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Abstract. This paper proposes a new current conveyor-
based high-output impedance single-input three-output 
current mode filter with minimum configuration. It contains 
two dual output second generation current conveyors, one 
third generation dual output current conveyor, and four 
grounded resistors and capacitors. The circuit simultane-
ously provides low-pass, band-pass, and high-pass filtering 
outputs, without any passive component matching condi-
tions and restrictions on input signals. Additionally, the 
proposed circuit offers following advantages:  Minimum 
active and passive element count, high output and low 
input impedances, suitable for cascading identical current-
mode sections, all passive elements are grounded (no 
virtual grounding), low natural frequency and Q-factor 
sensitivities. The influences of non-ideal current conveyors 
on the proposed circuit are researched in the last.  

Keywords 
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1. Introduction 
Second generation current conveyor (CCII) element 

which has a single current output terminal is one of the 
versatile active building blocks to construct continuous-
time universal and multipurpose filters, and many of these 
filters have already been reported in literature [1-3]. CCII 
can not provide feedforward and feedback currents at the 
same time, and CCII-based filters become rather complex. 
Modified current conveyors, such as MOCCII (current 
conveyor with multi-output terminals) [4-5] and DOCCII 
(second generation current conveyors with dual output 
terminals) [6-8] are employed to produce filters. Although 
the MOCCII-based filters have simple structure, their 
current tracking errors will increase proportionally with the 
number of current output terminals. On the other hand, 
DOCCII has two current output terminals (one positive, 
another negative), its current tracking errors are relatively 
small, and it has a balanced output structure.  

Many different current mode filter topologies can be 
realized by employing second generation current conveyors 
with dual output terminals [6–16]. Structurally, DOCCII 
based filters and their variants can be divided into three 
classes: (i) multi-input and multi-output (MIMO) filters 
[6]; (ii) multi-input and single-output filters [7-9]; (iii) sin-
gle-input and three-output (SITO) filters [10-16]. The SITO 
filters can realize second order low-pass (LP), band-pass 
(BP), high-pass (HP) filters simultaneously without any 
passive component matching conditions and restrictions on 
input signals. These filters also allow the realizations of 
notch and all-pass (AP) filter responses without having to 
change the filter configurations. 

Soliman proposes current mode filter circuit with 
high-output impedance using three DOCCII and five 
grounded RC elements [10], the filter’s natural frequency 
and quality factor can be adjusted independently. However, 
the circuit only produces two-outputs (low-pass and band-
pass). In another study, Soliman gives several dual and 
three outputs CM filter configurations with high impedance 
outputs [11]. 

Abuelma’atti et al. propose SITO current mode filter 
circuit with high-output impedance using three DOCCIIs, 
one OTA (operational transconductance amplifier) and five 
grounded RC elements [12]. Gunes et al. describe a SITO 
current mode filter circuit employing three DOCCIIs and 
four grounded RC components [13]. However, the band-
pass and high-pass outputs of this circuit do not provide 
high-output impedances. Toker et al. present a SITO cur-
rent mode filter circuit with high-output impedance using 
three DOCCIIs, five grounded RC elements [14]. Toker et 
al. proposed another SITO filter circuit for low frequency 
operation in [15]. The circuit includes four DOCCIIs and 
eight passive elements. Cicekoglu introduces five SITO 
current mode filter circuits, each of them containing four 
DOCCII and seven RC components with high-output 
impedances [16]. Keskin and Cam propose a new SITO 
current mode filter circuit with high-output impedance 
using three DOCCIIs and four passive elements [17]. 
Although it is a minimum configuration structure, there is 
one virtually grounded resistor in addition to three 
grounded passive components in their circuit. The CM 
DOCCII-based filter introduced by Ikeda and Tomita [18] 
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has three active and four passive elements, but does not 
provide simultaneous outputs. While the works in [19], 
[20] describe minimum configuration circuits with high 
impedance outputs, both of them contain floating 
capacitors. 

