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Abstract. The paper deals with efficiency comparison of 
two global evolutionary optimization methods implemented 
in MATLAB. Attention is turned to an elitist Non-domina-
ted Sorting Genetic Algorithm (NSGA-II) and a novel 
multi-objective Particle Swarm Optimization (PSO). 

The performance of optimizers is compared on three 
different test functions and on a cavity resonator synthesis. 
The microwave resonator is modeled using the Finite 
Element Method (FEM). The hit rate and the quality of the 
Pareto front distribution are classified. 
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1. Introduction 
When designing microwave components, analytical 

design formulae are not available usually, and therefore, 
numerical methods have to be used. Without deeper 
knowledge of the dependency of component parameters on 
state variables, the manual design becomes difficult. In 
order to find the optimal solution automatically and effec-
tively, a proper optimization method has to be used. 

According to the number of requested objectives, 
optimizations are divided into single-objective ones and 
multi-objective ones. In case of the single-objective opti-
mization, there is usually a single optimal solution. In case 
of the multi-objective optimization (MOOP), some objec-
tives may be conflicting: when approaching one criterion, 
other criteria are receding. Then, a single optimal solution 
can be hardly determined without knowledge of the opti-
mized problem. 

Merging all objectives into the single-objective func-
tion [1] is one of potential solutions. However, the prefer-
ences of each objective have to be fixed by proper setting 
of weighting coefficients of partial criteria in the aggre-
gating objective function. Further, the functional values of 
the partial objective functions have to be normalized, 
which is quite problematic without knowledge about the 
profile of the optimization problem in the objective space. 

Alternatively, a set of solutions can be selected as 
a result. The resultant set of solutions is called the Pareto 
optimal set (front). At the end of the optimization process, 
the designer can select a single solution from the Pareto set 
considering preferences in the objectives. 

Deb [2, Ch. 2, p. 28] describes the Pareto front using 
the term of the domination (and the non-domination). The 
solution x1 is dominated, if there is a solution x2 meeting: 

 The solution x2 is not worse than the solution x1 in all 
the objectives; 

 The solution x2 is strictly better in one objective at 
least. 

The set of the solutions, which are not dominated by any 
other solution, is called the Pareto optimal set. 

Several multi-objective evolutionary algorithms 
(MOEA) were developed and compared [2], [3]–[5]. In [9], 
authors compare almost 30 variants of the multi-objective 
particle swarm optimization and try to summarize basic 
concepts used there. 

This paper compares a novel multi-objective Particle 
Swarm Optimization (PSO) with a slightly modified Non-
dominated Sorting Genetic Algorithm (NSGA-II). 

In Section 2, optimization methods investigated in 
this paper are briefly described. In Section 3, efficiency of 
investigated optimization methods is tested using three 
different testing functions and a cavity resonator synthesis 
problem. Section 4 concludes the paper. 

2. Optimization Methods 
In this section, a binary coded genetic algorithm and 

particle swarm optimization are briefly described. Empha-
sis is placed on differences between single-objective and 
multi-objective optimizations. 

2.1 Binary Coded Genetic Algorithm 

The genetic algorithm was proposed by Holland [6]. 
The algorithm consists in an evolution of binary coded 
chromosomes. Each set of state variables is encoded in one 
chromosome, the set of the chromosomes forms a genera-



370 V. ŠEDĚNKA, Z. RAIDA, CRITICAL COMPARISON OF MULTI-OBJECTIVE OPTIMIZATION METHODS … 

tion. In order to select best individuals as potential parents 
of a new generation, a classification has to be performed. 

The principle of the classification of the exploited 
Non-dominated Sorting Genetic Algorithm (NSGA-II) [7], 
[2, Ch. 6, p. 245] is depicted in Fig. 1. 

 
Fig. 1. The NSGA-II procedure [2, Ch. 6, p. 246]. 

In order to ensure elitism, both the parent population Pt and 
the offspring population Qt are sorted. 

A coarse classification is given by the non-dominated 
sorting, which produces multiple Pareto sets indexed F1, 
F2, … FN. The first Pareto set (the best one) is formed by 
non-dominated members of both populations Pt and Qt. 
Remaining (dominated) members constitute a starting 
group for the second Pareto set determination, etc. The 
index of the set forms the coarse criterion. 

Within the Pareto set, we cannot determine which 
solution is better from the fitness viewpoint. However, we 
can classify the density of solutions surrounding a particu-
lar solution by a crowding distance vector [2]. This classi-
fication is fine and ensures a better distribution of the 
optimal solutions at the same time. 

