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Abstract. This paper deals with the analysis of Automatic 
Speech Recognition (ASR) suitable for usage within noisy 
environment and suggests optimum configuration under 
various noisy conditions. The behavior of standard param-
eterization techniques was analyzed from the viewpoint of 
robustness against background noise. It was done for Mel-
frequency cepstral coefficients (MFCC), Perceptual linear 
predictive (PLP) coefficients, and their modified forms 
combining main blocks of PLP and MFCC. The second 
part is devoted to the analysis and contribution of modified 
techniques containing frequency-domain noise suppression 
and voice activity detection. The above-mentioned tech-
niques were tested with signals in real noisy environment 
within Czech digit recognition task and AURORA data-
bases. Finally, the contribution of special VAD selective 
training and MLLR adaptation of acoustic models were 
studied for various signal features. 
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1. Introduction 
Automatic speech recognition (ASR) systems are cur-

rently used in many applications in our everyday life. Due 
to the rapid development in this field all over the world we 
can see many systems and devices with voice input and 
output, e.g. automated information systems, personal dic-
tation systems converting speech to text, systems for auto-
mated transcription of audio/video recordings or radio or 
TV on-line inputs, devices in cars controlled by voice, etc. 
Such a wide application area brings frequent usage of such 
systems also in noisy environment, so the issue of noise 
robustness represents the main topic of many research 
activities.  

While current ASR systems working in noiseless 
environment can usually achieve very high accuracy, they 
may fail notably in an environment with background noise 
[1-5]. The solutions which overcome such failure are based 
firstly on using noise-robust features for the representation 

of speech signal and secondly on special modeling which 
takes into account degradation of analyzed signal. The 
solutions based on proper feature extraction originate usu-
ally from auditory-based features, i.e. Mel-Frequency Cep-
stral Coefficients (MFCC) [6] and Perceptual Linear Pre-
diction (PLP) coefficients [7], which are most often used in 
the current ASR systems. Their performance in noisy envi-
ronment can be improved by noise suppression algorithms 
such as Spectral Subtraction (SS) [8-10], Wiener filtering, 
or Minimum mean square error short time spectral ampli-
tude estimator [11]. These methods are based on heuristic 
approaches so their performance under real conditions with 
highly non-stationary or unpredictable noise may be 
limited.  

Secondly, the noise robustness of ASR can be 
increased by noise compensating methods applied in the 
classification phase of speech recognition. Standardly used 
methods such as multi-condition training [12], HMM com-
position and decomposition [13], parallel model combina-
tion (PMC) [4], or simple retraining of acoustic models to 
target environment are based on a-priori knowledge of 
training data or particular assumptions on the noise reduc-
tion algorithm. These approaches can provide reasonable 
solution, but they need a large amount of matching or 
almost matching [14] training data to obtain proper target 
acoustic models. This extensive coverage of target envi-
ronment in training material increases the data collection 
expenses, and, moreover, full coverage of all conditions in 
real environment is not possible anyway. To overcome this 
problem, clean speech data can be mixed with independ-
ently collected noise recordings for off-line training to 
improve modeling of real noisy signal. But some real 
speech data from noisy environment need to be available in 
any case. The second group of these back-end techniques 
uses the adaptation of acoustic models to particular envi-
ronment on real noisy signals. Adaptation techniques are 
based on Maximum-Likelihood Linear Regression 
(MLLR) [15] or Maximum A Posteriori (MAP) adaptation 
[16] and they are usually applied to speaker adaptation, but 
the usage for the transformation of acoustic models to 
match environmental conditions is possible as well.  

This paper describes comprehensive experimental 
analysis of speech processing algorithm that combines the 
above-mentioned techniques to obtain efficient scheme for 
robust ASR. Attention is paid to the robustness of the pro-
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posed system against additive background noise while 
using standard methods. Firstly, the performance of stan-
dard auditory-based features in noisy environment with 
several minor modifications is analyzed. These techniques 
are then supplemented with noise suppression algorithm 
and voice activity detection to increase their noise robust-
ness. The advantage of using model adaptation based on 
MLLR algorithm together with robust front-end is also 
demonstrated. Such adaptation can provide satisfactory 
results especially in cases where only small portion of cost-
intensive noisy data is available [17]. Particular methods 
are tested in various conditions with main focus on car 
noise. 

2. Auditory Based Feature Extraction 
Currently, the most often used speech features for 

ASR are based on the short-term spectral amplitude carry-
ing principal information on speech on the basis of human 
perception. Due to the continuous character of speech and 
co-articulation, TRAP features based on longer temporal 
context are also used [5], [18]. Auditory-based processing 
of speech signal is typically applied within these tech-
niques, simulating human perception and smoothing the 
influence of speech variability for particular realizations 
(intra-speaker) and also different speakers (inter-speaker). 
Techniques lacking this auditory modeling are currently 
rather rare. 