Tangsrirat et al. propose a two-input three-output 
current-mode filter, which employs three dual-output 
current-controlled current conveyors (DOCCCIIs) and two 
grounded capacitors [21]. In another study, Tangsrirat 
demonstrates a CM filter with two inputs and two outputs 
employing four DOCCCIIs and two grounded capacitors 
[22]. However, neither of these circuits belongs to SITO 
topology. 

Singh et al. show how a four current conveyor based 
voltage mode biquad filter with five resistors and two 
grounded capacitors provides also current mode capability 
[23]. 

So far (to the best knowledge of authors), there exists 
no study on DOCCII-based CM SITO filters offering mini-
mum filter configurations accompanied with all-grounded 
passive component structure with high impedance outputs.  

On the other hand, third generation current conveyor 
(CCIII) is proposed by Fabre [24], and a CMOS implemen-
tation of this circuit is presented in [25]. DOCCIII (third 
generation current conveyor with two current outputs) can 
easily be constructed in a CMOS technology. Numerous 
applications of CCIII element have already been presented 
in literature [26-30]. 

In this paper, a new current mode SITO type mini-
mum configuration filter is proposed. This circuit consists 
of one third generation current conveyor and two second 
generation current conveyors in addition to four grounded 
passive elements.  

2. The Proposed Circuit 
The symbolic notations of DOCCII and DOCCIII four 

terminal active elements are shown in Fig. 1.a, b. DOCCII 
is characterized by  

 
xzxzyyx IIIIIVV   ,,0, . (1) 

On the other hand, third generation current conveyor 
with dual outputs, DOCCIII is described by 

 xzxzxyyx IIIIIIVV   ,,, .  (2) 

 

 
                        

                              (a)DOCCII                      (b) DOCCIII 

Fig.1. Circuit symbols of DOCCII and DOCCIII. 

The proposed circuit is shown in Fig. 2. The circuit 
contains two DOCCIIs, one DOCCIII, two grounded 
resistors and grounded capacitors, and it can realize low-
pass, band-pass and high-pass filters simultaneously, at 
high impedance outputs. From Fig. 2, the input terminal of 
circuit is terminal Y of DOCCIII, so according to (2) 
(namely: Vx = Vy, Iy = -Ix), it is clear that the circuit has low 
input impedance. It is convenient for the circuit to be 
cascaded for its high output impedance and low input 
impedance. 

 
Fig. 2. Proposed SITO current mode filtering circuit. 

The filter provides the following transfer functions 
simultaneously: 
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The band-stop (BS) filtering output can be obtained 
by connecting low-pass and high-pass outputs (ILP+IHP), 
and all-pass (AP) filtering output can be obtained by 
connecting low-pass, band-pass and high-pass outputs  
(ILP-IBP+IHP) together as depicted in (6), (7). Therefore, the 
proposed circuit can be easily transformed into a universal 
filter.  
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The natural angular frequency and quality factor are 
given in (8a, 8b), respectively. 
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Ideal passive 0 and Q sensitivities are both 1/2 in 
magnitude. 
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Taking the non-idealities of the DOCCII and 
DOCCIII into account, their terminal relationships can be 
rewritten respectively as follows: 

 xzxzyyx IIIIIVV    ,,0, ,  (9) 

 xzxzxyyx IIIIIIVV    ,,,    (10) 

where  and   are current gains and  is voltage gain, and 
 = 1−iz ,  = 1−ix,   = 1−v. Here, iz, ix, v are 
current- and voltage-tracking errors of the DOCCII and 
DOCCIII.  

Considering these non-idealities of the DOCCII and 
DOCCIII, current transfer functions in Fig. 2 become: 
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where  
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In (11), (12); ,  and  are parameters of DOCCIII, 
and i, i are parameters of DOCCIIi (i=1,2). 

The natural angular frequency and quality factor are  
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Active sensitivities of the natural angular frequency 
and the quality factor of the filter shown in Fig. 2 are 
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It is clearly observed that active sensitivities of 0 and 
Q do not exceed unity. 

3. Results of Circuit Simulations 
In order to confirm the practical validity of the pro-

posed SITO filter circuit, it is simulated in SPICE using 
0.5µm CMOS process parameters for transistors shown in 
Tab. 1. The CMOS DOCCII [31] given in Fig. 3, and 
CMOS DOCCIII [25] of Fig. 4 are used in circuit simula-
tions. Tab. 2 lists the transistor dimensions used in two 
circuits.  