The procedure always guarantees that the worst dis-
tributed chromosome from the first front obtains a better 
classification than the best chromosome from the second 
front, etc. New parents are selected by the tournament 
selection. Afterwards, the cross-over and the mutation are 
performed as usual. 

A two-point crossover with the crossover probability 
80 % was used in the test. The probability of the mutation 
was set to 20 %. Each decision space variable was encoded 
into 10 bits. Due to the two-dimensional decision space, 
chromosomes were 20 bits long. 

Thanks to the discretized decision space, there is 
a nonzero chance that chromosomes can repeat. Thus, 
before each fitness values computation, the chromosome is 
compared with the previous ones. In case of identity, fit-
ness values are copied instead of repeating the already 
performed computation. 

Using 20 generations with the population size of 30 
individuals, the maximum number of fitness evaluations 
per iteration is 600. 

2.2 Particle Swarm Optimization 

The particle swarm optimization was introduced in 
1995 [8]. In the single-objective variant, each state variable 
forms one dimension of the decision space, in which the 
particles move. Each particle stores own personal best 
solution in a personal best (pbest) vector, the best solution 
of the swarm is stored in a global best (gbest) vector. The 
velocity vector of the particles is continuously updated 
according to these vectors and an inertial weight. 

The applied multi-objective PSO code was developed 
on the basis of a single-objective one. 

In NSGA-II, a single optimization run is needed in 
each iteration. In case of a multi-objective PSO, three 
optimization runs are executed in each iteration. Fortuna-
tely, the optimization runs share results mutually which 
decreases CPU-time demands. 

In the first run, the population is divided into multiple 
subswarms according to the number of objectives (a sub-
swarm per an objective). Each subswarm follows the 
optimal solution considering only the assigned objective. 
Along its way, the subswarm can reveal gbest values of all 
the objectives and can store them in the gbest storage, 
which is shared within the whole swarm (fully connected 
neighborhood topology [9]). The gbest storage system is 
depicted in Fig. 2. All single-objective optima f1

opt ... fk
opt 

are found at the end of the first run. 

 
Fig. 2. The gbest storage system. 

In the second step, all the objective function values are 
normalized and an aggregating function fc is created 
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n is the n-th fitness value of the k-th objective. The 

parameter kmax denotes the dimension of the objective 
space. Now, only kmax particles with initial positions 
f1

opt … fk
opt will search for a minimum of the aggregating 

function (in the second run). Due to the smaller number of 
particles, the second step takes much less time than the first 
one. The optimization is accelerated thanks to the results of 
the previous run. 

In the third step, Pareto optimal set is found. A poorer 
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view) form the initial set of the particles for the last PSO 
run, which minimizes the aggregating objective function fc 
again and makes the Pareto set denser. 

In order to prevent particles to leave the feasible 
solution space, some positions and velocity vectors are 
assigned fixedly. If the number of assigned particles 
exceeds the value 2S (S is the dimension of the decision 
space), 2S of them are placed into the corners of the deci-
sion space. The velocity vector is set to preserve edging to 
the center of the feasible area. Alternative remaining 
particles stay in random positions with random velocity 
vectors. 

If the number of assigned particles exceeds the value 
2(S + 1), then 2S of them are placed into the corners, 2S of 
them into the center of the edges and rest is again randomly 
distributed. Fig. 3 implies the situation in the two-dimen-
sional decision space (S = 2). 

 
Fig. 3.  Improvement of the initial position and the movement 

vector (“blue” for p ≥ 2S, “blue + red” for p ≥ 2(S+1)). 

Compared with NSGA-II, PSO has no mechanism to 
minimize unnecessary computations. The total number of 
computations is given by the optimization parameters in 
the first run, especially. For three test functions discussed 
in the next section, we used 2(S + 1) + 2 particles and 15 
cycles. For the resonator synthesis, 30 particles and 10 
cycles were used. The number of cycles in the second run 
was 20 for the test functions and 10 for the resonator 
synthesis. 

All three runs used invisible walls [11], time step was 
Δt = 0.4 s, c1 = 1.49, c2 = 1.49 and inertial weights decre-
ased from 0.9 to 0.5.  

In the first run, the whole decision space has to be 
explored hastily. Thus, the maximal initial velocity for the 
first run is set to 

 ss rangev  001.0max,  (2) 

where s is the current dimension of the decision space and 
ranges denotes the allowed value range in that dimension. 
The sign ± indicates two potential directions. 

The remaining runs improve the shape and the density 
of the Pareto front only. Thus, the maximal velocity vs,max 
is ten times smaller. The external archive [9], mutation 
operator [9] or any crowding operator were not used in 
case of this optimization. 