2.1 MFCC and PLP Features 

As it is important for further discussion about noise 
robustness of studied features, the basic description of 
MFCC [6] and PLP [7] is presented, along with their 
principal block schemes in Fig. 1 and 2.  

 

Fig. 1. Block scheme of MFCC feature extraction.  

 
Fig. 2. Block scheme of PLP feature extraction.  

Generally, both methods are based on three similar 
processing blocks: firstly, basic short-time Fourier analysis 
which is the same for both methods, secondly, auditory-
based filter bank (FB), and, thirdly, cepstral coefficients 
computation. Both methods use principally similar auditory 
modeling based on Mel- or Bark-scale with non-linear 
frequency warping bringing similar contribution to recog-
nition results [19]. While the shapes of filters in FBs are 
slightly different, the widths and the number of filters are 
similar (22 bands for Mel-FB and 19 bands of Bark-FB for 
the sampling frequency of 16 kHz). PLP uses also EQLD 
block (Equal LouDness) modifying the spectrum on the 

basis of frequency sensitivity of human hearing [7] and 
IN2LD block (INtensity-TO-LouDness) changing spectral 
dynamics according to the power-law of hearing [20]. 
MFCC changes frequency sensitivity only on the basis of 
standard pre-emphasis before short-time Fourier transform. 
The most significant difference between these two tech-
niques lies in the final computation of cepstral coefficients. 
Autoregressive (AR) modeling is used in the case of PLP 
while MFCCs are computed directly using Discrete Cosine 
Transform (DCT) of the logarithmic auditory-based 
spectrum.  

Our earlier experiments as well as other published 
results have proved the advantage of using PLP in clean 
conditions while MFCC technique gives better results for 
increasing noise level. It can be explained generally by the 
lower robustness of used AR modeling in the computation 
of PLP cepstral coefficients against noise. A more detailed 
study of the noise robustness of these known features 
under different conditions is one of the goals of this study. 

2.2 Modified Auditory Based Features 

The above-mentioned similarity of principal blocks 
and their different particular properties lead to the idea of 
exchanging principal blocks of MFCC and PLP, e. g. in 
[20], [21], or [22] and analyze more precisely the contribu-
tion of each particular block, especially from the viewpoint 
of noise robustness. These modifications are discussed in 
the following section.  

The first modified method called RPLP (Revised 
PLP), was described in [20]. The computation algorithm 
follows MFCC computation where the DCT-based trans-
formation is replaced by AR modeling with additional 
decreasing of spectral dynamics using IN2LD block. The 
authors of this modification have presented the improve-
ment in the accuracy of ASR recognition based on this 
technique against using standard methods. The most 
important contribution of this method lies in double sup-
pression of spectral dynamics before LPC, however, FB 
band count, shape, and non-linearity scaling have rather 
minor effect on achieved accuracy as was shown in [19], 
[20], [23]. 

 

Fig. 3. Block scheme of RPLP feature extraction. 

MFLP (Mel-Frequency Linear Prediction cepstral 
coefficients) is a technique similar to RPLP, except for the 
fact that it does not contain the IN2LD block. Experi-
menting with these features should analyze the contribution 
of spectral dynamics decreasing before LPC computation 
as well as the effect of minor differences between PLP and 
MFCC-based FB setting. 

The last method that we call BFCC (Bark Frequency 
cepstral coefficients) uses filter bank from standard PLP, 
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but the cepstrum is then computed directly via DCT. This 
process combines the advantage of direct computing of the 
cepstrum with auditory-based processing of speech spec-
trum. The motivation for using DCT is to overcome fre-
quent failing of AR modeling of speech signal in the pres-
ence of noise. The PLP-like auditory based analysis applies 
both equal loudness correction and the application of 
power law.  

 

Fig. 4. Block scheme of MFLP feature extraction. 

    
Fig. 5. Block scheme of BFCC feature extraction.  

2.3 Summary of Analyzed Basic Features 

Many other feature variants have been studied and 
published, e.g. adjusting the nonlinear frequency scaling 
[19], using other filter-bank shapes [23], [24] or different 
number of bands in filter-bank [20], [25], etc. However, 
these approaches are not examined in this work, as it would 
bring several other optional parameters and exceed the 
scope of this work. Moreover, many of these particular 
changes often brought only minor changes in recognition 
accuracy. Finally, we are comparing the performance of 5 
above mentioned features with the following initial 
assumptions and knowledge:   

 MFCC is the most frequently used method with 
acceptable performance under various conditions.  

 PLP is a standard method giving very good results for 
the recognition under clean conditions as LPC analy-
sis is less noise robust than DFT (DCT). 

 RPLP is a technique similar to PLP. Experiments in 
[20] demonstrated the improvement of recognition 
accuracy against PLP under noisy conditions. 