Fig. 5 displays the results of circuit simulations for 
the proposed multifunction filter. Fig. 6 denotes the simula-
tions results of phase and gain for all-pass filtering output. 

 
 

Fig. 3. CMOS DOCCII circuit. 

 

 
Fig. 4.  CMOS DOCCIII circuit. 

 

.MODEL seanmos NMOS(LEVEL=3 PHI=0.700000 
+TOX=9.6000E-09  XJ=0.200000U TPG=1 VTO=0.6684 

+DELTA=1.0700E+00 LD=4.2030E-08 KP=1.7748E-04 
UO=493.4 +THETA=1.8120E-01 RSH=1.6680E+01 
GAMMA=0.5382  +NSUB=1.1290E+17 NFS=7.1500E+11 
VMAX=2.7900E+05 +ETA=1.8690E-02 KAPPA=1.6100E-01 
CGDO=4.0920E-10  +CGSO=4.0920E-10 CGBO=3.7765E-10 
CJ=5.9000E-04 +MJ=0.76700  CJSW=2.0000E-11 
MJSW=0.71000  PB=0.990000) 

.MODEL seapmos PMOS(LEVEL=3 PHI=0.700000 
+TOX=9.6000E-09 XJ=0.200000U TPG=-1 VTO=-0.9352 

+DELTA=1.2380E-02 LD=5.2440E-08  KP=4.4927E-05 
UO=124.9 +THETA=5.7490E-02 RSH=1.1660E+00 
GAMMA=0.4551 +NSUB=8.0710E+16 NFS=5.9080E+11 
VMAX=2.2960E+05 +ETA=2.1930E-02 KAPPA=9.3660E+00 
CGDO=2.1260E-10 +CGSO=2.1260E-10 CGBO=3.6890E-10  
CJ=9.3400E-04 +MJ=0.48300  CJSW=2.5100E-10 
MJSW=0.21200 PB=0.930000) 

Tab. 1. 0.5µm CMOS process parameters for transistors. 
 
 

DOCCII 
M1~ 

M4 

M5~ 

M10 

M11 

M12 
M13 M14 

M15~ 

M17 

M18 

M19 

W/L(um)  8/2 10/2 4/2 12/2 19/2 8/2 4/2 

DOCCIII 
M1 M3 M6 M8 M9 M11 

 M14 M16 M18 M20 

M2 M4 M5 M10 M12 

 M13 M15 M17 M19 

W/L(um) 4/2 16/2 

Tab. 2. Transistor dimensions in the DOCCII and DOCCIII 
circuits. 
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Fig. 5. Results of circuit simulations for basic filter responses 

of the proposed DOCCII-based SITO biquad.  

 
Fig. 6. Frequency responses characteristic of the AP filter.  

 
Fig. 7. Input impedance of the filter. 

The input and output impedance of CFBCCII can be 
seen in Fig. 7 and Fig. 8. Here, component values are 
selected as R1= R2= 5 kΩ, and C1= C2= 1 nF, which yield 
f0 = 34 kHz and Q = 1. Fig. 9 shows the simulated band-
pass responses with Q-tuning (i.e. Q = 1, 4, 6). In this case, 
R1= 5 kΩ, 1.25 kΩ, 0.84 kΩ and R2= 5 kΩ, 20 kΩ, 30 kΩ 
and C1= C2= 1 nF respectively while keeping ω0 invariant. 
Supply voltages are ±2.5 V. It is noted that the results of 
circuit simulations are in agreement with theory. For the 
band-pass filter, the simulated curve departs from ideal 
beginning at about 10 MHz, due to the parasitic 

impedances of DOCCII and DOCCIII. This behavior is 
further analyzed in the following section. 

Note that, since the aim of this study is to design 
a minimum configuration CM-SITO filter, independent 
control of frequency or quality factor is not expected. 

 
Fig. 8. Output impedance of the filter. 

 
Fig. 9. Simulation results of frequency response of BP filter 

with different Q (keeping ω0 invariant). 

