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Abstract. In this paper, digital filters are used for the 
stabilization of the marching-on-in-time (MOT) method. 
A methodology of designing a proper filter using optimiza-
tion techniques is proposed here. Since the proposed pro-
cedure considers the important part of the spectrum of the 
excitation signal, the designed filter does not degrade the 
accuracy of the MOT method. Further, the procedure for 
the efficient stabilization of the MOT method by a set of 
filters is proposed and verified on the examples. 
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1. Introduction 
For the broadband analysis of electromagnetic radia-

tion and scattering, the time domain integral equations 
(TDIE) can be solved. For their numerical solution, the 
marching-on-in-time (MOT) method [1], or the marching-
on-in-degree (MOD) method [2] which is sometimes called 
marching-on-in-order (MOO) method, can be applied. 

Whereas the finite difference delay modeling 
(FDDM) method [3] is unconditionally stable, the MOT 
method suffers from the late time oscillations. MOD 
method is unconditionally stable also. However, the 
unconditionally stable approaches usually exhibit lower 
efficiency and higher memory demands compared to the 
conventional MOT approaches. In addition, the uncondi-
tionally stable algorithms are hardly applicable to the 
analysis of electrically large structures. 

In the literature, several approaches have been 
published to stabilize a conventional MOT method. The 
published approaches consist in using implicit time step-
ping schemes [1], [4], using special kinds of temporal basis 
functions [5], [6], averaging currents in time [7], or aver-
aging currents in time and space [8], or filtering the current 
in time by a finite impulse response (FIR) filter [9]. 
Although these techniques are able to improve the stability 
of the MOT method, these improvements are not generally 

valid. In addition, the averaging/filtering techniques usu-
ally decrease the accuracy of the MOT method [7]–[9]. In 
case of applying the filtering technique [9], an appropriate 
order of a filter is difficult to be chosen. 

The paper is focused on the improvement of the fil-
tering technique to become an accurate and efficient tool in 
the elimination of the late time oscillations. The proposed 
technique is demonstrated on the solution of the time do-
main electric field integral equation (TD-EFIE). 

The paper is organized as follows. Section 2 presents 
the TD-EFIE formulation and the MOT method. Section 3 
discusses the stabilization of the MOT method by averag-
ing schemes in time, and its relation to the filtering 
technique. In Section 4, the filter design procedure for the 
stabilization of the MOT method is given. Exploitation of 
the proposed procedure is presented in Section 5 on the 
analysis of the strip dipole. Section 6 discusses and demon-
strates the influence of the pass band ripple of a filter on 
the accuracy of the MOT method. In Section 7, the proce-
dure for the efficient stabilization of the MOT method by 
a set of filters is proposed and verified. Next, the Sierpinski 
gasket antenna of the 2nd order is analyzed in Section 8. 
Section 9 concludes the paper. 

2. TD-EFIE Formulation and MOT 
Method 
Let S denote the surface of a closed or open perfect 

electric conducting (PEC) body illuminated by a transient 
electromagnetic wave. The incident wave induces a surface 
current J(r,t) on S. The scattered electric field ES(r,t) 
computed from the surface current is given by [1] 
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where A and  are the magnetic vector potential and the 
electric scalar potential defined as 
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The permittivity and permeability of the surrounding me-
dium are  and , respectively, R = |r - r’| is the distance 
between an arbitrarily located observation point r and 
source point r’ on S, and  = t - R/c is the retarded time. 
The velocity of propagation in the surrounding medium is 
c = ()-1/2. The surface charge density q is related to the 
surface divergence of J through the equation of continuity 
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Substituting (4) to (3), we get 

  



S

dSdt
R

t
t ''

)','(''.

4

1
),(

0




 rJ

r  . (5) 

Since the total tangential electric field is zero on the 
conducting surface for all times, we have 

   SSI  rJEE ,0)( tan  . (6) 

Combining (1) and (6) gives 
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where Ei is the incident electric field on the scatterer and 
the subscript “tan” denotes the tangential component. 
Equation (7) with (2) and (5) constitute a TD-EFIE the 
unknown current J(r,t) may be determined from. 