 MFLP is a technique that, similarly to RPLP, applies 
Mel-FB processing with LP-based analysis, but it pre-
serves higher spectral dynamics of the signal. 

 BFCC features are complementary to MFLP and they 
should complete the analysis of the differences be-
tween DCT and LPC-based cepstral coefficients.  

2.4 Noise Robust Features 

The above-described feature extraction techniques 
were designed without special attention to the robustness 
against background noise. If speech is corrupted by back-
ground noise, achieved accuracy of an ASR using these 
features is usually much worse, so the elimination of this 

degradation must be solved by additional noise suppression 
technique. The inclusion of frequency-domain noise sup-
pression techniques into the above mentioned basic feature 
extraction procedures is suggested and described in the 
following section.  

Spectral subtraction (SS), which is one of the most 
commonly used noise suppression techniques, is frequently 
applied in many noise robust front-end processing schemes 
[26], [27]. It eliminates additive background noise, as it is 
based on the subtraction of an additive component in the 
spectral domain. The principle of this technique is simple 
and it usually provides satisfactory results. On the other 
hand, the level of noise suppression as well as possible 
distortion of cleaned speech depends strongly on proper 
estimation of magnitude spectrum of the background noise.  

Particular algorithms of spectral subtraction differ 
mainly in above-mentioned estimation procedure. Typi-
cally, the estimation is made from non-speech parts of the 
utterance detected by voice activity detector (VAD) [11] or 
by minimum statistics [28]. Iterative algorithm based on 
modified adaptive Wiener filtering [29], which we call 
extended spectral subtraction (ESS), is used in our feature 
extraction framework. This algorithm works without VAD 
and it can eliminate stationary or non-stationary noise with 
rather slow changes in characteristics. Further details de-
scribing these techniques can be found in [29]. 

All techniques mentioned above are based on spectral 
subtraction and they can be easily included into the feature 
extraction procedure. The subtraction in the frequency 
domain can be applied directly to the output of short-time 
DFT, which is typical usage (Fig. 6), or it can be placed 
after auditory-based FB, where the signal still has fre-
quency domain representation. Both variants of SS place-
ment give similar results [30], however, the position before 
FB seems to be generally more robust as the application of 
FB smoothes possible distortions after the application of 
SS within smoothing of short-time magnitude spectrum. 

 

Fig. 6. Inclusion of spectral subtraction into feature extrac-
tion.  

The paper presents a study of the influence of spectral 
subtraction for all above mentioned feature extraction 
techniques, as the effect of SS in particular features can 
differ due to different types of FB and cepstral analysis 
approaches. 

2.5 Front-end Robustness Analysis 

The main purpose of this article is to analyze the per-
formance of ASR from the viewpoint of noise robustness 
in various environmental conditions. All tests were per-
formed with recordings from real-world environment with 
various levels of noisy background. Firstly, experiments on 
small vocabulary speech recognition (Czech digits) were 
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conducted and secondly, the tests on AURORA3 databases 
were performed. Experimental setups for Czech digits 
recognition and for AURORA3 are described in the fol-
lowing section along with the results of experiments on 
noise robust features. 

2.5.1 Experimental Setup 

A speaker-independent connected Czech digit recog-
nizer was created using HTK Toolkit [31] with the fol-
lowing parameters: phoneme-based context independent 
acoustic modeling, 44 Czech monophone HMMs, model-
ing of short pause and silence, standard left-to-right 3-state 
structure without state skips (excepting short-pause model), 
32 mixtures, 3 streams for static, dynamic and acceleration 
features, simple loop grammar for particular digits. Context 
independent models of monophones were used in this part 
due to smaller amount of data in particular subsets for 
training more complex models.  

The recognizer uses loop grammar with 10 digits with 
the same probability of occurrence and with several pro-
nunciation variants. Despite performing rather simple rec-
ognition task with small vocabulary, the recognition of 
digits with possible repetitions and without any further 
restriction is a task where proper feature extraction can 
affect the target accuracy quite strongly.  

No additional word insertion penalty tuning was used 
within WER minimization and one common setup of the 
recognizer based on previous results was used within the 
experiments.  

General setup for feature extraction uses: 12 cepstral 
coefficients complemented by the energy in the form of 
static, dynamic and acceleration coefficients, 25 ms length 
of short-time frame, 10 ms frame step, the AR model used 
in LPC-based techniques of order 13. 

The studied features were computed by CtuCopy 
[32], created in our lab as an extension of HTK tool 
HCopy. This tool makes it possible to apply different 
parameterization settings in combination with noise sup-
pression techniques. The tool was used and firstly 
described in [26]. The current, updated version is now 
available for public use [32].  

The recognition results were analyzed standardly in 
terms of Word Error Rate (WER) and relative WER reduc-
tion (WERR) 
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where N means the total number of words in the test data-
set and S, D, I represent substituted, deleted and inserted 
words respectively. WERR is computed against defined 
baseline word error rate WERbase.  

