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Abstract. Artificial Neural Networks (ANNs) gained 
importance on the RF microwave (MW) design area and 
behavioral modeling of MW components in the past few 
decades. This paper presents a cost effective neural net-
work (NN) approach to overcome design, modeling and 
optimization problems of an 180o ring hybrid coupler 
operating in C-Band. The proposed NN model is trained by 
data sets obtained from electromagnetic (EM) simulators 
and neural test results are compared with simulator find-
ings to determine the network accuracy. Moreover, neces-
sary trade-offs are applied to improve the networks’ per-
formance. Finally correlation factors, which are defined as 
comparison criteria between EM-simulator and proposed 
neural models, are calculated for each trade-off case.  
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1. Introduction 
EM-simulators are the design and optimization tools 

which include specific algorithms and mathematical 
methods dedicated to solve RF circuit problems. In recent 
decades, an ANN, knowledge-aided design (KAD), 
approach has been developed for the modeling and optimi-
zation of RF MW components. A neural model for a device 
or circuit can be established by using data sets which are 
acquired by measurement and simulation results, through 
a process called training. Once the network is trained, this 
network can be used for circuit design to provide instant 
answers for tasks it learned. Successful implementations of 
linear and nonlinear device turns neural applications into 
a research area for the modeling of various MW compo-
nents [1, 2], and MW circuit design [3, 4, 5]. Recent works 
have shown that NN can accurately model components, 
such as microstrip interconnects [1, 3], vias [3, 5], spiral 
inductors [4], FET devices [1, 6], power transistors and 
power amplifiers [7], coplanar waveguide components [3], 

packaging and interconnects [8], microstrip circuit design 
[9], MW filter design [10], etc.  

This paper discusses the neural modeling of an 180o 
RHC for efficient and robust behavioral estimations under 
necessary trade-offs. RHC design parameters are obtained 
by conformal mapping based approximation formulas. 
Then Ansoft Designer, which employs Method of 
Moments (MoM) as the EM problem solver, is used as 
EM-simulator to analyze and optimize the hybrid design. 
Subsequently EM-simulator data sets are utilized for estab-
lishing ANN. Finally neural modeling and simulator results 
are compared for each case. Both neural design and EM - 
ANN comparisons are simulated in MATLAB by 
a 2.33 GHz Intel Xenon x64 processor with 2.33 GHz, 
4.00 GB RAM. 

2. 180° Ring Hybrid Coupler Design 
A 3 dB, 180° Ring Hybrid Coupler, also called as the 

"rat-race coupler", is a high-power capable, four-port 
device, optimized to sum two in-phase combined signals 
with essentially no loss or to equally split an input signal 
with no resultant phase difference between outputs and 
inputs. The fourth port is match terminated. A ring hybrid 
has many applications in RF microwave world such as 
mixers, phase shifters, amplifiers, etc. Fig. 1 demonstrates 
an 180o ring hybrid coupler where detailed equations and 
operation process can be found in the literature [11]. 

 
Fig. 1. 180o Ring hybrid coupler. 
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The simplest and most effective way of representing 
MW components’ characteristic is the scattering parame-
ters commonly known as S-parameters. The effective di-
electric constant and characteristic impedance of a ring 
hybrid coupler, which is designed using the microstrip 
substrate, can be calculated using well-known conformal 
mapping based approximation methods such as Wheeler, 
Schneider or Hammerstad and Jensen [12, 13]. 

Wheeler Approximation: The analysis and synthesis 
equations are derived based on conformal mapping ap-
proximations of the dielectric boundary with parallel con-
ductor strips separated by a dielectric sheet [14]. 

