
RADIOENGINEERING, VOL. 20, NO. 1, APRIL 2011 85 

Optimization of Wavelet-Based De-noising in MRI 

Karel BARTUSEK 1, Jiri PRINOSIL 2, Zdenek SMEKAL 2 

1Inst. of Scientific Instruments, Academy of Sciences of the Czech Rep., Kralovopolska 147, Brno, 612 00, Czech Rep. 
2Faculty of Elect. Engineering and Communication, Brno Univ. of Technology, Purkynova 118, 612 00 Brno, Czech Rep. 

bar@isibrno.cz,  prinosil@feec.vutbr.cz,  smekal@feec.vutbr.cz 

 
Abstract. In the paper, a method for MR image enhance-
ment using the wavelet analysis is described. The wavelet 
analysis is concentrated on the influence of threshold level 
and mother wavelet choices on the resultant MR image. 
The influence is expressed by the measurement and mutual 
comparison of three MT image parameters: signal to noise 
ratio, image contrast, and linear slope edge approxima-
tion. Unlike most standard methods working exclusively 
with the MR image magnitude, in our case both the MR 
image magnitude and the MR image phase were used in 
the enhancement process. Some recommendations are 
mentioned in conclusion, such as how to use a combination 
of mother wavelets with threshold levels for various types 
of MR images. 
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1. Introduction 
The time of MRI (Magnetic Resonance Imaging) is 

limited by patients’ comfort, non-stabilities and artifacts of 
the tomography system, and physical limits during 
dynamical applications as heart imaging or functional MRI. 
At present, fast methods of magnetic resonance (EPI) are 
used, which allows significant reductions of investigation 
time. Retrieved images have a low-signal-to-noise ratio 
(SNR) and small contrast. In the MR imaging microscopy 
or for very thin slices of plants it is possible to use the time 
averaging of signal for SNR improvement, which has no 
effect on spatial resolution in the image. Extending the 
measurement time is acceptable for such objects. But this is 
not feasible in medicine and therefore a post-process image 
filtering (image de-noising) has to be used for SNR 
improvement. The drawback of each digital image filtering 
technique is the reduction of sharpness, resolution, and 
image contrast. 

It is well known that magnitude image data of mag-
netic resonance obey the Rician distribution. Unlike addi-
tive Gaussian noise, Rician “noise” is signal-dependent, 
and separating signal from noise is a difficult task. Rician 

noise is especially problematic in low signal-to-noise ratio 
(SNR) regimes where it not only causes random fluctua-
tions, but also introduces a signal-dependent bias into the 
data that reduces image contrast.  

The application of wavelets for the de-noising of MR 
images has been pioneered by Weaver et al. [1], who 
applied their de-noising scheme to MR images of the 
human neck. They concluded that the de-noising scheme 
can reduce noise by 10% to 50% without reducing edge 
sharpness. 

De-noising techniques operating with magnitude 
images have been proposed in most cases only for disease 
diagnostic from MR images with a low signal-to-noise 
ratio. Henkelman [2] shows the relationship of the true 
signal amplitude to that which is measured in real and 
magnitude images in presence of noise. Correction factors 
for actual experimental measurements are demonstrated. 
Some recent work by Nowak [3] employs a wavelet-based 
method for de-noising the square magnitude images, and 
explicitly takes into account the Rician nature of the noise 
distribution. 

A few works have been devoted to phase image de-
noising, despite the existence of important applications like 
current density imaging (CDI), MRI and functional MRI. 
Alexander [4] applies a wavelet de-noising algorithm 
directly to the complex image obtained as the Fourier 
transform of the raw k-space two-channel (real and 
imaginary) data. By retaining the complex image, he is able 
to de-noise not only magnitude images but also phase 
images. A multi-scale (complex) wavelet-domain Wiener-
type filter is derived. The algorithm preserves the edges 
when the Haar wavelet rather than smoother wavelets, such 
as those of Daubechies, are used. Zaroubi [5] presents 
a fast post-processing method for noise reduction of MR 
images, termed complex de-noising. The method is based 
on shrinking noisy discrete wavelet transform coefficients 
via thresholding, and it can be used for any MRI data-set 
with no need for high power computers. The de-noising 
algorithm is applied to the two orthogonal sets of complex 
MR images separately. Cruz-Enriquez [6] applies a group 
of de-noising algorithms in the wavelet domain to the com-
plex image, in order to recover the phase information. 
Significant improvements in SNR for low initial values are 
achieved by using the proposed filters.  
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2. Materials and Methods  

