
RADIOENGINEERING, VOL. 18, NO. 4, DECEMBER 2009 631

Embedded Platform for Automatic Testing
and Optimizing of FPGA Based Cryptographic

True Random Number Generators
Michal VARCHOLA, Miloš DRUTAROVSKÝ

Dept. of El. and Mmedia Comm., Technical Univ. of Košice, Park Komenského 13, 041 20 Košice, Slovakia

michal@varchola.com, milos.drutarovsky@tuke.sk

Abstract. This paper deals with an evaluation platform for
cryptographic True Random Number Generators (TRNGs)
based on the hardware implementation of statistical tests for
FPGAs. It was developed in order to provide an automatic
tool that helps to speed up the TRNG design process and
can provide new insights on the TRNG behavior as it will be
shown on a particular example in the paper. It enables to
test sufficient statistical properties of various TRNG designs
under various working conditions on the fly. Moreover, the
tests are suitable to be embedded into cryptographic hard-
ware products in order to recognize TRNG output of weak
quality and thus increase its robustness and reliability. Tests
are fully compatible with the FIPS 140 standard and are im-
plemented by the VHDL language as an IP-Core for ven-
dor independent FPGAs. A recent Flash based Actel Fu-
sion FPGA was chosen for preliminary experiments. The
Actel version of the tests possesses an interface to the Ac-
tel’s CoreMP7 softcore processor that is fully compatible
with the industry standard ARM7TDMI. Moreover, identi-
cal tests suite was implemented to the Xilinx Virtex 2 and 5
in order to compare the performance of the proposed solu-
tion with the performance of already published one based
on the same FPGAs. It was achieved 25% and 65% greater
clock frequency respectively while consuming almost equal
resources of the Xilinx FPGAs. On the top of it, the proposed
FIPS 140 architecture is capable of processing one random
bit per one clock cycle which results in 311.5 Mbps through-
put for Virtex 5 FPGA.

Keywords
TRNG, on-chip randomness tests, FIPS 140, FPGA

1. Introduction
Tremendous growth of the communication systems was

significant during last decades. Heavy research efforts in this
area have been, and still are, in the development of systems
that are more reliable, faster and more power effective. Si-

multaneously, substantial research has been carried out to
find suitable security solutions in order to prevent cyber-
attacks and leakage of confidential or secret information.
Modern cryptography [1] provides techniques for successful
application of security services. Almost every cryptographic
system contains a Random Number Generator (RNG) in or-
der to provide random values for the underlying algorithms.
Random Numbers (RNs) are required e.g. as session keys,
and therefore they should meet the most strict requirements
– they should be unpredictable, uniformly distributed in their
range and independent [3].

RNGs can be divided into two main subgroups [4]:
Pseudo RNG (PRNG) and True RNG (TRNG). Output of
PRNG is mathematically defined and all entropy is given
by a random seed. On the other hand, entropy of TRNG
is increased by each generated bit. There are several sources
of entropy: non-physical (e.g. access time of hard drive,
keystrokes, computer mouse movements) and physical (ther-
mal noise, nuclear decay). The most useful is the noise that
can be found in electronic platforms such as ASICs (Ap-
plication Specific Integrated Circuits), MCUs (MicroCon-
trollers) and FPGAs (Field Programmable Gate Array).

FPGAs are a popular implementation platform for
cryptographic systems thanks to their reconfigurability [6].
Weak or obsolete cryptographic protocols or algorithms can
be updated easily even in deployed devices. Thus users and
devices can resist an attempt of the security treats better.
Moreover, entire system should be implemented in the same
chip due to security reasons. That is why research on TRNGs
especially for the FPGAs is more than a crucial challenge.
Survey of the most popular designs was done in [5]. There
are the most important designs: TRNG that uses jitter in-
cluded in the Phase Locked Loop (PLL) output [10], Linear
Feedback Shift Registers (LFSRs) where delay element was
replaced by an inverter [11], metastability based design [19],
and Ring Oscillator (RO) based design [15] with implemen-
tation [17], disputes on its principle [18], responses to the
disputes [16] and improved implementation [20]. Reliability
of [15] is heavily discussed by the world TRNG community
and still remains an unanswered question.