The characteristic line impedance for wide microstrip 
which has width over depth ratio of (W/d > 3.3) can be 
expressed as: 
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The effective dielectric constant for wide strips which 
have width over depth ratio of (W/d > 1.3) is given as: 
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The characteristic impedance for narrow microstrip 
with (W/d ≤ 3.3) can be stated as: 

2
14 4 1 1 4

( , , ) ln 2 ln ln
2 1 22( 1)

O r
L r

r rr

d d
Z Wd

W W

  
   

                        

(5) 

The effective dielectric constant for narrow microstrip 
with (W/d ≤ 3) depending on the characteristic impedance 
is given as following equation.  
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The effective dielectric constant which is independent 
of the characteristic impedance, for narrow microstrip 
(W/d ≤ 1.3) is given as; 

 
2

1

2eff

r
r

A

A B

      
  (7) 

where   21
ln 8 ( )

32

d W
A

W d
   
 

  (8) 

and   11 1 4
ln ln

2 1 2
r

r r

B
 
  

 
     

.  (9) 

Schneider Approximation: In this approach, effec-
tive dielectric constant and the characteristic impedance 
formulas are obtained by rational function approximation 
with accuracy of ±2.5% for 0 ≤ W/d ≤ 10 which is the 
range of importance for most engineering applications 
[15]. 
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Hammerstad Approximation: The characteristic 
impedance and effective dielectric constant equations pro-
vides errors at least less than those caused by physical 
tolerances and is better than 0.01% for W/d ≤ 1 and 0.03% 
for W/d ≤ 1000 [16]. 
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where u = W/d and η0 =120π. 

In this work, the mathematical approximations are 
employed to analyze the various transmission line charac-
teristics and these analysis results are inserted in RHC 
synthesis process. Mathematically obtained design pa-
rameters are utilized and some tuning optimizations are 
applied through EM-simulator for accurate design. The 
simulations are repeated for a variety of substrate permit-
tivity and height, ring radius and operating frequency 
values.  

3. Artificial Neural Networks (ANNs) 
ANNs are information processing systems, which are 

utilized to learn the input-output relationship characteristics 
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of the device under consideration. The ANNs design is 
inspired from the human brain’s ability to learn from 
observations. NNs must be first trained to model electrical 
behavior of linear and nonlinear complex components or 
systems. These trained neural models can be used to 
design, model and optimize the focused device by provid-
ing fast simulation answers compared with computationally 
loaded numerical solutions, or toughly obtained analytical 
and limited experimental results [17]. The ANN architec-
tures and learning algorithms are the most important 
factors for developing neural models. The selected archi-
tecture and algorithm vary depending on the focused 
problem. The multilayer perceptron neural networks 
(MLPNNs) offer limited complexity and common 
approximation capabilities. Thus they are the most widely 
used NN architectures [18, 19]. In this study, MLPNN 
models with feed-forward network architectures and vari-
ous training algorithms are utilized to solve the modeling 
problem of passive microwave devices, which are stripline 
and microstrip line type ring hybrid couplers.  

3.1 Multilayer Perceptron Neural Networks 
(MLPNNs) Models 

MLPNNs consist of an input layer, one or more hid-
den layers of computation nodes, and an output layer. The 
input signal propagates through the network in a forward 
direction, on a layer-by-layer basis. MLPNNs have been 
applied successfully to solve some difficult and diverse 
problems by training them in a supervised manner with 
a highly popular algorithm known as the error back-propa-
gation algorithm [20]. Fig. 2 represents the MLPNN 
architecture. 

 
Fig. 2.  MLPNN architecture. 

Neural models can be constructed to estimate the lin-
ear and nonlinear devices’ behavior. In this study, the gen-
erated ANN is applied to behavioral modeling of a linear 
ring hybrid coupler. Input parameters of the ring hybrid are 
defined as simulation frequency, ring hybrid radius, sub-
strate height, and permittivity. Then scattering parameters 

such as S11, S12, S13, and S14 present the device response. 
Sample data generated using EM simulations will be used 
in training process.  

Once NN is trained, then the neural model can be 
used for predicting the output values corresponding to 
input variables. In NN testing stage, an independent set of 
input-output samples, called testing data which covers the 
whole definition space and equally distributed over the 
regression surface between training data, is used to test the 
neural model accuracy. When the network outputs are 
continuous functions of the inputs, modeling problem is 
known as regression or function approximation, which is 
the most common case in microwave design area. 

 
Fig. 3.  ANN illustration of the discussed modeling problem. 