3. Results 
Efficiency of the above described methods was tested 

using three test functions. Then, the methods were applied 
to the microwave resonator optimization. 

Using test functions, each iteration can be executed 
relatively quickly. Therefore, the optimization can be run 
several times. We examined the performance over 1 000 
independent runs per each test function and each optimi-
zation method. In case of the resonator synthesis, only 100 
runs were used due to the higher CPU-time demands for 
the numerical analysis of the resonating structure. 

Results are described by various classifiers. The 
parameter PF denotes the number of resulting Pareto front 
members. The total number of fitness function calculations 
is given by the classifier FFC. The final hit rate HR is 
computed according to 

  %100
FFC

PF
HR . (3) 

The higher hit rate indicates that the less of time-consum-
ing fitness calculations were used to find the Pareto front 
position. The hit rates have to be compared within each 
solution only. In order to create a universal hit rate quanti-
fier, the relation between the size of the ideal Pareto area 
and the size of the feasible one should be considered. 

The equation for determining the quality of the front 
distribution was suggested by Deb [2, Ch. 8, p. 328]: 

 

avg
1

1
avg

1

dQd

ddd

M

m

e
m

Q

i
i

M

m

e
m












   (4) 

where M denotes the number of the extreme solutions and 
d e is the minimal Euclidean distance between the m-th ex-
treme solution and the rest Q solutions of the front, di is the 
consecutive Euclidean distance between i-th and (i + 1)-th 
solutions and davg is the average value of the Euclidean 
distances. 

The above equation assumes knowledge of the posi-
tions of extreme solutions. Since this information is not 
available in case of the resonator synthesis, sums of the 
distances d e are neglected. The Euclidean distances are 
replaced by crowding distances [2, Ch. 6, p. 248]. The 
quality coefficient is then 
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where ci is the crowding distance and cavg is the average 
value of crowding distances. The crowding distance is 
given by the fitness values of the previous solution and the 
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following one in the front. At the boundaries, we have no 
more points to evaluate di conventionally, so the distance 
between the previous solution and the current one is dou-
bled to compensate this problem. Lower deviations from 
the average distance denote a better distribution. The qual-
ity coefficient Cq becomes zero in the ideal case. 

Each set of results is described by a table containing 
the minimal values, the average values and the maximal 
values of above mentioned parameters acquired from all 
optimization runs. Any row does not need to be the repre-
sentation of a realizable optimization run. Actually, this 
situation is highly improbable thanks to equation (3). 

3.1 Test Functions 

Test functions are very useful, because their functi-
onal value is given by a computationally modest relation. 
Therefore, the feasible area in both the decision space and 
the objective space can be easily determined. Moreover, 
the accuracy of approaching the optimum by investigated 
methods can be evaluated. 
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Fig. 4. Feasible area in the decision space and the objective 

space for the first test function. Blue: feasible solu-
tions, black: Pareto optimal set. 

The first test function is described by a cantilever design 
problem [2]: 
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We try to minimize both f1 and f2. The feasible area in 
the decision space and the objective space is depicted in 
Fig. 4. Examples of an appropriate optimization are shown 
in Fig. 5 and 6. Both Pareto fronts in Fig. 5 and 6 are rela-
tively well distributed. 
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Fig. 5. Test function 1: NSGA-II solution example. Red: fin-

dings of the objective function value, black: Pareto 
optimal set. 

 

NSGA-II PF [-] FFC [-] HR [%] Q [-] 
Min 3.0 65.0 3.030 0.362 
Avg 50.5 207.2 24.366 0.739 
Max 139.0 369.0 49.438 1.412 

Tab. 1. Test function 1: statistics over 1 000 runs of NSGA-II. 
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Fig. 6. Test function 1: PSO solution example. Red: findings 

of the min(f1), blue: findings of the min(f2), green: 
findings of the min(fc), black: Pareto optimal set. 

 

PSO PF [-] FFC [-] HR [%] Q [-] 
Min 27.0 140.0 15.698 0.384 
Avg 57.9 188.8 30.697 0.747 
Max 102.0 244.0 47.739 1.201 

Tab. 2. Test function 1: statistics over 1 000 runs of the PSO. 

Obviously, PSO exhibits a better hit rate but the quality of 
the distribution is slightly worse compared to NSGA-II. 
Nevertheless, the chances of PSO to bring particles closer 
to the extreme solutions neglected in equation (5) are bet-
ter. This property would cause a better performance of the 
PSO in all researched parameters. 
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The diversity of the parameter FFC is given by the 
limited decision space. Outside the feasible area, no fitness 
value is calculated in order to speed-up the optimization. 