Although designers make heavy efforts on TRNG im-

632 M. VARCHOLA, M. DRUTAROVSKÝ, EMBEDDED PLATFORM FOR AUTOMATIC TESTING AND OPTIMIZING OF FPGA. . .

plementation in a robust way in laboratory conditions, their
designs are potentially vulnerable to the tolerances of com-
ponents, technology aging, variations of operating condi-
tions, or attacks in hostile environments [2]. Each of the
mentioned disorders could cause degradation of the RNs’
statistical properties and thus weaken an otherwise secure
system. The most straightforward way how to detect such
a breakdown is to implement a set of basic statistical tests
working in real-time as a supplement to the TRNG. Require-
ments for online tests are listed in [4] – an online test should
detect non-tolerable statistical weaknesses, should run fast
and consume only little hardware resources. Online tests can
be universal or tailored to a particular design. An interesting
fact is that authors in proposals of their original designs usu-
ally do not consider any methods of online testing that can
uncover possible malfunction.

Moreover, it will be shown how various modifications
during TRNG design can affect its speed or the quality of
RNs on a particular example in the paper. The hardware im-
plementation allows us to examine statistical properties of
RNs on the fly prior to rigorous analysis by a personal com-
puter using wide spectrum of tests and methodologies e.g.
National Institute of Standards and Technology (NIST) 800-
22 tests suite [22] or Application Notes and Interpretation of
the Scheme (AIS) 31 [21] which is recommended for certi-
fication of TRNG designs. Once statistical tests are imple-
mented inside an FPGA, there is no need of the fast interface
(e.g. as was used in [23]) and high level of design automa-
tion is available, hence research work is more effective.

The Federal Information Processing Standard (FIPS)
140 [8], [9] randomness tests suite has been chosen among
the published statistical tests, which consists of the 4 fol-
lowing tests – Monobit, Poker, Runs, and Long run. Tehe
required length of the sequence is 20,000 bits, which implies
small demand on hardware resources. Although statistical
tests were removed from FIPS 140 recently, they still pro-
vide reasonable information on statistical properties of RNs.
Nevertheless, relatively small-area implementation of these
tests is not trivial. Such hardware implementations of statis-
tical tests Intellectual Property Core (IP-Core) appear in lit-
erature rarely; as an example, it is possible to mention [14],
where the authors used Virtex 2 FPGA, or [28] where the au-
thors used Virtex 2 and Virtex 5 FPGAs as an implementa-
tion platform. However, solution proposed in this paper has
significantly better performance while consuming almost the
same resources of FPGAs.

The paper is organized as follows: Section 2 compares
internal and external TRNG testing methods, FIPS 140 sta-
tistical tests are introduced in Section 3. Section 4 deals with
implementation platform and architecture of the entire sys-
tem. Section 5 provides insight on analysis and synthesis of
the particular tests. Section 6 shows implementation results.
Conclusion is given in the last section.

2. Internal and External TRNG
Testing Methods
There are two main purposes of using randomness tests

for TRNGs; the first, testing during process of research, de-
signing and certification and the second, testing when the
device is operating in the environment.

Both of them have different requirements. The first one
uses rigorous analysis mainly on a Personal Computer (PC)
with various setups of TRNGs’ parameters and under various
working conditions. This is usually a long time process and
so design automation can bring time savings and better effi-
ciency of the design progress by reducing human interaction.
Design automation can be reached by putting tests inside the
device so that the device will manage all the tests itself. Re-
cent research efforts tends to running various TRNG tests or
measurements inside the device in order to have instant re-
sults or in order not to affect results with external measuring
circuitry: [26], [25], [24].

TRNG

Interface

FPGAfrequency injection

package temperature

core voltage

abnormal behavior of
the source of randomness

potential treats for TRNGs:

deterministic noise
interference

PC
fast

interfaceTESTS

Fig. 1. External TRNG testing setup, where only TRNG and
communication interface is implemented in the FPGA
device. Tests are processed by PC.

The second purpose requires tests implemented inside
the device due to security reasons - to uncover defects of
TRNG in the deployed device. The main differences be-
tween both architectures are shown in Fig. 1 for external
evaluation and Fig. 2 for automated internal evaluation of
the RNs quality.

soft - MCU

TRNG

Tests IP Core

Interface

s
y
s
te

m
b

u
s

FPGA
frequency injection

package temperature

core voltage

abnormal behavior of
the source of randomness

potential treats for TRNGs:

deterministic noise
interference

PC
slow

interface

Fig. 2. Internal TRNG testing setup, where tests run inside the
FPGA device. The result of tests is provided for PC.