2.1 MOT Method 

For the numerical solution of the TD-EFIE, let us 
divide the time axis into the identical segments t, and let 
us define tk = kt. The time derivative in (7) can be 
approximated by the forward, central or backward finite 
difference and the explicit or implicit scheme can be 
obtained [1], [4]. Since the explicit scheme suffers from 
late time oscillations, the implicit scheme was introduced 
to improve the stability of the MOT method. Although the 
implicit scheme is more stable than the explicit one, it still 
suffers from late time oscillations. Here, we focus on the 
implicit scheme with the central finite difference to demon-
strate the proposed technique for the stabilization of the 
MOT method. 

Approximating the time derivative in (7) by a finite 
difference, computing the scalar potential as an average at 
time instants tk and tk-1, and evaluating the incident electric 
field at the time instant tk-1/2, the MOT implicit scheme with 
the central finite difference is obtained 
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Equation (8) is solved by the method of moments [1]. 
The analyzed structure is approximated by planar triangu-

lar patches, and RWG functions are used to expand the 
spatial variation of the electric current. The unknown cur-
rent density J(r, t) can be expanded by the unknown 
current coefficient In(t), and the spatial basis function fn(r) 
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In (9), In(tk) represents the component of the surface cur-
rent normal to the nth edge for n = 1, …, NS. For the testing 
procedure, the RWG function fm(r) is used. The resultant 
implicit scheme with the central finite difference can be 
written in the following matrix form 

       1,2/1,,   kmkmknmn VI    (10) 

where [mn] denotes a matrix of time-invariant coeffi-
cients, [Vm,k-1/2] is a column vector related to the incident 
field, [m,k-1] is a column vector depending on the current 
coefficient from time t0 to tk-1. Detailed derivation is 
given in [4]. 

3. Stabilization of MOT Method by 
Averaging Schemes in Time 
The late time oscillations appear in computed tran-

sient responses as exponentially growing sinusoids whose 
frequencies are usually outside the spectrum of the excita-
tion. These sinusoids are caused by poles which are outside 
of the unit circle [5]. For the stabilization of the MOT 
method, two averaging schemes in time [7], [8] were 
proposed 
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where In,k is the current at the nth edge and at a time instant 
tk, and Ĩn.k is the average current at the nth edge and at 
a time instant tk. In order to obtain the average current Ĩn.k, 
the current coefficients at time tk and tk+1 have to be com-
puted. Obviously, the averaging schemes (11) and (12) are 
non-causal and reduce the speed of computation. Although 
these schemes are able to improve the stability of the MOT 
method, the improvement is not general [9], and the accu-
racy of the method is decreased [7]. 

From the viewpoint of the signal processing, the aver-
aging schemes represent filters of the 2nd order. The first 
one is the finite impulse response (FIR) filter, and the 
second one is the infinite impulse response (IIR) filter. The 
magnitude responses of these filters are depicted in Fig. 1. 
Evidently, low-pass filters are considered. Further, an 
example of an excitation signal (see Section 5) is depicted 
in Fig. 1. Obviously, both filter responses decrease fre-
quency. No part of the filter response is flat or constant in 
the region passing the spectrum of the excitation signal (the 
computed current in our case) without attenuation. On the 
other hand, the averaging schemes (11), (12) are able to 
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improve the stability of the MOT method thanks to the 
attenuation at higher frequencies. Attenuation of the exci-
tation signal to be passed is the disadvantage of the above 
schemes. 

 
Fig. 1. Magnitude responses of averaging schemes, FIR2O for 

(11) and IIR2O for (12). Excitation is an example of 
spectrum of excitation pulse (Section 5). 

4. Filter Design for Stabilization of 
MOT Method 
Summarizing Section 3, the requirements on a low 

pass filter for the elimination of the late time oscillation 
without decreasing the accuracy of the MOT method can 
be specified:  

1. In the region of the important part of the spectrum of 
the excitation signal; the transmission of a filter 
should be constant and equal to 1 (the pass-band of 
the filter). 

2. In the rest of the frequency band, the transmission of 
the filter should be close to zero (the stop-band of the 
filter). 