2.5.2 Train and Test Datasets 

The performance of digit sequence recognizer was 
tested on the selections of Czech SPEECON database [33]. 
Same as other databases from this family, it contains 
16 kHz data recorded in various kinds of environment 
using more types of microphones, more than 550 speakers 
and 300 utterances per speaker with various content, i.e. 
phonetically rich sentences, digits, commands, application 
phrases, or spontaneous speech. The whole database was 
precisely revised and utterances containing mispronuncia-
tions or possible transcription inaccuracies were removed. 
This cleared corpus has been called ALL and all utterances 
in cleared corpus could be used for training of monophone 
HMMs. 

To test the recognition under various conditions, fur-
ther particular subsets have been created. The ALL set has 
been divided on the basis of different noise level according 
to the recording environment. While the CLEAN subset 
contains sessions recorded in offices and living rooms with 
relatively quiet background, the NOISY subset contains 
sessions collected in car and public places such as hall or 
open area. The OFFICE subset represents clean environment 
with very low level of background noise which is very 
typical for the usage of ASR applications. This subset 
contains approximately half of all sessions of the whole 
SPEECON database with usually very high SNR 
(> 20 dB). Generally, the real level of the background 
noise in particular subsets can vary significantly. The 
SNRs of utterances in particular subsets estimated during 
the database recording were analyzed, see Fig. 7 and it was 
observed that especially  NOISY subset contained highly 
disturbed utterances from different environments (car and 
public places) which caused bi-modality of SNR distribu-
tion for NOISY and ALL subsets. It means finally highly 
mis-matched conditions for the recognition in these sub-
sets. Training and testing data were then chosen within 
each subset. The amounts of speech material for the 
experiments in particular subsets are summarized in Tab. 1.  

a) ALL b) OFFICE 
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Fig. 7.  SNRs in SPEECON subsets. (Hatched graph: head-set 
microphone, grey graph: hands-free microphone).   
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Train Test 
Name 

[ses] [hours] [ses] [hours] 
ALL 531 141.7 59 0.63 

OFFICE 190 51.6 21 0.23 
CLEAN 220 59.7 25 0.26 
NOISY 273 71.7 30 0.32 

Tab. 1. Train and test subsets. 

The data from two channels with different noise level 
were used for our experiments, i.e. channel 0 (CS0) re-
corded by head-set microphone and channel 1 (CS1) re-
corded by the microphone from NOKIA mobile phone 
hands-free set [33]. Signals from channel CS1 contain 
higher level of noise, which is also demonstrated by the 
distribution of SNR for the training signals in Fig. 7a-d. 

2.5.3 Results of Czech Digits Recognition with Standard 
Features 

Particular techniques were compared within small vo-
cabulary ASR performed on the above mentioned data with 
various levels of background distortion. The models were 
trained on training data that correspond to the test subset. 

This experiment shows rather small robustness of 
features without spectral subtraction in real environment. 
The comparison of particular methods under various con-
ditions presented in Tab. 2 shows slight advantage of  PLP 
against MFCC in the case of cleaner speech signal (silent 
environment, higher microphone quality). On the other 
hand, the recognition with all training data leads to better 
results for MFCC, which makes it more suitable for general 
conditions, where the noise level is not known or in condi-
tions with changing noisy background. The parameteriza-
tion method which gives the best recognition performance 
is highlighted in Tab. 2. 
 

(a) MFCC PLP MFLP BFCC RPLP 

OFFICE 5.74 6.14 9.35 6.14 6.14

CLEAN 7.19 6.74 9.47 8.90 6.62

NOISY 13.98 18.97 16.47 19.95 11.84

AVG 8.97 10.62 11.76 11.66 8.20

ALL 14.53 13.94 13.57 13.48 10.37
 

(b) MFCC PLP MFLP BFCC RPLP 

OFFICE 9.48 10.68 14.02 12.15 10.41

CLEAN 10.73 9.93 13.36 12.21 9.47

NOISY 15.14 24.67 20.04 31.43 16.74

AVG 11.78 15.09 15.81 18.60 12.21

ALL 15.04 18.65 18.56 20.02 16.00

Tab. 2. Results of Czech digit recognition using head-set 
microphone (a) and hands-free set (b) for standard 
features. 

Compared to the standard methods, RPLP technique 
brings decrease in recognition error for noisy conditions. 
As the bold numbers in Tab. 2 demonstrate, this technique 
reaches the best recognition performance in all conditions 
which are supposed to contain higher level of background 
noise. MFLP and BFCC achieve higher error rates against 
standard methods in all conditions. In the case of a more 

distorted channel, RPLP method gives results similar to the 
best MFCC, while MFLP overcomes PLP in noisy envi-
ronment and BFCC gives the worst performance. 