RADIOENGINEERING, VOL. 18, NO. 4, DECEMBER 2009 633

3. Description of FIPS 140 Test Suite
The first version of the FIPS 140 standard [8] was in-

troduced in 1994. A particular part of it deals with statistical
randomness tests. In 2001 the second version of the doc-
ument was introduced [9] with slightly changed threshold
regions for the Runs test.

Here is description of the tests that are included:

• T1: The Monobit Test

1. Count the number of ones in the 20,000 bit
stream. Denote this quantity by X .

2. The test is passed if 9,725 < X < 10,275.

• T2: The Poker Test

1. Divide the 20,000 bit stream into 5,000 contigu-
ous 4-bit segments. Count and store the number
of occurrences of each of the 16 possible 4-bit val-
ues. Denote f (i) the number of each 4-bit value i
where 0≤ i≤ 15.

2. Evaluate the following:

X = (16/5000) · (
15

∑
i=0

[f (i)]2)−5000. (1)

3. The test is passed if 2.16 < X < 46.17.

• T3: The Runs Test

1. A run is defined as the maximal sequence of con-
secutive bits of either all ones or all zeros, which
is part of the 20,000 bit sample stream. The in-
cidences of runs (for both consecutive zeros and
consecutive ones) of all lengths (≥ 1) in the sam-
ple stream should be counted and stored.

2. The test is passed if the number of runs that occur
(of lengths 1 through 6) is each within the corre-
sponding interval specified in Tab. 1. This must
hold for both the zeros and ones; that is, all 12
counts must lie in the specified interval. For the
purpose of this test, runs of greater than 6 are con-
sidered to be of length 6.

Length of Run Required Interval
1 2,315 - 2,685
2 1,114 - 1,386
3 527 - 723
4 240 - 384
5 103 - 209

6+ 103 - 209

Tab. 1. FIPS 140 - the Runs Test tresholds, according [9].

• T4: The Long Run Test

1. A long run is defined to be a run of length 26 or
more (of either zeros or ones).

2. On the sample of 20,000 bits, the test is passed if
there are NO long runs.

4. Implementation Platform and
Architecture of the Implemented
System
The recent Flash based Actel Fusion FPGA

M7AFS600 has been chosen thanks to benefits listed in
[12]. The available soft-core ARM7TDMI compatible pro-
cessor is used for interfacing the tests. Available PLLs are
necessary for implementation of a PLL-based TRNG [10],
used as a source of RNs under test. This type of TRNG has
been chosen only for demonstration of the testing platform
based on FIPS 140 tests. A drawback of the Fusion family
is unavailability of dedicated multipliers which would be
helpful for squaring needed by the Poker test. The proposed
IP-Core is written in VHDL and special emphasis was taken
on the speed-and-area effective implementation of all tests.

The architecture of the entire system is shown in the
Fig. 3. There are three main components: the CoreMP7 sub-
system, the TRNG with Advanced Peripheral Bus (APB) in-
terface and the FIPS 140 Tests IP-Core with the APB inter-
face. All these components communicate by the APB. There
is a direct interconnection between TRNG and FIPS 140
Tests IP-Core that provides random bits for tests.

FIPS 140 tests IP-Core consists of APB interface, Con-
trol Logic and instances of particular tests. The APB inter-
face translates the results of the tests to the status register of
the peripheral, which is possible to be read by software run-
ning in the CoreMP7. The Control Logic distribute the synch

Monobit
Test

Poker
Test

Runs &
Long Run

Test

Control
Logic

CoreMP7’s
APB

Interface

CoreMP7
Subsystem

TRNG
with APB
Interface

clk

rst

result_ready

result

rnd_bit_ready

rnd_bit

APB Bus

s
y
n
c
h

Test_Result

Test_rdy

FIPS 140 TESTS IP-CORE

Fig. 3. Architecture of the specialized FIPS 140 IP-Core and its
connection to the CoreMP7 subsystem and the TRNG.