3. The filter should have a constant group delay (the 
requirement of the linear phase characteristics). 

To keep the time relations in the MOT method, the filter is 
evidently non-causal. Thus, the speed of the computation 
of the resultant MOT scheme is reduced. 

Due to the required linear phase characteristics, FIR 
filters are preferred. For their design, standard signal proc-
essing techniques [10] are hardly useable, because reaching 
low ripple in the pass band and a sufficient low transmis-
sion in the stop band is usually difficult. In addition, jumps 
in the phase characteristics, which occur for the magnitude 
characteristics of the filter close to zero, can be hardly 
avoided. These phase jumps can decrease the efficiency of 
the filter to eliminate the late time oscillations. Thus, either 
the combination of the standard filter design completed by 
the optimization algorithm, or the optimization algorithm 
alone, are appropriate to be used. 

4.1 FIR Filter Design 

There are two types of FIR filters [10]: the type I and 
the type II. These filters have odd and even impulse re-
sponse lengths. Since the type II results in the non-integer 
number of delay steps, we focus on the type I with the 
symmetric impulse response. This filter can be written in 
the following form 
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Here, x(n) and y(n) are the input signal and the output 
signal, respectively, b1… bN  are filter coefficients, and 
N–1 is equal to the order of the filter. 

We design the low-pass filter which is able to accom-
plish the requirements given at the beginning of this Sec-
tion. However, these requirements are theoretical ones, 
which cannot be accomplished in practice exactly. The best 
accuracy should be achieved for the given order of a filter. 
Actually, we intend to squeeze the filter magnitude char-
acteristics into the tolerance field (Fig. 2). Since the filter 
(13) is symmetrical, only the first (N+1)/2 coefficients have 
to be found. For their determination, an optimization algo-
rithm can be used. 

Let us denote the maximum frequency of the pass-
band by np and the minimum frequency of the stop-band 
by ns. Ideally, np should be equal to ns. However, this 
requirement is not practically accomplishable. Further, let 
us call the band between the frequencies np and ns the 
transition band (Fig. 2). In order to achieve the successful 
filter design, the following objective function is composed 
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Here, Fm concerns the magnitude criterion which is 
defined: 
- For the frequencies ni<0; np> 
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- For the frequencies ni<np; ns> 
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- For the frequencies ni<ns; 1> 
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In (14a), Fph concerns the phase criterion which can be 
defined for the frequencies ni<0; 1> 

       nicniphniph FangleNWF   2/1  (14e) 

where Nf is the number of points where the frequency re-
sponse Fc of the optimized filter is evaluated, Wp , Ws and 



RADIOENGINEERING, VOL. 19, NO. 2, JUNE 2010 293 

Wph are weights, and Rp and Rs are allowed ripples of the 
magnitude characteristics in the pass-band and stop-band 
(Fig. 2), respectively. The goal is to minimize the objective 
function (14a). 

 
Fig. 2. Definition of tolerance field for the magnitude 

characteristics of a filter. 

Although the group delay of the FIR filter of the type 
I is constant, the phase characteristics is checked in (14) to 
avoid jumps in the phase characteristics as already dis-
cussed. 

The values of the weights Wp, Ws depend mainly on 
the desired ripples in the pass and stop band, and the length 
of these bands. These weights should be the same order as 
the inverse values of the ripples in the pass and stop band. 
If the optimization is not successful for the chosen weights, 
a slight change of weights is appropriate. In case of the 
phase weight Wph, we proved Wph  20. The linear phase of 
the filter is preferable. By that choice the strong stress on 
the linear phase without phase jumps is given. 

For the optimization, a global optimization algorithm 
should be used. As a starting point of the optimization, the 
filter coefficients obtained by a standard filter design, or 
randomly chosen values of the filter can be used. In the rest 
of this paper, the attention is focused on the second case. 

After the optimization, the obtained filter coefficients 
are normalized by a value of the magnitude characteristics 
at the frequency, where the spectrum of the excitation sig-
nal reaches its maximum. By this normalization, the most 
of the energy of the excitation signal is transmitted by the 
filter at frequencies where the filter usually influences the 
transmitted signal at least. 