4. Parasitic Impedance Influence  
of DOCCII and DOCCIII 
The non-ideal CCII [32] and CCIII models are shown 

in Fig. 10. The real CCII and CCIII has parasitic resistors 
and capacitors at terminal z to the ground, and a serial 
resistor at the input terminal x. In the CCII, parasitic 
resistors and capacitors exist at terminal y to the ground 
[32]. A series parasitic resistor exists at the terminal y of 
the CCIII. Here, α(s) and β(s) are used to represent the 
frequency domain transfer functions of the internal current 
and voltage followers of the CCII and CCIII, respectively, 
and they are considered as having unity values here.  

 

 
 (a) CCII                                      (b) CCIII 

Fig. 10. Non-ideal CCII and CCIII with their parasitic resistors 
and capacitors. 
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In a non-ideal DOCCII and DOCCIII, parasitic 
resistors and capacitors at the z+, z- terminals are assumed 
to have the same values, all being equal to Rz and Cz 
respectively.  

In order to study the influence of parasitic elements in 
DOCCII and DOCCIII, the proposed filter shown in Fig. 2 
can be transformed to Fig. 11. 

We define Rz1, Rz2, Cz1, Cz2 as the parasitic resistors 
and capacitors of the z terminals of DOCCII1 and 
DOCCII2 in Fig. 11, and Rz0, Cz0 at the z terminal of 
DOCCIII.  Rx1, Rx2 are the serial parasitic resistances at the 
x terminals of DOCCII1 and DOCCII2, Rx0 is the parasitic 
resistance for DOCCIII, while Ry1, Ry2, Cy1, Cy2 are the 
parasitic resistors and capacitors at the y terminals of 
DOCCII1 and DOCCII2. Ry0 is the serial parasitic resis-
tance of DOCCIII which is equal to Rx0 approximately.   

 

 
Fig. 11. The proposed filter including the parasitic elements of 

the DOCCII and DOCCIII. 

Assuming that C1>>(Cy1+Cz0),  it can be shown that 
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where Cyz=Cz1+Cy2+Cz2. From Fig. 11 one can obtain the 
following transfer functions: 
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where  
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For the value of Cyz is smaller than 10 pF and that of 
Rz0, Rz2 is larger than 1 MΩ, so C1, C2, R1, R2 are chosen 
under the following relations: Cyz << min(C1, C2), 
min(Rz0,Rz0) >> max(R1, R2). Therefore , 
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From (23) and (24), it is clear that when considering 
influence of parasitic elements, the natural angular fre-
quency is larger than the one in ideal condition, namely 
ω0’ > ω0, and the quality factor is lower than that of the 
ideal one (Q` < Q). If  ωC2Rx2 << 1, the influence of non-
ideal characteristics of DOCCII can be ignored. Note that 
the value of Rx is low, as given below [32]. 

     405214221 mmmddmmx gggggggR .(25) 

The influence of parasitic elements on the proposed 
filter is simulated by PSPICE. It can be seen in Fig. 12 that 
in the proposed filter, the parasitic elements have some 
influences on the ω0 and Q of the proposed filter. In this 
case, C1 = C2 = 0.25 nF, 1 nF, 5 nF, 10 nF and 
R1= R2= 20 kΩ, 5 kΩ, 1 kΩ, 0.5 kΩ, respectively. Supply 
voltages are ±2.5 V. When ωC2Rx2 << 1 (e.g. C2= 0.25 nF 
as shown in Fig. 11), the DOCCII can be seen as the ideal 
one. Therefore, the simulation results are in good agree-
ment with the theoretical analysis. 

 

 
Fig. 12. Simulation results of the influence of parasitic 

elements on the proposed filter. 

5. Conclusions 
In this work, a new current mode SITO biquad is 

presented. This filter employs minimum number of active 
and passive elements. The proposed current mode filter can 
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be easily cascaded, since it realizes three simultaneous 
filter functions at high impedance outputs, while its input 
impedance is low. In this filter, AP and notch responses can 
also be obtained by interconnecting the corresponding 
outputs. Moreover, all passive components are grounded, 
and its frequency and Q-factor sensitivities are low.  
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