2.1 MRI Data  

For real MRI data, a set of 2D phantom MR single-
slice data from the same volunteer was acquired on a 4.7T 
MRI scanner (Magnex magnet, MR Solution electronic and 
software) in ISI Brno, using the standard spin-echo 
sequence. The sample applied was a square container 
(40x40x40 mm) filled with water. Relaxation times of 
water were reduced by the application of nickel sulphate. 
The cylindrical cuvette of 20mm diameter was filled with 
gel water sample, whose relaxation times are short (11 ms), 
and then inserted into a dish. The tested MR images with 
different SNR (TE = 20 ms, TR = 500 ms MA = 512x512, 
FOV = 60x60 mm) were coronal slices with the variable 
thickness (0.2 - 0.5 - 1 - 2 mm). In addition, the MR 
images of head (with TMJ) were acquired on the Philips 
ACHIEVA MRI system (DS = 1.5T) in the Faculty 
Hospital Brno-Bohunice. Measurement parameters were: 
T2W-FSE pulse sequence: TE = 20 ms, TR = 1600 ms,  
MA = 256x256, FOV = 160 x 160 mm, sagittal slice 2 mm. 

2.2 SNR, Contrast and Slope Edge Estimates 

For phantom MRI images with different SNR, the 
improvement of the SNR, contrast and linear slope edge 
approximation are measured before and after the applica-
tion of de-noising algorithm. The SNR and contrast are 
computed in two regions of interest in each image: the first 
region contains only noisy background, while the second 
region contains, in addition, the signal. We use the defini-
tion of parameters according to (1) and (4). The linear 
slope edge approximation is estimated over a selected 
sharp edge in the MRI image.  

The SNR in MR image is computed as the squared 
mean intensity of the selected area relative to the underly-
ing Gaussian noise variance σN

2. The SNR of the image 
magnitude is defined as [3] 
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where Imean is obtained as the mean value of intensity I in 
a homogenous region-of-interest (ROI) inside the image 
(signal), and σN is the standard deviation of the ROI with-
out signal (background). Considering the MR image aver-
aging with the number of acquisitions Nacq, the standard 
deviation of noise is equal to 
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The contrast of image intensity I is defined as 
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The relative contrast is defined as the contrast which 
is related to reference image intensity Iref (Iref = (IA + IB)/2) 
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where IA and IB are the mean image intensities of A and B 
image areas, as shown in Fig. 1. 

 
Fig. 1. MR image of the phantom for the contrast definition. 

The linear slope edge approximation m can be esti-
mated using (5) applied to a selected sharp edge, which is 
represented as 1D signal. Due to the presence of noise in 
the MR image, the measurement is realized on several 
places of the edge and the median of measurements is 
computed 
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where Δy and Δx represent the gradients of image intensity 
and scale, respectively, as shown in Fig. 2. 

 
Fig. 2. An example of the linear slope edge estimation. 

2.3 De-noising Algorithms 

As already mentioned above, we utilize a wavelet-
based algorithm for MR image noise reduction. The wave-
let transform WT is an integral transform for the “time-
frequency” description of analyzed signal. It can be used in 
various signal processing applications, e.g. signal compres-
sion, feature extraction, and noise removal. In our case, we 
use the two dimensional dyadic discrete-time wavelet 
transform 2D-DTWT, which uses mother wavelet function 
φ to decompose a digital image into a multilevel set of 
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approximations: vertical, horizontal and diagonal wavelet 
coefficients cl

A, cl
DV, cl

DH, and cl
DD, where l = 1, 2,..., L 

give the level of decomposition. A more detailed descrip-
tion of the wavelet transform and its properties can be 
found, for example, in [7]. The most frequently used tech-
nique for MR image noise reduction using the wavelet 
coefficients is thresholding. It is assumed that the wavelet 
coefficients with values lower than a particular threshold 
value T correspond to noisy samples and they can be there-
fore cancelled, which leads to noise reduction in the image 
domain. When the remaining coefficients are unaffected, it 
is called hard thresholding 
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Another often used kind of thresholding technique is 
the so-called soft thresholding, defined as  
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It can be generally said that soft thresholding yields a better 
SNR while hard thresholding better preserves the slope 
edge. There are other thresholding techniques such as 
semi-soft, hyperbolic, non negative garrote, etc. [8].  