2.5.4 Results of Czech Digits Recognition with Noise 
Robust Features  

To decrease the influence of noisy conditions, ESS 
was applied within the parameterization procedure. The 
resulting performance of digit recognition in various back-
grounds is shown in Tab. 3. 

The results show that the proposed front-end proc-
essing method can bring an improvement especially for 
NOISY subset with higher level of additive noise. In the 
case of PLP it gives 26.7% of WERR for NOISY subset and 
18.8% of WERR in average. We can observe that PLP can 
outperform MFCC after the application of ESS. On the 
other hand, rather small reduction of WER can be caused 
by the type of signals in this database, where not all of the 
recordings contain short starting non-speech part needed 
for proper initialization of ESS. Moreover, high improve-
ments cannot be expected by using ESS because the char-
acter of the distortion is not only additive, but the signal 
from real environment also contains some non-stationary 
noises and reverberation. Therefore, the contribution of the 
method varies highly in particular conditions, as ESS can 
suppress the noise just with slow non-stationary character. 
 

(a) MFCC PLP MFLP BFCC RPLP 

OFFICE 6.94 5.47 9.88 7.08 6.01

CLEAN 7.88 6.51 11.30 8.45 7.76

NOISY 11.40 13.09 17.36 16.30 11.67

AVG 8.74 8.62 12.85 10.61 8.48

ALL 11.70 11.75 14.63 14.58 11.52
 

(b) MFCC PLP MFLP BFCC RPLP 

OFFICE 10.41 11.48 12.15 14.29 11.21

CLEAN 10.96 11.19 12.10 13.58 10.84

NOISY 15.85 24.13 16.30 34.55 12.91

AVG 12.41 15.60 13.52 20.81 11.65

ALL 13.21 18.28 14.72 30.30 12.43

Tab. 3. Results of Czech digit recognition using head-set 
microphone (a) and hands-free set (b) for noise robust 
features using ESS. 

2.5.5 AURORA3 Experiments using Noise Robust 
Features 

Standardized experiments for the comparison of the 
proposed methods with other published ASR results were 
also performed using AURORA3 recognition test [34]. 
These tests use different recognition setup. Unlike the 
previous SPEECON tests, the database of spoken digits is 
used here for training and the recognizer is based on the 
models of whole words. 

Tab. 4 summarizes the results for 3 languages and 
various levels of matching in training and testing condi-
tions, i.e. well matched (WM), medium mismatch (MM), 
and high mismatch (HM). The average value (AVG) gives 
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overall recognition performance for the comparison against 
baseline results, and the bold number refers to the over-
coming of baseline results. Baseline results were achieved 
for standard MFCC coefficients without noise reduction 
and additional reference results were achieved also for 
parameterization based on ETSI ES 202 050 standard [36]. 
It uses two-stage speech enhancement algorithm and addi-
tional voice activity detection. As presented results analyze 
the contribution of ESS only, they are better comparable 
with standard MFCC. ETSI standard is therefore used as 
a reference in further experiments with noise reduction 
framework presented in the next section. 
 

 Spanish 

 baseline MFCC PLP MFLP BFCC RPLP ETSI 

WM 13.15 15.18 10.04 12.14 10.74 10.72 6.58

MM 26.26 33.68 28.59 33.96 29.83 24.32 13.27

HM 57.77 56.78 60.30 56.24 62.65 56.63 15.79

AVG 32.39 35.21 32.98 34.11 34.41 30.56 11.88
 

 Finnish 

 baseline MFCC PLP MFLP BFCC RPLP ETSI 

WM 9.61 8.09 6.56 5.16 9.76 6.44 2.52

MM 27.63 30.16 60.19 22.02 33.31 46.31 12.72

HM 68.94 51.84 64.66 62.01 77.42 59.72 18.83

AVG 35.39 30.03 43.80 29.73 40.16 37.49 11.36
 

 Danish 

 baseline MFCC PLP MFLP BFCC RPLP ETSI 

WM 22.20 17.04 18.30 18.37 18.52 17.50 15.87

MM 53.60 55.93 49.72 48.87 51.55 50.00 38.98

HM 68.10 59.21 69.24 58.66 79.27 65.20 37.81

AVG 47.97 44.06 45.75 41.97 49.78 44.23 30.89

Tab. 4. WER on Aurora3 for noise robust features using ESS. 

As these data mainly contain speech with additive car 
noise with small level of reverberation, the contribution of 
ESS noise reduction is evident. The results are good espe-
cially for WM conditions, where LPC based techniques 
with ESS have achieved significant improvement in com-
parison to the given baseline (24% WERR for PLP and 
Spanish, 46% WERR for MFLP and Finnish, 21% WERR 
for RPLP and Danish). 

3. Noise Robust Acoustic Modeling 
The techniques that solve noise robustness on the 

basis of acoustic modeling are discussed within this 
section. Generally, the case of matching the training data 
for target environment for particular SPEECON subsets as 
it was used in the previous section can also be taken for 
noise specific modeling. Nevertheless, we will focus on 
another technique in the following section: selective 
matched training using VAD.  