634 M. VARCHOLA, M. DRUTAROVSKÝ, EMBEDDED PLATFORM FOR AUTOMATIC TESTING AND OPTIMIZING OF FPGA. . .

signal which indicates end of the 20,000 bits packet and is
used for synchronizing and controlling all instances of tests.
The Control Logic block also merges the results of all tests
into one result.

5. Synthesis of the Particular Tests
Each test from the suite is different from the hardware

implementation point of view and a specific approach of ef-
fective synthesis is needed. This section deals with each test
separately.

5.1 Monobit Test
The Monobit test is the easiest one within the entire

suite. There is only one register necessary that increments its
content by one when an input random bit has ′1′ value. The
content of the register is compared to the reference threshold
values when synch signal is active.

5.2 Poker Test
The Poker test described by equation (1) can be hardly

implemented in hardware. That is why a derived compatible
equation using integers was used [13] (Appendix A):

1563175 <
15

∑
i=0

[f (i)]2 < 1576929. (2)

As it is needed to count the appearance of each group
of four bits, it is necessary to find the maximum value of
[f (i)] for passing the test in order to allocate the appropri-
ate number of bits for registering. It was shown that if the
count of at least one combination of bits exceeds 428 the test
would not pass [13] (Appendix B). That is why the architec-
ture needs a 16 · 9-bit register field. The computation of the
square and sum takes basically some time and so two such
register fields are used; one is used for storing counts of the
bit groups and the second is used for performing computa-
tions on it. Two times 16 ·9-bits would consumes quite a lot
of FPGA resources and so the register field is implemented
in the RAM. The data-flow architecture of the poker test is
shown in Fig. 4.

First of all, a group of 4 bits is collected by the shift
register. This value selects the address and the active chan-
nel (the A/B switcher output) selects address in the RAM
memory. RAM read/write controller and incrementer loads,
increments and stores the particular value. There are two
sectors in the RAM; while poker data are incremented and
stored in the first sector (incoming data), the second sector
provides data for the post-processing unit (outgoing data).
The roles of both sectors are swapped after 20,000 input bits.
Random bits can come with each clock cycle, which implies
4 clock periods for all RAM read/write operations. The con-
trol sequence is shown in the Tab. 2. RAM read/write con-
troller & incrementer and the Processing unit are synthesized

as Finite State Machines (FSMs).

A serial multiplier was used for performing square in
order to save logic resources. Its lower speed does not cause
complication because there is enough time while 20,000 bits
are stored in RAM. A Ripple Carry Adder was used because
of the same reason for addition. Finally, the result is tested
whether it fits into the interval derived in (2).

4-bit Shift
Register

Serial
Multiplier

Ripple Carry
Adder

Register

Treshold
Comparator

A / B
Switcher

rnd_bit_ready

rnd_bit

synch

Poker_ready

Poker_result

Processing
Unit

RAM

sector A

sector B

RAM
read/
write

controller
&

incrementer

Fig. 4. The data-flow architecture of the implemented Poker test
where the RAM read/write controller & incrementer and
the Processing unit are synthesized as FSMs.

Clock Incoming Outgoing
Period Data Data

1 Capture Shift Register Load Data
2 Load Poker Value No Operation
3 Increment Poker Value Clear Data
4 Store Poker Value No Operation

Tab. 2. A sequence of RAM read/write operation for the Poker
test.

5.3 Runs and Long Run Test
The Runs and Long run tests are merged to the same in-

stance due to similar nature of both tests. The test is synthe-
sized as single FSM. The FSM transaction diagram is shown
in Fig 5.

The FSM consists of the following states: idle, com-
pare, zX, oX; where X in zX and oX states means the num-
ber of zeros or ones of particular run, respectively. The FSM

RADIOENGINEERING, VOL. 18, NO. 4, DECEMBER 2009 635

falls into idle state during reset. After that, random numbers
are entered to the FSM in the sequence. When the value of
the first random bit is ′0′, the FSM falls to the z1 state. When
the value of the second random bit is ′0′, the FSM falls to the
z2 state. When the value of the second random bit is ′1′, the
FSM falls to the o1 state and the register counting appear-
ance of the run of single ′0′ is incremented, etc. When the
state is changed from the right side of the diagram to the left
(or vice versa) – that means the run of several same consec-
utive bits is over – the appropriate register is incremented.
In case of this test, register field is stored in the logic for the
possibility of incrementing it in a single clock period. The
FSM falls to compare state when synch signal is active (at the
end of the 20,000 bit sequence) and all registers are tested if
their values fit into threshold regions listed in Tab. 1.

z1

z2

z3

z4

z5

z6

z26

o1

o2

o3

o4

o5

o6

o26

compare

idle

rst = ’1’

synch = ’1’

rnd_bit = ’0’

rnd_bit = ’1’

Fig. 5. The state diagram of the FSM of the implemented Runs
and Long run test; registered value of particular runs is
incremented when transaction from the left side to right
one appears (or vice versa).

