation based on Parseval’s theorem  
was proposed. The presented results have shown that our 
algorithms can be used for scientific and multimedia image 
data modeling. Proposed algorithms can be used also for 
dark current elimination, while the Bayesian estimators are 
utilized [11].  
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