3.1 VAD in Feature Extraction 

When speech is disturbed by an environmental back-
ground, non-speech parts of such signal can be influenced 

much more strongly. Such distortion can be the source of 
many faults in the result of ASR systems though different 
noise suppression methods can improve the accuracy of 
target ASR. Typically, disturbed non-speech segments can 
often be recognized as speech and it yields to increasing 
WER during the recognition or bad tuning of acoustic 
models during the training phase. Concerning this fact, 
VAD algorithm is therefore used as a frame dropping tech-
nique to remove potentially bad non-speech segments from 
the processed signal. 

As the recognizer works with the cepstral representa-
tion of the signal, we use these features also for the VAD 
algorithm. It is based on smoothed differential cepstrum 
computation followed by cumulative distance computation, 
thresholding and final smoothing of binary output. Accept-
able accuracy and possible usage of pre-computed differ-
ential cepstrum coefficients (used in ASR) represent big 
advantages of this approach, which is described in more 
detail in [35].  

Depending on the conditions, the VAD algorithm can 
remove the non-speech parts of the signal, but occasionally 
also some frames with speech activity. This serious dis-
advantage can strongly influence the accuracy of target 
recognition. On the other hand, this problem of removing 
some speech frames seems to be acceptable during the 
training phase and further presented experimental results 
proved its utility.  

Regarding this behavior, so called VAD selective 
training was used within the following experiments i.e. 
VAD-based frame dropping algorithm was used only in the 
training phase of ASR procedure. The motivation to apply 
this algorithm is in the removing of pauses and possibly 
strongly distorted parts of speech, which contributes to 
more accurate phone modeling. Despite removing silence 
frames within the parameterization of training subset, some 
parts of data with non-speech character are not removed by 
the detector due to used smoothing algorithm in VAD post-
processing. These frames are used for training the models 
of non-speech elements. 

3.2 Experiments with Noise Robust Acoustic 
Modeling 

This section presents the results of experiments with 
improved acoustic modeling for increasing the robustness 
of ASR. BFCC features were excluded from these experi-
ments, as their presence led to strongly unsatisfactory 
results in the previous experiments. The first tests use the 
same data as the previously presented feature-oriented 
experiments while the contribution of adaptation tech-
niques is analyzed on another database recorded in car 
environment. 

3.2.1 VAD Based Selective Training 

Tab. 5 shows the obtained results of Czech digit 
recognition after proposed VAD selective training, which 
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significantly improved the recognition performance. VAD 
was used also for testing. Compared to the recognition 
without VAD, the results give even more than 50% 
WERR, mainly for highly disturbed conditions. 
 

(a) MFCC PLP MFLP RPLP 

OFFICE 3.74 4.14 4.81 3.87

CLEAN 4.22 4.79 5.59 4.00

NOISY 9.53 11.22 12.73 11.49

AVG 5.83 6.72 7.71 6.45

ALL 7.27 7.27 9.83 7.54
 

(b) MFCC PLP MFLP RPLP 

OFFICE 5.08 6.01 5.74 5.34

CLEAN 5.83 6.16 6.51 5.48

NOISY 10.77 12.06 10.95 10.33

AVG 7.23 8.08 7.73 7.05

ALL 8.64 9.14 9.00 7.91

Tab. 5. Results of Czech digit recognition using head-set 
microphone (a) and hands-free set (b) for noise robust 
features using ESS and VAD selective training and 
testing. 

As it was mentioned before, the result of VAD was 
smoothed to avoid false short detections. Despite such 
correction, the resulting speech could be affected by the 
detection and some part of speech could be removed. 
Therefore VAD detection was used only for training, not 
for testing in the following experiment.  

The results in Tab. 6 show further improvement of 
recognition score and WER reaches up to 2% for clean 
environment. 
 

(a) MFCC PLP MFLP RPLP 

OFFICE 3.47 2.00 4.41 3.60

CLEAN 3.54 2.85 4.91 3.65

NOISY 8.64 10.15 10.77 8.73

AVG 5.22 5.00 6.70 5.33

ALL 6.22 6.31 9.10 6.12
 

(b) MFCC PLP MFLP RPLP 

OFFICE 4.81 5.07 6.54 5.07

CLEAN 4.57 4.79 6.96 5.37

NOISY 7.66 10.95 9.88 7.03

AVG 5.68 6.94 7.79 5.82

ALL 6.99 7.72 8.18 6.44

Tab. 6. Results of Czech digit recognition using head-set 
microphone (a) and hands-free set (b) for noise robust 
features using ESS and VAD selective training and 
only ESS for testing. 