Fig. 3 represents the proposed neural model for the 
microstrip line type ring hybrid coupler modeling problem, 
which is relatively complex compared with single input 
modeling problems. The network outputs are the ring cou-
pler S-parameters S11, S12, S13, S14, which clearly demon-
strate the fundamental characteristics of a symmetrical MW 
device. The model inputs are taken as dielectric substrate 
height d, dielectric substrate permittivity ε, simulation 
frequency range f, ring hybrid coupler radius rad.  

3.2 Backpropagation Training Algorithms 

Standard backpropagation is a gradient descent algo-
rithm, as is the Widrow-Hoff learning rule, in which the 
network weights are moved along the negative of the gra-
dient of the performance function. Properly trained back-
propagation networks tend to give reasonable answers 
when presented with inputs that they have never seen. 
Typically, a new input leads to an output similar to the 
correct output for input vectors used in training that are 
similar to the new input being presented. This generaliza-
tion property makes it possible to train a network on 
a representative set of input/target pairs and get good 
results without training the network on all possible 
input/output pairs. Once the network weights and biases 
are initialized, it is ready for training.  

Levenberg-Marquardt (LM) training algorithm is 
a least-squares estimation method based on the maximum 
neighborhood idea. LM presents adequate characteristics in 
convergence time and ability to handle small networks. 
The preeminent aspects of Gauss-Newton technique and 
steepest-descent method are combined in this algorithm 
without many of their limitations. The error function can be 
expressed as below [21]. 
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where g(w) is the function containing individual error 
terms, ydi is the desired value of the output neuron i, and yi 
is the actual output of that neuron. It is presumed that, g(w) 
and its Jacobian Jg matrix are known at point w. Jacobian 
matrix contains the first derivatives of the network errors 
with respect to biases and weights. The weight vector w is 
calculated while the error function is minimized. The sub-
sequent weight vector wk+1 can be derived from the pre-
ceding weight vector wk as given below. 

 1k k kw w w      (20) 

and   1( ( ))( )T T
k g k g gw J g w J J I       (21) 

where k is the number of iterations, Jg is the Jacobian 
matrix of g(wk) which is computed by taking derivative of 
g(wk) with respect to wk, λ is the Marquardt parameter and 
I is the identity matrix. 

Conjugate Gradient of Polak-Ribière (CGP) 
training algorithm updates the weight and bias values ac-
cording to conjugate gradient backpropagation proposed by 
Polak-Ribière, on condition that, network weights, inputs 
and transfer functions have derivative functions. In this 
algorithm, the line search is used to locate the minimum 
point and the search direction is computed from the new 
gradient in subsequent iterations. The search direction in 
each iteration can be determined by updating the weight 
vector [22]. 
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Gradient Descent (GD) training algorithm is a first-
order optimization tool which finds the local minimum of 
the function using gradient descent. This line search mini-
mization procedure smoothen the descent direction in the 
steepest descent method. The weights and biases are up-
dated in the direction of the negative gradient of the per-
formance function [23].  

Conjugate Gradient of Fletcher-Reeves (CGF) 
training algorithm updates weight and bias values by the 
Fletcher-Reeves conjugate gradient formulas [24]. This 
algorithm employs the norm squared of the previous gradi-
ent and the norm squared of the current gradient to perform 
the update procedure and evaluate the weight and bias 
values [24]. 

Scaled Conjugate Gradient (SCG) training algo-
rithm combines the model thrust region approach used in 

LM. SCG offers avoiding time consuming line search 
process, in contrast to conventional conjugate scaled algo-
rithms which require line search in all iterations. This line 
search is computationally expensive, because it requires 
that the network response to all training inputs to be com-
puted several times for each search [25]. 

Resilient Propagation (RP) training algorithm pro-
vides faster convergence than other algorithms and elimi-
nates harmful effects of the magnitudes of the partial de-
rivatives. Then the RP algorithm determines the direction 
of the weight update by using the sign of the derivative and 
determines the size of the weight change by a separate 
update value. The magnitude of the derivative has no effect 
on the weight update [26].   