The reduction of the efficiency of the scheme  
(N-1)/2 times is the drawback of using the FIR filter (13) 
with the MOT method. 

In MOT scheme (8), the vector potential (2) depends 
on the space-time distribution of the current density, but 
the scalar potential (5) depends on the time integral of this 
quantity. The time integral is evaluated in the MOT scheme 
numerically at the same discrete time instant tk as the cur-
rent. The values of the vector potential can be computed 
straightforwardly from the filtered current. However, there 
are two possibilities in case of the scalar potential: filtering 
a current first and computing the time integral second, or 
filtering the time integral computed from the unfiltered 
current. In the examples given below, the second approach 
is used. 

5. Numerical Example I: Strip Dipole 
The approach discussed in the previous section is 

demonstrated on the analysis of the strip dipole 200 mm 
long and 1 mm wide. The body of the dipole is modeled by 
60 triangular elements. The length of the time step is 
t = 1.5Rmin/c = 11.235 ps, where Rmin is the smallest dis-
tance of the centers of all triangles. At the center, the di-
pole is exited by the Gaussian pulse [1] 

 
 

2

0
4

0

4
)(





 


tt

Te
Tc

UtU


  (15) 

where T is the width of the Gaussian pulse, t0 is the retar-
dation of its peak. For the analysis, the parameters of the 
Gaussian pulse were set to: U0 = 10 V, T = 0.66 ns and 
t0 = 1 ns. The time and frequency characteristics are de-
picted in Fig. 3. The important part of the spectrum of the 
excitation pulse is up to nG = 0.1. This spectrum is also 
depicted in Fig. 1 (denoted by Excitation). 

 
Fig. 3. a) Time and b) frequency characteristics of the 

excitation pulse. 

Let us design the FIR filter (13) before the transient 
analysis. Let us choose the 4th order filter, so N = 5. The 
state variables of our optimization task are the coefficients 
b1, b2, b3 varying from –1 to 1. Further, we set the follow-
ing parameters: np = nG = 0.1, ns=0.2, Rp = 0.001, 
Rs = 0.15, Nf = 251 (Fig. 2). We choose the following 
weights of the objective function (14): Wp = 1500, Ws = 5, 
and Wph = 20. For the optimization, PSO is used in its con-
ventional form [11]. A swarm consists of 30 agents, and 
the optimization runs for 100 iterations. The inertial weight 
is linearly decreasing from the value 0.9 in the initial itera-
tion to the value 0.4 in the last one. Both the personal 
scaling factor and the global one are set to 1.49. The space 
of variables in the state vector is surrounded by absorbing 
walls. 

During the optimization the objective function (14) 
varies from 4027.2 at the beginning to 330.8 at the end of 
the optimization process. After the optimization and the 
normalization of the obtained coefficients by a value of the 
magnitude characteristics at the lowest frequency (Fig. 3), 
the resultant coefficients are the following: 

b1= 0.061504653, b2= 0.249999775, b3 = 0.623009756.  
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The magnitude response is depicted in Fig. 4. Obviously, 
the characteristic is flat and then slowly falls down in the 
pass-band of the filter. 

The above optimization is quite simple because 3 
state variables are considered only, and the optimization 
was successful after the 1st run. In case of more state vari-
ables, the results after the first run of the optimization does 
not have to be sufficient, and the optimization has to be run 
several times. 

 
Fig. 4.  Magnitude response of the designed filter FIR4O, and 

the spectrum of the excitation pulse. 

Now, the transient analysis of the dipole is carried out 
by the MOT scheme (8) for the different situations: without 
any filter – denoted by WF, with averaging schemes (11) – 
denoted by FIR2O, with averaging schemes (12) – denoted 
by IIR2O, and with the designed filter – denoted by 
FIR4O. The results are depicted in Fig. 5. 

In order to investigate the influence of used filters on 
the accuracy of the computed responses, let us transform 
the MOT scheme (8) to the Z-domain, and substitute 
z = exp(–jTs) where Ts is a sampling period which is 
equal to the length of the time step in our case. Then, we 
compute the frequency response, and the obtained data are 
mapped by the inverse Fourier transform (IDFT) to the 
time domain. Fig. 5 shows that the computed transient 
response is unstable if a filter is not applied. However, if 
the averaging schemes (11), (12), or the designed filter 
were used, the responses are without late time oscillations. 
But only the response FIR4O fits very well the IDFT 
solution. 