6. Experimental Results
Experimental results of the FIPS 140 IP-Core imple-

mentation and results of an experiment on PLL based TRNG
[10] are given in this section. This generator was cho-
sen for automatic testing platform demonstration purposes
only. Functionality provided by the FIPS 140 IP-Core and
CoreMP7 processor allow us to examine the generator out-
put under various values of a certain parameter. Although
the value of such parameter is strictly defined by PLL setup
and highly recommended by authors, it was changed dy-
namically while the results of the FIPS 140 tests were ob-
served. A great benefit of this approach is that a big amount

of FIPS 140 tests was processed automatically without any
need of human interaction, otherwise a designer would be
supposed to manage the entire experiment.

6.1 FIPS 140 Implementation Results
The VHDL code was synthesized by the Synplify (Ac-

tel Version) and the implementation was done by the De-
signer. Both of them are distributed within the Libero 8.4
which is Actel’s Integrated Design Environment (IDE). Syn-
plify provided the best results (resources consumption and
speed) when it was asked for the 110 MHz resulting fre-
quency. Designer was configured for multiple passes (in
order to find a better starting position of the placer) with
a high-effort place and route algorithm in order to achieve
the best results. Results are given in Tab. 3.

instance area M7AFS600 RAM speed
(tiles) percentage blocks (MHz)

whole 1195 8,6% 2 116
monobit 91 0,7% 0 250

poker 420 4,1% 2 125
runs 560 4,1% 0 125

Tab. 3. Implementation results showing resources consumption
and maximum achieved clock frequency.

Authors in [28] have used Xilinx Virtex 2 XC2V1000-
6 and Virtex 5 XC5VLX50T-3 FPGAs for their implemen-
tations of FIPS 140 tests. In order to compare the proper-
ties of their architectures and the proposed architecture of
the tests, codes have been ported to the Xilinx platforms and
implemented using Xilinx ISE 10.1 IDE. The only differ-
ences to the Actel version are: Xilinx Block RAM memory
was used instead of Actel RAM memory and Xilinx DSP48
block was used instead of a serial multiplier. A comparison
of the implementation results of the proposed architecture
and the results of the architecture published in [28] is shown
in Tab. 4.

FPGA XC2V1000-6 XC5VLX50T-3
Implemen- Santoro This Santoro This

tation et. al. paper et. al. paper
LUTs 626 640 482 492

Utilization (6%) (6%) (1%) (1%)
Max.F[MHz] 134.7 168.7 189.4 311.5
Max.F/LUTs 0.215 0.264 0.393 0.633

Tab. 4. Comparison of the Santoro et. al. [28] FIPS 140 im-
plementation and FIPS 140 implementation proposed in
this paper; it was achieved significantly greater maxi-
mum clock frequency utilizing almost the same amount
of the FPGA resources.

6.2 Basic Description of PLL Based TRNG
The basic principle behind the TRNG shown in Fig. 6 is

to extract the randomness from the jitter of the clock signals
synthesized in the embedded analog PLLs [10]. The jitter is
detected by sampling of a reference signal CLJ using a ratio-
nally related (clock) signal CLK synthesized in the on-chip
analog PLLs with frequencies:

636 M. VARCHOLA, M. DRUTAROVSKÝ, EMBEDDED PLATFORM FOR AUTOMATIC TESTING AND OPTIMIZING OF FPGA. . .

FCLJ =
MCLJ

DCLJ
FOSC, (3)

FCLK =
MCLK

DCLK
FOSC (4)

where FOSC is a reference clock signal and the param-
eters KM = MCLJDCLK , KD = DCLJMCLK are related to the
PLL structures. The signal CLJ is sampled into the first D
flip-flop using a clock signal with frequency FCLK . There are
KD rising edges of CLK signal and 2KM(rising and falling)
edges of a CLJ waveform during the time period

TQ =
1
R

= KDTCLK = KMTCLJ (5)

where R is the bit-rate of the output TRNG sequence.