3.2.2 VAD Selective Training in AURORA3 Test 

The above-mentioned results with VAD selective 
training were confirmed again by AURORA3 test. It can 
be observed in Tab. 7 that the achieved results outperform 
in strong majority not only the AURORA baseline, but also 
the ETSI standard [36] (bold numbers).  

The comparison of proposed methods shows their be-
havior within rather simple noise reduction scheme. The 

results of proposed techniques outperform ETSI standard 
in many cases, though ETSI standard is based on multiple 
noise reduction algorithms. VAD detection was used also 
in the testing phase, as the smoothing algorithm together 
with modeling of longer speech parts (words) in AURORA 
tests gives more precise results than in case of the phoneme 
modeling (previous experiments). The resulting error rate 
decreased by almost 40% for well matched Danish and by 
20% for highly mismatched Danish against ETSI. The 
contribution was significant especially for LPC based fea-
tures as PLP or RPLP. 
 

Spanish 

 baseline MFCC PLP MFLP RPLP ETSI 

WM 13.15 4.77 5.10 6.76 4.45 6.58

MM 26.26 11.35 13.08 14.51 11.25 13.27

HM 57.77 18.34 17.49 20.83 18.52 15.79

AVG 32.39 11.49 11.89 14.03 11.41 11.88
 

Finnish 

 baseline MFCC PLP MFLP RPLP ETSI 

WM 9.61 4.60 3.42 3.46 3.51 2.52

MM 27.63 21.00 21.75 18.74 19.08 12.72

HM 68.94 23.82 31.55 18.27 29.82 18.83

AVG 35.39 16.47 18.91 13.49 17.47 11.36
 

Danish 

 baseline MFCC PLP MFLP RPLP ETSI 

WM 22.20 9.83 10.26 10.96 9.81 15.87

MM 53.60 29.59 30.82 30.40 28.84 38.98

HM 68.10 33.74 31.93 30.50 30.55 37.81

AVG 47.97 24.39 24.34 23.95 23.07 30.89

Tab. 7. WER on Aurora3 with ESS and with selective VAD 
training. 

4. Acoustic Model Adaptation in a Car 
Environment 
While the robustness in terms of sensitivity to various 

conditions was analyzed in previous experiments, this 
section describes the contribution of analyzed framework 
within environmental adaptation. For this purpose, data 
from more specific conditions of car environment were 
used commonly with different recognition setup. 

4.1 MLLR and Regression Classes 

The MLLR technique estimates and applies affine 
transform of the HMM parameters in terms of likelihood 
maximization [15]. This algorithm is advantageous espe-
cially in situations where small amount of adaptation data 
is available, as it can share the transforms among several 
models. This is exactly the case of the continuously 
changing environmental characteristics, e.g. in automotive 
applications. Based on our previous experiments and other 
published work we use the simplest case, where only 
Gaussian means in HMMs are transformed while other 
parameters stay unchanged. 
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Global adaptation is the simplest and basic approach 
in MLLR which uses only one transform for all HMMs. It 
makes it possible to collect the adaptation database without 
special demands, e.g. on a sufficient number of occur-
rences of each modeled element. When more data is avail-
able for the adaptation, more transforms can be estimated 
independently to characterize more precisely the influence 
of noisy background on different groups of speech ele-
ments divided into particular regression classes. We use the 
division into speech and non-speech class, as it is the sim-
plest form of categorization representing different nature of 
the signals within these groups and preserving low 
requirements to the adaptation data.  

If adaptation data are available before the recognition, 
static adaptation can be performed and the data are proc-
essed in one block. This is very useful when general 
speaker independent system is to be adapted to certain 
background conditions without the adaptation to any 
speaker. Within this study, the general system is adapted to 
noisy car environment and the results are compared with 
standard retraining based on Baum-Welch re-estimation. 

4.2 Experimental Setup 

This section compares proposed parameterization 
techniques in robust speech recognition task in a car with 
environmental adaptation. As there is more available data 
for training for given conditions, the ASR system could be 
extended in comparison to previous parts. The following 
section describes the different setup. 

4.2.1 Triphone Based Czech Digit Recognizer 

The experiments on MLLR were performed on small 
vocabulary speaker independent ASR task with the 
following specification: Czech digit sequence recognizer 
based on tools from the HTK toolkit [31] (HDecode), 
HMMs of cross-word triphones, Gaussian functions with 
32 mixtures, 25 ms segmentation with 10 ms step, and 
simple unigram language model with uniform probability 
and several pronunciation variants. This setting was 
selected with the intention to run simple system, that 
provides adaptation procedure and that can be simply 
expanded to more complex speech recognition system in 
further work. 