6. Ripple in Pass Band 
The behavior of the magnitude characteristics of 

a filter in its pass band influences the accuracy of the com-
puted response. The characteristics should be as flat as 
possible and close (ideally equal) to 1. However, a flatter 
magnitude response in its pass band requires either a higher 
order of a filter, or a lower attenuation of the filter in its 
stop band. 

 

 
Fig. 5.  Computed transient responses at the center of 

symmetric strip dipole: a) the whole response, b) the 
enlarged detail, with time step t=1.5Rmin/c. 

Investigating the influence of the ripple in the filter 
pass band on the accuracy of the MOT scheme (8) and 
giving general conclusions is difficult because the accuracy 
depends on the number of time steps and dimensions of the 
analyzed structure mainly. Here, we can just demonstrate 
the investigation and roughly show an error which can be 
obtained. 

Let us analyze the strip dipole described in Section 5 
for the same length of the time step (t = 11.235 ps) and 
the same excitation pulse. Now, the responses are com-
puted up to 30 ns which correspond to 2 670 time steps. 
For this investigation, several filters of the 4th order for the 
ripples Rp = 0.001; 0.003, 0.005, 0.007 are designed by the 
optimization process described in Section 5; the weights, 
the normalized frequencies and the ripple in the stop band 
are the same, only the ripple in the pass band varies. 

The optimized and normalized filter coefficients are 
summarized in Tab. 1, and their magnitude responses are 
depicted in Fig. 6. Let us gradually use these filters with 
the MOT scheme (8) to stabilize it. For the comparison of 
the accuracy, the IDFT response computed in the previous 
Section is taken as the reference. The obtained current 
responses are depicted in Fig. 7. 
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Rp b1 b2 b3 
0.001 -0.061504653 0.249999775 0.623009756 
0.003 -0.056212841 0.249989842 0.612445997 
0.005 -0.051009737 0.249993651 0.602032171 
0.007 -0.045646193 0.249868170 0.591556047 

Tab. 1.  Coefficients of optimized filters for the different 
ripples in the pass band of the filter. 

 
Fig. 6.  Magnitude response of the designed filters for 

different ripples. 

 
Fig. 7.  Computed transient responses at the center of 

symmetric strip dipole computed with filters of Tab. 1. 

 
Fig. 8.  Relative error of responses from Fig. 7.  

It is difficult to distinguish differences among the re-
sponses. Thus, the relative error (Fig. 8) between the IDFT 
response and the others was computed in local extremes of 
responses where largest differences appear. Fig. 8 shows 
that the accuracy of the response computed with the filter 
with the ripple Rp = 0.001 is very good (relative error up to 
1 %). Even the accuracy of the response computed with the 
filter with the ripple Rp = 0.003 is good (both for late times 
– large number of time steps). However, the accuracy of 
the responses computed with the filter with the ripples 
Rp = 0.005 and Rp = 0.007 is good for early times only 
(small number of time steps). 

7. Choosing Order of Filter 
Although the designed filter (Section 5) successfully 

suppressed the late time oscillation, there is no guarantee to 
cover all situations since the magnitude of responses within 
the stop-band exhibit low attenuation. When using a high 
order filter, the speed of computation of the MOT scheme 
(8) is significantly reduced. Thus, the following steps are 
proposed to proceed: 

1. Prepare a set of filters before the computation; 

2. Run the analysis and do not use a filter until the late 
time oscillations appear; 

3. If the oscillations appear, use the prepared set of 
filters for suppressing the oscillations from the low 
order to the higher one, until the filter is not able to 
suppress the oscillations; 

4. If the oscillations appear, do not compute the whole 
response from the beginning again, but just from the 
time when the oscillations have started. 

The prepared set of filters should consider an important 
part of the spectrum of the excitation signal. Here, several 
sets of 4th to 8th order filters were designed by PSO and 
are published in the appendix of the paper. 