D Q

CLK

D Q

CLK

Decimator

(K)

q(nT)CLK

D

x(nT)QCLJ

CLK
PLL

PLL50MHz

XTAL

OSC

Fig. 6. Basic structure of implemented PLL based TRNG.

6.3 PLL Based TRNG Results
Chosen parameters of PLL based TRNG were:

FCLK = 98.750 MHz, FCLJ = 98.387 MHz, MCLJ = 61,
MCLK = 79, DCLJ = 31 and DCLK = 20 which results in
KD = 2449 and R = 40323 bps. Such generator obviously
passed FIPS 140 tests. Although the listed parameters are
highly recommended by the authors and the generator pro-
vides great robustness, it would be interesting to observe
how the decreasing of KD factor can affect statistical proper-
ties of random numbers. In order to automate manual work
of capturing random data, the proposed FIPS 140 IP-Core
implementation for FPGA was used. PLL based TRNG and
FIPS 140 tests were controlled by CoreMP7 soft-core pro-
cessor. The KD constant in VHDL was changed into a reg-
ister accessible by ARM7. A simple script was run which
executes FIPS 140 tests 1000 times for each KD value from
20 to 250. The experiment was ready in 100 minutes’ time.
It would be several times more by using traditional approach
when tests are running on the PC with great demand on man-
ual work of the designer. The region where FIPS 140 tests
began to pass is show in Fig. 7.

Fig. 7. Percentage of FIPS 140 passes regarding to the KD pa-
rameter when PLL based TRNG was used.

7. Conclusion
An automatic testing and optimization platform was

proposed in this paper, based on hardware implementation of
the FIPS 140 statistical randomness test suite. This special-
ized IP-Core can be used as a component of the each cryp-
tographic system where detection of the TRNG malfunction
is critical as well.

It was shown how is such a FIPS 140 IP-Core practi-
cal for research of TRNGs as well. It was performed pretty
much of automated tests inside the device without any need
of fast interface or human effort of managing the FIPS 140
execution on a PC. The experimental system only sent re-
sults to the PC by RS 232 interface. The automated test was
controlled by CoreMP7 processor with simple program writ-
ten in C language. The KD value was observed when the
PLL based TRNG began to provide output of better statis-
tical properties. Experiments based on this testing platform
can save a lot of research time and provide overview of the
behavior of TRNG under various working conditions and un-
der various operating settings.

The proposed design can process one random bit per
single clock period. The maximum achieved clock period
was 116 MHz for the entire tests implemented in Actel
FPGA that means it is possible to perform testing of ran-
dom data with 116 Mbps bit-rate. Whole solution consumes
1195 tiles that is less than 9 % of the popular M7AFS600
FPGA. An alarm can be reported to the CoreMP7 proces-
sor which does not need to run FIPS 140 tests anymore and
save its computation time for other tasks. Authors in [14]
achieved 113 MHz maximum frequency that is comparable
with the implementation results in the Actel Fusion FPGA
but they used high-performance Virtex 2 FPGA by Xilinx
while Fusion is cost-effective Flash FPGA. Authors in [28]
used Xilinx Virtex 2 and Virtex 5 FPGAs and so proposed ar-
chitecture was ported into the same parts in order to compare
performance of both solutions. The result was that proposed
architecture achieved better performance utilizing the same
amount of the FPGA resources.

Next research efforts will target deep analysis and op-
timization of FIPS 140 IP-Core and enhancing it towards
AIS 31 criteria [21] in order to be able to implement it in se-
curity products. On the other hand, this IP-Core will be used
for fast results of numerous experiments on various TRNG
principles when changing their parameters or operation con-
ditions or attacking them. Research interests will be focused
particularly on the Ring Oscillator based designs [15] and
recent principle published in [27].

Acknowledgements This work has been done in
the frame of the Slovak scientific project KEGA 3/5238/07
of Slovak Ministry of Education an Actel University Pro-
gram.