The second test function is defined in the 3D 
objective space. We try to minimize all partial objective 
functions [15]: 
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Fig. 7 depicts the feasible area in the decision space 
and the objective space. The extreme solutions at (0, –1), 
(1, 0) and (0, 1) can be observed. 
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Fig. 7. Feasible area in the decision space and the objective 

space for the second test function. Blue: feasible 
solutions, black: Pareto optimal set. 

Fig. 8 shows the well distributed front of the NSGA-
II. Red points (fitness function calculations) form a crucifix 
due to only two decision space variables. There is higher 
possibility that only one variable will change. 

Looking at the PSO decision space (Fig. 9), we can 
observe colored single-objective runs again. Due to the 
smaller front density, more non-optimal results were 
evaluated as Pareto front elements (points at x1 < 0). 
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Fig. 8. Test function 2: NSGA-II solution example. Red: fin-
dings of the objective function value, black: Pareto 
optimal set. 

 
 

NSGA-II PF [-] FFC [-] HR [%] Q [-] 
Min 30.0 90.0 17.630 0.435 
Avg 186.0 381.4 48.748 0.617 
Max 311.0 500.0 71.253 1.088 

Tab. 3. Test function 2: statistics over 1 000 runs of NSGA-II. 
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Fig. 9. Test function 2: PSO solution example. Red: findings 
of the min(f1), blue: findings of the min(f2), green: 
findings of the min(fc), black: Pareto optimal set. 
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PSO PF [-] FFC [-] HR [%] Q [-] 
Min 120.0 305.0 38.217 0.414 
Avg 198.5 355.4 55.645 0.541 
Max 282.0 399.0 71.392 0.723 

Tab. 4. Test function 2: statistics over 1 000 runs of the PSO. 

In case of the second test function, PSO exceeds 
NSGA-II both in HR and Q.  

The third test function is defined as follows [15]: 
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The feasible area and the ideal Pareto optimal set are 
depicted in Fig. 10. Due to the discontinuous Pareto front 
all the optimal solutions are very difficult to be found, 
especially two sections in the area x1  <–3, –1.5> and 
x2  <–3, 0>. 
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Fig. 10. Feasible area in the decision space and the objective 

space for the third test function. Blue: feasible solu-
tions, black: Pareto optimal set. 
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Fig. 11. Test function 3: NSGA-II solution example. Red: fin-

dings of the objective function value, black: Pareto 
optimal set. 

 

NSGA-II PF [-] FFC [-] HR [%] Q [-] 
Min 14.0 79.0 7.027 0.444 
Avg 63.1 264.4 24.398 0.857 
Max 169.0 467.0 64.211 1.394 

Tab. 5. Test function 3: statistics over 1 000 runs of NSGA-II. 
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Fig. 12. Test function 3: PSO solution example. Red: findings 

of the min(f1), blue: findings of the min(f2), green: 
findings of the min(fc), black: Pareto optimal set. 
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PSO PF [-] FFC [-] HR [%] Q [-] 
Min 17.0 157.0 8.265 0.554 
Avg 77.1 278.5 27.351 1.010 
Max 153.0 330.0 51.701 1.515 

Tab. 6. Test function 3: statistics over 1 000 runs of the PSO. 

The PSO exceeds NSGA-II in the hit rate only. 
Poorer quality of the PSO Pareto front is given by algo-
rithm itself if all minima of the single-objective functions 
are not found. 

The performance of both the optimizers is quite poor 
in this case (see Fig. 11 and Fig. 12). Pareto front members 
of two sections in the area x1  <–3, –1.5> and  
x2  <–3, 0> were not found. Instead, false detection 
around [0, 2] appears. 

3.2 Cavity Resonator Synthesis 

Efficiency of both the algorithms is also compared on 
a conflicting optimization of a cavity resonator. The opti-
mization is aimed to synthesize an air-filled cavity resona-
tor containing perfectly conducting walls. The resonator is 
longitudinally homogenous and symmetric across both axis 
of the cross-section. Thanks to the symmetry and longitu-
dinally homogeneity, state variables are created by x and y 
co-ordinates of the specified number of points and by the 
depth of the resonator. In the test optimization, three state 
points (7 state variables) are considered (see Fig. 13). 

In order to ensure conflicting objectives, the first cut-
off frequency and the total volume of the resonator are 
observed, and both the parameters are minimized. The cut-
off frequency is computed by the finite element method 
(FEM). Mesh density is given by a characteristic length 
[14], and therefore, the total number of the elements and 
the CPU-time demands should not vary significantly. 