The proposed technique is demonstrated by the analy-
sis of the planar dipole described in Section 5. The dipole 
is excited by the same excitation pulse, however the length 
of the time step is smaller now t=Rmin/c. The length of the 
time step strongly influences the stability [4], but a simple 
rule for determining its optimal value is not available. 
Since the length of the time step is 2/3 times smaller, the 
maximum frequency of the excitation signal is also 2/3 
times smaller, thus, nG = 0.066. From the appendix, the 
set of filters with the closest highest maximum frequency 
of the pass-band by np = 0.07 is chosen. The ripple in the 
pass band is up to 0.001 for all these filters. 

The computed responses are depicted in Fig. 9. The 
late time oscillation at the response computed by the MOT 
scheme (8) without filtering (denoted by WF) starts at 
about 1.5 ns. Since this time, the response is computed by 
the MOT scheme using the 4th order filter (denoted by 
WF+F4O – the red line). Again, the late time oscillations 
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appear at about 1.7 ns. From this time, the response is 
computed by the MOT scheme using the 6th order filter 
(denoted by WF+F4O+F6O – the blue line). Again, the late 
time oscillations appear at about 3 ns. From this time, the 
response is computed by MOT scheme using the 8th order 
filter (denoted by WF+F4O+F6O+F8O – green line). The 
transient response is steady. 

 

 
Fig. 9. Computed transient responses at the center of 

symmetric strip dipole by a set of filters. a) the whole 
response, b) the enlarged detail. The length of the time 
step is t=Rmin/c. 

8. Numerical Example II: 
Sierpinski Gasket Dipole Antenna 
The approach proposed in the previous section is veri-

fied by the analysis of a more complicated antenna – the 
Sierpinski gasket dipole antenna of the 2nd iteration (Fig. 
10) [12]. This antenna belongs to the class of multiband 
antennas whose transient response is long. 

For the analysis, the body of the antenna is modeled 
by 670 triangular elements. The length of the time step is 
t = 1.5Rmin/c = 11.597 ps. The antenna is excited at its 
center by the harmonic signal modulated by the Gaussian 
pulse 

 
 

 tfe
Tc

UtU
tt

T
0

4

0 2cos
4

)(

2

0








 

  . (16) 

Here, f0 is the center frequency of the harmonic signal and 
other symbols were explained at (15). For the analysis, the 
parameters of the Gaussian pulse modulated by the har-
monic signal were set as follows: U0 = 10 V, T = 1.8 ns, 
t0 = 1.3 ns, and f0 = 2 GHz. The time and frequency char-
acteristics are depicted in Fig. 11. 

 
Fig. 10. Sierpinski gasket dipole antenna of the 2nd iteration. 

 
Fig. 11. a) Time and b) frequency characteristics of the excita-

tion pulse for the Sierpinski gasket dipole antenna. 

The Sierpinski gasket dipole antenna is analyzed by 
the MOT scheme (8) following the steps 1 to 4 proposed in 
Section 7. Since the important part of the spectrum of the 
excitation pulse is up to nG=0.08 (Fig. 11), the set of fil-
ters from the appendix with the closet highest maximum 
frequency of the pass-band by np = 0.1 is chosen. 

Let us run the analysis by the MOT scheme without 
filtering. The late time oscillations start at about 6 ns (the 
response denoted by WF in Fig. 12a). From that time, the 
response is computed by the MOT scheme using the 4th 
order filter (denoted by WF+F4O). Obviously, the transient 
response is steady. 

Since the computed response is long, the end of the 
obtained steady response is compared with the IDFT solu-
tion (IDFT solution was obtained in the same way like for 
the strip dipole) for the time 20 to 30 ns. Fig. 12b shows 
that the obtained response fits the IDFT solution very well. 
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Fig.12. Computed transient responses at the center of the Sier-

pinski gasket dipole antenna excited by the harmonic 
signal modulated by the Gaussian pulse: a) the whole 
response, b) the enlarged detail and the comparison 
with the IDFT solution. 