RADIOENGINEERING, VOL. 18, NO. 4, DECEMBER 2009 637

References

[1] MENEZES, J. A., OORSCHOT, P. C., VANSTONE, S. A. Handbook
of Applied Cryptography. New York: CRC Press, 1997. [Online].
Available at: http://www.cacr.math.uwaterloo.ca/hac/.

[2] MARKETTOS, A. T., MOORE, S. W. The frequency injection attack
on ring-oscillator-based true random number generators. In Proceed-
ings of Cryptographic Hardware and Embedded Systems. Lausanne
(Switzerland), 2009, p. 317 - 331.

[3] SCHINDLER, W. Random number generators for cryptographic ap-
plications. Cryptographic Engineering. Berlin: Springer, 2009.

[4] SCHINDLER, W. Evaluation criteria for physical random number
generators. Cryptographic Engineering. Berlin: Springer, 2009.

[5] SUNAR, B. Random number generators for cryptography. Crypto-
graphic Engineering. Berlin: Springer, 2009.

[6] DAVIES, P. Flexibile security. In Thales e-Security, White Paper -
Cryptography & Interoperability, 2003.

[7] SCHINDLER, W. Efficient online tests for true random number gen-
erators. In Proceedings of Cryptographic Hardware and Embedded
Systems. Paris (France), 2001, p. 103 - 117.

[8] U.S. Department of Commerce / National Institute of Standards and
Technology. Federal Information Processing Standards Publication
FIPS PUB 140-1, 1994.

[9] U.S. Department of Commerce / National Institute of Standards and
Technology. Federal Information Processing Standards Publication
FIPS PUB 140-2, 2001.

[10] FISCHER, V. DRUTAROVSKÝ, M. True random number genera-
tor embedded in reconfigurable hardware. In Proceedings of Cryp-
tographic Hardware and Embedded Systems. Redwood City (USA),
2002, p. 415 - 430.

[11] GOLIĆ, J. New methods for digital generation and postprocessing
of random data. In IEEE Transactions on Computers, 2006, vol. 55,
no. 10, p. 1217 - 1229.

[12] DRUTAROVSKÝ, M., VARCHOLA, M. Cryptographic system on
a chip based on actel ARM7 soft-core with embedded true random
number generator. In IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems. Bratislava (Slovakia), 2008, p. 164
- 169.

[13] VANCAK, O. Implementation of the Statistical Randomness Tests
for Cryptographic Applications in FPGA Devices. Master Thesis.
Technical University of Košice, 2009.

[14] HASEGAWA, A., KIM, S. J., UMENO, K., KITAMACHI, N.
IP core of statistical test suite of FIPS 140-2. Design & Reuse.
[Online]. Cited 2009-10-16. Available at: http://www.design-
reuse.com/articles/7946/ip-core-of-statistical-test-suite-of-fips-140-
2.html .

[15] SUNAR, B., MARTIN, W. J., STINSON, D. R. A provably secure
true random number generator with built-in tolerance to active at-
tacks. IEEE Transactions on Computers, 2007, vol. 56, no. 1, p. 109
- 119.

[16] SUNAR, B. Response to Dichtl’s Criticism. 2008.

[17] SCHELLENKES, D., PRENEEL, B., VERBAUWHEDE, I. FPGA
Vendor agnostic true random number generator. In Proceedings of
International Conference Field Programmable Logic and Applica-
tions. Madrid (Spain), 2006.

[18] DICHTL, M. Scrutinizing the assumptions used in the security proof
of a true random generator. IEEE Transactions on Computers, 2007.

[19] VASYLTSOV, I., HAMBARDZUMYAN, E., KIM, Y. S., KARPIN-
SKYY, B. Fast digital TRNG based on metastable ring oscillator.
In Proceedings of Cryptographic Hardware and Embedded Systems.
Washington DC (USA), 2008, p. 164 - 180.

[20] WOLD, K. TAN, C. H. Analysis and enhancement of random
number generator in FPGA based on oscillator rings. In Interna-
tional Conference on Reconfigurable Computing and FPGAs. Can-
cun (Mexixo), 2008, p. 385 - 390.

[21] KILLMANN, W., SCHINDLER, W. Functionality classes and eval-
uation methodology for true (physical) random number generators.
AIS 31: Application Notes and Interpretation of the Scheme (AIS),
2001.

[22] RUKHIN, A., et al. A statistical test suit for random and pseudoran-
dom number generators for cryptographic applications. NIST Special
Publication 800-22, 2001.