The third objective is related to the total deviation of 
angles in the cross-section. In order to determine the angle 
deviation on one edge, the angle between adjacent walls is 
compared with 90° / 180° (0° denotes the infeasible solu-
tion). The total deviation is computed as a sum of the 
squares of the angle deviation. The right angle implies zero 
deviation and easier manufacturing, and therefore, we try 
to get as small total deviation as possible. 
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Fig. 13. Example structures 1 (left) and 2 (right). 

Both x and y coordinates of three points of the cross-
section (see Fig. 13) may vary from 5 mm to 60 mm. The 
depth of the resonator may vary from 5 mm to 80 mm. 

Fig. 13 depicts the geometry of two elements of the 
Pareto front. Related optimization parameters (decision 
space variables) and fitness values (objective space) are 
shown in Tab. 7. We can examine here the frequency / vo-
lume dependency and difference in total angle deviation. 
 
 

 Resonator 1 Resonator 2 
x1 [m] 0.0556 0.0260 
y1 [m] 0.0556 0.0101 
x2 [m] 0.0094 0.0260 
y2 [m] 0.0556 0.0260 
x3 [m] 0.0094 0.0101 
y3 [m] 0.0094 0.0101 
depth [m] 0.0740 0.0730 
frequency [GHz] 2.6690 3.7660 
volume [m3] 0.0008 0.0001 
angle deviation [(°)2] 0 16 200 

Tab. 7. Geometry and fitness parameters of the solutions in 
Fig. 13. 

Fig. 14 and Fig. 15 show selected results just in the 
objective space (since the decision space is 7-dimensional). 
Related statistics are shown in Tab. 8 and Tab. 9. We 
added here the total CPU time required for the optimization 
as a parameter t. 
 
 

NSGA-II PF [-] FFC [-] HR [%] Q [-] t [s] 
Min 49.0 253.0 10.891 0.513 131.1 
Avg 86.3 463.5 18.706 0.804 271.6 
Max 143.0 514.0 34.387 1.087 564.3 

Tab. 8. Optimization of the resonator: statistics over 100 runs 
of the NSGA-II. 

 

PSO PF [-] FFC [-] HR [%] Q [-] t [s] 
Min 56.0 332.0 16.868 0.473 115.5 
Avg 137.4 392.6 34.747 0.675 189.6 
Max 210.0 461.0 48.724 1.139 297.0 

Tab. 9. Optimization of the resonator: statistics over 100 runs 
of the PSO. 

Due to the relatively different number of fitness 
computations, the only comparable results were selected to 
exclude the possibility that relative good hit ratio in PSO is 
caused by a smaller FFC number. Thus, values with FFC 
from 410 to 435 were compared only (see Tab. 10). 
 
 

NSGA-II PF [-] FFC [-] HR [%] Q [-] t [s] 
Min 49.0 411.0 11.264 0.756 202.4 
Avg 79.5 424.6 18.794 0.932 253.0 
Max 114.0 435.0 27.737 1.087 297.9 

 
 

PSO PF [-] FFC [-] HR [%] Q [-] t [s] 
Min 124.0 412.0 30.097 0.480 141.2 
Avg 166.6 420.8 39.577 0.635 202.5 
Max 210.0 435.0 48.724 0.820 278.4 

Tab. 10. Optimization of the resonator: statistics over 10 runs of 
the NSGA-II and 29 runs of the PSO. 

The FFC parameter is now nearly equal. Looking at 
the results, the hit ratio of the PSO is now even higher, so 
the influence of the smaller FFC of the PSO can be 
excluded. 
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Fig. 14. Optimization of the resonator: NSGA-II solution 

example. 20 generations, 30 individuals, Pcross = 80 %, 
Pmut = 20 %.Red: findings of the objective function 
value, black: Pareto optimal set. 
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Fig. 15. Optimization of the resonator: PSO solution example. 

1st run: 30 particles, 10 cycles; 2nd run: 3 particles, 10 
cycles; 3rd run: 41 particles, 3 cycles. 
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4. Conclusions 
Although the PSO is not a native multi-objective one, 

the novel multi-objective PSO outperforms NSGA-II al-
most in all the cases. Nevertheless, this may be caused by 
a not quite optimal setting of the optimization parameters. 

The PSO shows better ability to find the extreme so-
lutions. Customizing the optimization variables, the density 
of the final Pareto set can be chosen. However, their inac-
curate combination could produce worse distribution of the 
solutions. 

Thanks to the non-dominated sorting, NSGA-II needs 
less optimization parameters to set. It is an advantage in 
term of the service, but the preference for the proximity to 
the extreme solutions and the density of the Pareto set 
cannot be driven separately. 
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