9. Conclusion 
In this paper, the accuracy of the filtering technique 

for the stabilization of the MOT method was improved, and 
the procedure for the efficient stabilization of the MOT 
method by a set of filters was proposed and verified. 

The decreased efficiency of the MOT method is 
a drawback of the proposed filtering technique. However, 
the proposed filtering can be easily implemented to the 
existing MOT codes. Thus, this technique can be combined 
with other techniques for improving stability of the MOT 
method, and used when they fail. 
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Appendix 

The filter coefficients for the stabilization of the MOT 
scheme are given here. These filters of the 4th, 6th, and 8th 
order were designed, according to the procedure described 
in Section 4 and demonstrated in Section 5. Filters were 
designed for the following maximum frequency of the pass 
band np: 0.07, 0.10, 0.13, 0.16 and the minimum fre-
quency of the stop band ns: 0.17, 0.20, 0.25, 0.32. We 
were aimed to design filters with the ripple Rp = 0.001 in 
the pass band, and Rs = 0.15 in the stop band. The weights 
used for the objective function (14) are summarized in 
Tab. A.1. 
 

p 0.07 0.10 0.13 0.16 
Wp 2000 1500 1500 2000 
Ws 3 5 5 5 
Wph 20 20 20 20 

Tab. A.1. Weights used for the for the optimization procedure. 

For the design of filters, the PSO was used and filters 
were gradually designed from lower to higher values of the 
maximum frequency of the pass band np. The optimiza-
tion algorithm was run for each filter several times. How-
ever, the desired ripple in the pass band was not reached 
for all filters with a sufficient attenuation in their stop 
bands. Thus, during the design procedure the ripple in the 
pass band was increased about 0.001 if in the previous 
step, for the given maximum frequency of the pass band 
np and the given order of a filter, the desired ripple in the 
pass band was not reached. The used ripples in the pass  
band for the filter design are summarized in Tab. A. 2. The 
ripple in the stop band was not changed (Rs = 0.15). 
 

p/ filter of 4th order 6th order 8th order 
0.07 0.001 0.001 0.001 
0.10 0.001 0.001 0.001 
0.13 0.001 0.001 0.002 
0.16 0.001 0.002 0.003 

Tab. A.2. Ripple in the pass band used for the filter design. 

Filter coefficients are summarized in Tab. A.3 to 5. 
The ripple reached in the pass band is denoted by Rpr. The 
magnitude characteristics of filters are depicted in 
Figs. A.1 to A.3.  
 
 

p 0.07 0.10 0.13 0.16 
Rpr 0.0010 0.0010 0.0010 0.0012 
b1 -0.058134707 -0.061534002 -0.063899795 -0.066256406 
b2 0.249970711 0.250119071 0.250087896 0.249852398 
b3 0.616826011 0.623307049 0.628004752 0.632410475 

Tab. A.3. Coefficients of optimized filters of the 4th order. 

 

p 0.07 0.10 0.13 0.16 
Rpr 0.0010 0.0010 0.0023 0.0031 
b1 -0.058811300 -0.060475575 -0.044147340 -0.034438692 
b2 0.068887944 0.064716068 0.020434698 -0.005035407 
b3 0.259792836 0.262940365 0.284479895 0.280221987 
b4 0.460761033 0.465712241 0.477965531 0.517007669 

Tab. A.4. Coefficients of optimized filters of the 6th order. 
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p 0.07 0.10 0.13 0.16 
Rpr 0.0010 0.0029 0.0034 0.0028 
b1 -0.052583009 -0.044835032 -0.009698974 0.009939816 
b2 0.011516538 -0.003897174 -0.048957761 -0.070567830 
b3 0.118865900 0.111392843 0.066635338 0.040062981 
b4 0.235163785 0.250434974 0.271814994 0.268795975 
b5 0.374360183 0.373308793 0.439412806 0.502042874 

Tab. A.5. Coefficients of optimized filters of the 8th order. 

 
Fig. A.1. Magnitude characteristics of the designed filters of the 

4th order. 

 
Fig. A.2. Magnitude characteristics of the designed filters of the 

6th order. 

 
Fig. A.3. Magnitude characteristics of the designed filters of the 

8th order. 
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