4.2.2 Car Speech Database  

The database involves recordings of 700 speakers 
captured by two channels with original sampling frequency 
44.1 kHz, which were for our purposes down- sampled to 
16 kHz for compatibility with other experiments. Finally, 
we have 2 sets of data from 700 speakers in FAR-TALK 
channel collected by AKG far-talk microphone which is 
strongly favorable for in-car application and 329 speakers 
in CLOSE-TALK channel collected by Sennheiser head-

set microphone (a source of high quality speech signal)1. 
Data from both channels (far-talk/close-talk) were divided 
into basic retraining subset (500/242 speakers), adaptation 
subset (100/42) and test subset (100/42). This division 
preserved similar distribution of car classes in particular 
subsets as it significantly influenced the noise level.  

All sessions were recorded under three different con-
ditions: standing car with engine off (acronym OFF), 
standing car with engine on (ON) and running car (DRV). 
Our experiments were realized with the purpose of ana-
lyzing the behavior of ASR within these three significantly 
different environmental conditions. 

4.2.3 Adaptation Procedure  

The overall adaptation procedure started with baseline 
acoustic models trained on head-set microphone channel 
from CLEAN subset of SPEECON database. As these gen-
eral models would be very inefficient when they are used 
in car environment, they were retrained on car specific data 
to fit in-car environment. It avoids the need of training the 
models from scratch; only one single-pass retraining step is 
performed. It was performed on OFF part of train subset by 
standard Baum-Welch re-estimation. The models are then 
adjusted from the viewpoint of environmental conditions, 
not for channel characteristics within the following adapta-
tion procedure.  

The adaptation was in all instances performed on sig-
nals from particular adaptation subsets (OFF, ON, DRV). 
All available data of each subset were used, but the adap-
tation with smaller amount of data is also possible. The 
recognition performance with adapted HMM models was 
analyzed for all the above-mentioned features with and 
without applied ESS noise suppression. 

4.2.4 Results of MLLR Adaptation  

In almost all cases in Tab. 8 and Tab. 9, using MLLR 
outperforms the baseline system and also the system with 
retrained models by single-pass retraining. The contribu-
tion of this method can be observed mainly in highly dis-
torted background (DRV). The results correspond with the 
experiments mentioned above. Similarly to clean condi-
tions, applying MLLR leads to higher performance of PLP-
like parameterization and the RPLP technique gives the 
best overall accuracy, even though it loses its performance 
in clean environment (OFF) compared to standard meth-
ods. Though the results for MFLP are comparable to stan-
dard methods in clean conditions, it achieves higher error 
rate in noisy environment similarly to the above-noted 
experiments. 

Achieved improvement is significant especially for 
DRV conditions where we can observe 87.1% WERR with 
respect to the baseline (WER from 13.78 to 1.77) or 73.9% 
WERR related to results after single pass retraining (WER 

                                                           
1
 The remaining part of CZKCC database involves the Peiker far-talk 

microphone recordings. 
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from 6.78 to 1.77) for the case of RPLP without ESS. For 
RPLP with used ESS, 84.8% WERR with respect to the 
baseline (WER from 10.26 to 1.56) and 73.1% WERR 
related to results after single pass retraining (WER from 
5.79 to 1.56) were achieved. 

5. Conclusions 
This paper presents a comprehensive analysis of sev-

eral approaches of robust speech recognition for different 
feature extraction techniques and procedures of HMM 
training or adaptation respectively. Large amount of ex-
periments were realized and the main focus was put on the 
performance of studied techniques in strongly disturbed 
real environment. The following points summarize the 
main results of this study. 

 Modified feature extraction algorithms were studied 
to analyze the effect of particular computation steps 
of signal processing. Especially the influence of 
speech dynamics suppression within LPC and human-
like signal processing served as the inspiration for the 
proposed techniques. 

 The comparison of standard methods showed the sup-
posed higher robustness of MFCC against PLP in 
noisy environment (14% vs. 19% WER). The PLP 
technique performed better in clean conditions with-
out background distortion (7.2% vs. 6.7%) or cleaned 
by additional noise suppression techniques (6.9% vs. 
5.5%). However, the accuracy was still worse for PLP 
under highly disturbed conditions. 

 Concerning the proposed modified methods, the best 
overall score comparable to standard methods was 
observed for the RPLP technique. Lower performance 

of MFLP- and BFCC-based recognition shows posi-
tive effect of the suppression of speech dynamics for 
LP-based techniques. 

 Additional noise reduction schema concerning ex-
tended spectral subtraction and VAD selective train-
ing increased recognition performance significantly 
and the results outperformed also 2-stage ETSI stan-
dard in many cases. Error rate reduction by 20 to 40% 
was achieved within AURORA3 tests.  

 The MLLR technique significantly contributes to high 
improvement of recognition accuracy even in strongly 
distorted environment of a driven car. LP-based tech-
niques supplemented by noise reduction method out-
perform even MFCC (e.g. 1.8% against 1.1% of avg. 
WER for recognition without ESS). 

The study showed the advantage of using LP-based 
feature extraction algorithms within ASR with less dis-
turbed background, both due to clean environmental con-
ditions and due to using noise suppression methods. 
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