4. Simulation Results 
MLPNN architectures are trained with various back-

propagation algorithms for stripline and microstrip line 
types of hybrid couplers’ data. Then, neural model im-
provement is accomplished by altering training algorithms 
and network input parameters of substrate dielectric and 
height, coupler radius and frequency. Moreover target 
performance and epoch numbers of the training process are 
varied to find the optimum architecture. The accuracy and 
reliability of the generated networks are measured using 
the Pearson Product-Moment correlation coefficient γ 
which is selected as success criteria between NN and 
simulator results.  
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where xi is the simulator scattering parameter value, yi is 
the MLPNN computed value, x is the simulated sample 
mean and y is the MLPNN computed sample mean.  

The design parameters of the microstrip ring hybrid 
coupler is defined in the range of 2.33 ≤ εr ≤ 10.2,  
0.875 mm ≤ d≤ 1.578 mm, 5.7029 mm ≤ rad ≤ 10.243 mm, 
3 GHz ≤ fsim ≤ 8 GHz, 4.425 GHz ≤ fcen ≤ 6.775 GHz. Ad-
ditionally, stripline type ring hybrid coupler has design 
parameters ranges of 2.33 ≤ εr ≤ 10.2, 0.875 mm≤ d ≤ 
1.578 mm, 3.797 mm ≤ rad ≤ 11.295 mm, 3 GHz ≤ fsim ≤ 
7 GHz, 4.16 GHz ≤ fcen ≤ 6.3 GHz. The simulation fre-
quency sweep is defined by fsim and center frequencies of 
hybrid couplers are given by fcen. 

Fig. 4 illustrates the instantaneous scattering results of 
the stripline type coupler modeled by a LM trained net-
work which utilizes 1000 sample pairs in training and test 
processes where equal number of pairs is taken for both 
processes. Each sample pair includes S-parameters vs. 
equally distributed frequency points between 2-7 GHz 
under fixed stripline substrate properties such as rad, d and 
ε. Thus the NN model includes single input with four out-
put neurons. Resonance frequency and 3dB coupling points 
can be monitored to determine the ring hybrid operating 
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frequency band. The applied NN to solve the stripline 
example is a single input, multiple outputs network with 
one hidden layer. Adequate neurons are employed in the 
hidden layer to find optimum results. As shown in Tab. 1, 
the results obtained by NN are high enough to accurately 
model the stripline hybrid coupler.  
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Fig. 4. Stripline type RHC (fcen = 4.16 GHz) scattering 

parameters: EM simulator vs. NN model. 
 

Scattering Parameters Correlation factor  
for single hidden layer 

S11 0.9998 
S12 0.9999 
S13 0.9999 
S14 0.9999 

Tab. 1.  Correlation factors for stripline hybrid design. 

This concludes that a single hidden layered NN 
architecture with Levenberg-Marquardt training algorithm 
is adequate to solve the single input and multiple outputs 
modeling problem as a consequence of input layer simplic-
ity. Subsequent step in modeling problem will be more 
complicated for NN utilization. A microstrip line type RHC 
modeling is aimed to be solved by the neural model. This 
neural implementation can be used as generalized design, 
modeling and optimization tool, when broadened network 
input parameters such as hybrid radius, operating fre-
quency and substrate properties are utilized. Multiple input 
variations adapt the proposed network to a modeling and 
optimization tool which can be used to find scattering val-
ues of any RHC design that falls into training range. Thus 
the necessary coarse and fine tunings for design optimiza-
tion can be achieved by parametric neural model without 
having to redo the fullwave EM-simulator.  