[23] VARCHOLA, M., DRUTAROVSKÝ, M., FOUQUET, R., FIS-
CHER, V. Hardware platform for testing performance of TRNGs
embedded in actel fusion FPGA. In Proceedings of the 18th Interna-
tional Conference Radioelektronika. Prague (Czechia), 2008, p. 145
- 148.

[24] ROZIC, V., VERBAUWHEDE, I. Random numbers generation: In-
vestigation of narrow transitions suppression on FPGA. Proceedings
of International Conference Field Programmable Logic and Appli-
cations. Prague (Czechia), 2009.

[25] FISHER, V., BERNARD, F., BOCHARD, N., VARCHOLA, M.
Enhancing security of ring oscillator-based RNG implemented in
FPGA. In Proceedings of International Conference Field Pro-
grammable Logic and Applications. Heidelberg (Germany), 2008,
p. 245 - 250.

[26] VALTCHANOV, B., AUBERT, A., BERNARD, F., FISCHER, V.
Modeling and observing the jitter in ring oscillators implemented in
FPGAs. In IEEE Workshop on Design and Diagnostics of Electronic
Circuits and Systems. Bratislava (Slovakia), 2008, p. 158 - 163.

[27] VARCHOLA, M., DRUTAROVSKÝ, M. New FPGA based TRNG
principle using transition effect with built-in malfunction detection.
In International Workshop on Cryptographic Architectures Embed-
ded in Reconfigurable Devices - CryptArchi. Prague (Czechia), 2009,
p. 150-155.

[28] SANTORO, R., SENTIEYS, O., ROY, S. On-Line monitoring of
random number generators for embedded security. In IEEE Interna-
tional Symposium on Circuits and Systems. Taipei (Taiwan), 2009,
p. 3050 - 3053.

About Authors. . .

Michal VARCHOLA was born in 1984 in Košice. He re-
ceived his M.Sc. in electronics and telecommunication tech-
nologies from Technical University of Košice in 2007. Cur-
rently he is a Ph.D student at the Department of Electronics
and Multimedia Communications, Technical University of
Košice. His research interests include true random number
generators for embedded cryptographic applications.

Miloš DRUTAROVSKÝ was born in 1965 in Prešov, Slo-
vak Republic. He received the M.Sc. degree in radioelec-
tronics and PhD degree in electronics from Technical Uni-
versity of Košice, Slovak Republic, in 1988 and 1995, re-
spectively. He defended his habilitation work - Digital Sig-
nal Processors in Digital Signal Processing in 2000. He is
currently working as an associated professor at the Depart-
ment of Electronics and Multimedia Communications, Tech-
nical University of Košice. His current research interests in-
clude applied cryptography, sensor networks, digital signal
processing, and algorithms for embedded cryptographic ar-
chitectures.

638 M. VARCHOLA, M. DRUTAROVSKÝ, EMBEDDED PLATFORM FOR AUTOMATIC TESTING AND OPTIMIZING OF FPGA. . .

Appendix A
Deriving poker test equation that is possible to imple-

ment in FPGA hardware:

X = (16/5000) · (
15

∑
i=0

[f (i)]2)−5000 (6)

where f (i) ∈ 0,1, ...5000. Test would pass when X ∈
(2.16;46.17) and so

2.16 < (16/5000) · (
15

∑
i=0

[f (i)]2)−5000 < 46.17, (7)

5002.16 < (16/5000) · (
15

∑
i=0

[f (i)]2) < 5046.17, (8)

vspace2mm

1563175 <
15

∑
i=0

[f (i)]2 < 1576929. (9)

Appendix B
Deriving the maximum bit-width for counters used in

the Poker test: Let y = f (i)MAX , then the remaining f (i) val-
ues would be (5000− y)/15 and so:

15

∑
i=0

[f (i)]2 = y2 +15 · ((5000− y)/15)2. (10)

Let us examine when (6) will have maximum value
x = 46.17:

46.17 = (16/5000) · (y2 +15 · ((5000− y)/15)2)−5000.
(11)

From (11) we can get:

16y2 +10000y+1346078.125 = 0. (12)

There are two roots of (11): y1 = 428.803 and y2 =
−196.197, which results in f (i)MAX = 428 .