In microstrip case, four input parameters are altered in 
order to reach the optimum output results. Number of 
hidden layers and neurons in these layers are adjusted in 
accordance with applied learning algorithms to achieve the 
best test results. The overall data set includes 2500 data 
samples which cover the whole input parameters range. 
Test set contains half the data samples and these testing 
samples are equally distributed over the regression surface 
between the training samples. Neural models are tested 
with varying number of training and test sets. Initial trials 
have shown that as the data sets are increased proposed 

networks can handle modeling problem with higher accu-
racy. Then the number of hidden layers is enhanced and 
multi-hidden layered network is trained by the same train-
ing set until aimed results are acquired. All networks are 
tested with the same sets. According to the computed 
results, trade-offs such as correlation coefficients and 
computation time between single hidden layered and multi 
hidden layered networks are done. Variations on number of 
neurons in hidden layers, epoch number and target per-
formance are also applied to obtain detailed trade-offs for 
NN applications. Training algorithms are compared by the 
criteria’s of converging speed and accuracy, memory needs 
and correlation results.  

Fig. 5 – 7 represent the neural modeling results of 
a microstrip RHC operating at center frequency of 
4526 MHz. Networks comprising single to four hidden 
layers are analyzed to reach the finest scattering estima-
tions. Two and three layered networks offer more adequate 
results though single and four hidden layered networks 
present underfitting and overfitting respectively. Con-
structed NNs are trained with the Levenberg–Marquardt 
algorithm which converges fast and provides accurate 
results. However it requires a lot of memory to run, thus 
additional NN simulations with other training algorithms 
are employed to find optimal training algorithm and im-
prove NN estimations for the proposed modeling problem. 
Fig. 5 illustrates the return loss parameter of the modeled 
coupler.  
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Fig. 5.  S11 results: EM simulator vs. NN results for LM 

(fcen = 4526 MHz). 
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Fig. 6. S12 results: EM simulator vs. NN results for LM 

(fcen = 4526 MHz). 
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Additionally, Fig. 6 and Fig. 7 represent the through 
port scattering parameters. 
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Fig. 7. S14 results: EM simulator vs. NN results for LM 

(fcen = 4526 MHz). 

Number of neurons in each hidden layer is varied for 
the improvement of LM training algorithm results. Finally 
tuned networks with highest accuracies are presented in 
Tab.2 compliant with the correlation factors (CF).   
 

Scattering 
Parameters 

CF for 
single 
hidden 

layered NN 

CF for  
two  

hidden 
layered NN 

CF for 
three 

hidden 
layered NN 

CF for  
four  

hidden 
layered NN 

S11 0.9787 0.9963 0.9964 0.9717 
S12 0.9711 0.9992 0.9991 0.9895 
S13 0.9920 0.9988 0.9988 0.9925 
S14 0.9567 0.9996 0.9973 0.9355 

Tab. 2. Correlation factors for MLPNN trained by LM 
algorithm. 

Furthermore, correlation factors are computed among 
successful learning algorithms which applied to solve the 
modeling problem and grouped in Tab. 3 according to 
highest correlation factor values. 
 

Scattering 
Parameters LM CGP GD CGF SCG RP 

S11 0.9963 0.9963 0.9662 0.9954 0.9962 0.9962 
S12 0.9992 0.9988 0.9824 0.9954 0.9983 0.9983 
S13 0.9988 0.9988 0.9879 0.9986 0.9988 0.9988 
S14 0.9996 0.9974 0.9695 0.9771 0.9937 0.9946 

Tab. 3.  Comparison of correlation factors for successful 
algorithms. 

Fig. 8 – 10 illustrate the comparison of NN training 
algorithms for the RHC operating at the center frequency 
of 5269 MHz. The plots are zoomed into the frequency 
range of 4 GHz – 6.5 GHz in order to demonstrate the 
small neural solution variations. The modeled RHC pro-
vides adequate return loss results as shown in Fig. 8.  

Fig. 8 and Fig. 10 clearly show the estimation capa-
bilities of NNs trained by algorithms achieving highly 
successful approximations. 

As shown Fig. 10 in Levenberg – Marquardt, resilient 
backpropagation, and conjugate gradient of Polak – Ribière 
algorithms offer the preeminent estimation values among 
other successful algorithms for the RHC modeling 

problem. However LM algorithm converges much slower 
than others for relatively large networks. 
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Fig. 8.  Comparison of training algorithms for S11  

(fcen =  5269 MHz). 
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Fig. 9.  Comparison of training algorithms for S12  

(fcen = 5269 MHz). 

4 4.5 5 5.5 6 6.5
-45

-40

-35

-30

-25

-20

Frequency [GHz]

S
13

 [
dB

]

S13 results: Training algorithms comparison

 

 

EM Sim
LM

GD

SCG

CGF

RP
CGP

 
Fig. 10.  Comparison of training algorithms for S13  

(fcen = 5269 MHz) 

In Tab. 4, the training algorithms with less successive 
approximation values are compared. The quasi-Newton 
method, gradient descent with momentum approach, one 
step secant and variable learning rate backpropagation 
training algorithms provide relatively appalling correlation 
factors. Tab. 5 and 6 illustrate the computation time meas-
urements for training algorithms under the same activation 
functions, number of hidden layers and neurons are given. 



RADIOENGINEERING, VOL. 19, NO. 4, DECEMBER 2010 651 

In each model measurement, 3 hidden layers with 20 neu-
rons are trained for 2000 epochs. The four inputs and four 
outputs network with many hidden layers causes the LM 
algorithm training time increment.   
 

Scattering 
Parameters 

BFG GDM GDX OSS 

S11 0.7574 0.9787 0.8191 0.8557 
S12 0.9254 0.9759 0.9072 0.9113 
S13 0.9474 0.9934 0.9857 0.9807 
S14 0.9257 0.9460 0.7574 0.5897 

Tab. 4.  Correlation factors for relatively low successful 
algorithms. 

 

LM CGP GD CGF SCG RP 
4231.25 109.937 65.343 43.296 122.328 65.187 

Tab. 5.  Computation time in seconds for successful 
algorithms. 

 

BFG GDM GDX OSS 
2739.062 62.796 92.046 157.968 

Tab. 6.  Computation time in seconds for less successful 
algorithms. 

5. Conclusions 
In this work, the MLPNNs are employed as a design, 

modeling and optimization tool for C-Band ring hybrid 
couplers. Well-known conformal mapping based mathe-
matical approximations mentioned in Section 2 are ex-
ploited for the theoretical component design phase. Then 
the theoretical foundations are simulated and some tunings 
are applied using the EM-simulator to generate necessary 
training and test data sets. A parametric neural model is 
stated using ring hybrid radius, operating frequency points, 
substrate properties such as dielectric permittivity and 
thickness. Optimum networks are generated by varying 
number of hidden layers, neurons in these layers and 
training algorithms. Finally, obtained networks are used for 
modeling and optimization such that once the ANN is 
trained for given input data ranges then the parametric 
model can be used to find scattering values of any design 
that falls into given range. Thus the fine and coarse tunings 
for design optimization, which is initially done by EM-
simulator, can be succeeded by ANN evolvement within 
simulation range.    

As the number of input parameters is increased, suffi-
cient number of new hidden layers must be added to the 
network architecture to overcome the problem complexity. 
However complex architectures with many hidden layers 
and neurons have a vital drawback of high computation 
time and memory need. Moreover the transfer functions of 
the hidden layer neurons are varied in order to achieve 
desired output values using accurate neural applications. 
These trade-offs must be done when the neural models are 
realized to solve microwave modeling problems. Time and 
memory requirements for both the fullwave EM-simulator 
and neural solutions must be compared to determine pre-
cise scattering parameters. The neural training algorithms 

are also evaluated to optimize the network outputs. Con-
vergence speed, memory needs and accuracy are the main 
assessment constraints of the training algorithms. Thus the 
most accurate and fast converging algorithms are selected 
to train the networks under adequate neuron and hidden 
layer numbers condition.  

Consequently, neural solutions of RF microwave 
design and optimization problems offer many advantages 
comparing to EM-simulators which require high level 
processors to overcome the background calculations’ com-
plexity. Improved time consumption in numeric computa-
tions and cost are the main drawbacks in EM-simulators. 
Thus parametric neural models can be applied for design 
optimization inside training range without having to redo 
the time and processor consuming fullwave EM-simulator 
analyses. This may force neural solutions as an alternative 
design, modeling and optimization way of microwave 
devices under the adequate selection of training algorithms 
and network architectures. 
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