The most important part of the de-noising algorithm is 
the estimation of the optimal threshold value. When the 
threshold value is too low, then the noise reduction is inef-
ficient, and, on the other hand, when it is too high, then 
details of image information can be lost. In our work, we 
consider one of the most frequently used estimation algo-
rithms, the so-called universal threshold, defined as [10] 

 )log(2 NT est    (8) 

where N is the number of input image pixels, σest represents 
the standard deviation of noise, which can be estimated by 
the Donoho and Johnstone theorem [9] as statistical median 
MAD of detailed wavelet coefficients cl

DV, cl
DH, and cl

DD 
from the first decomposition level divided by the constant 
0.6745 [9]. This threshold is then applied to all detailed 
wavelet coefficients of each decomposition level 
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When we consider de-noising a complex MR image, 
we have to first separate it into the real and imaginary 
parts. Then we process both parts by the wavelet transform 
separately, we estimate the unique threshold values for 
each part, and then threshold the wavelet coefficients. 
After that we reconstruct the image domain from the 
thresholded wavelet coefficients and, finally, combine 
them to form a de-noised complex image. The noise in 
both parts is assumed to be independent. The type of 
mother wavelets and thresholding techniques can differ for 
both parts. 

In addition to the standard de-noising technique oper-
ating with thresholding, we also implement a method de-
scribed in [4] with the Wiener filter applied to the complex 
wavelet coefficients (composed of the wavelet coefficients 
from the real and imaginary image parts). The method 
defined in (10) can be described as a multiplication of l-th 
decomposition level of detailed complex wavelet coeffi-
cients cl(x,y) by the complex value of “attenuation” factor 
αl(x,y) 
 ).,(),(),(ˆ yxcyxyxc lll   (10) 

According to [4], the attenuation factor for each 
wavelet coefficient can be evaluated using the magnitude 
value of the particular coefficient and the estimated stan-
dard deviation of noise σest 
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Negative values of the attenuation factor are zeroed, 
i.e. coefficients with lower values than the estimated stan-
dard deviation of noise are eliminated, which can be com-
puted as 

 2
est(I)

2
est(R)est    (12) 

where σest(R) is the estimated standard deviation of noise 
from the real MR image part and σest(I) from the imaginary 
MR image part, using (9). 

Equation (11) is extended by introducing an optional 
parameter τ ≥ 1, which allows the removal of the lower-
value coefficients. Various values of τ are suitable for 
different images[4] 
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An advantage of this method is the combination of 
hard thresholding for high values of cl(x,y)(l(x,y)  1), 
which yields a small bias (better contrast and slope edge), 
and soft thresholding for coefficients with values close to 
the level of noise, which yields a small variance (better 
SNR). 

3. Experiments and Results 

3.1 Experiment Background 

Our experiment can be divided into two parts. In the 
first part, the wavelet-based de-noising algorithms de-
scribed above are applied to the phantom MRI, mentioned 
in section 2.1.  

MR images with different signal-to-noise ratio 
(11.4 dB and 19.1 dB) for the verification of wavelet-based 
de-noising were obtained by measuring the transversal 
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sections of phantom for different thickness. The phantom 
consisted of deionized water, in which a cylinder filled 
with water and nickel sulfate was included (to reduce re-
laxation times and achieve the necessary image contrast) 
Fig. 1. 

Several discrete mother wavelets (wavelet filters) are 
applied and the results are compared with the help of three 
described parameters (section 2.2). In the experiment, we 
use two images with different SNR (11.4 dB and 19.1 dB) 
obtained by varying the slice thickness. The contrast and 
the linear approximation of the slope edge are related to the 
reference image (ratio expression) with SNR = 35 dB, be-
cause of unreliable measurement of these parameters from 
noisy images. In the second part of our experiment, the 
same procedure is performed on the MR image of head 
with SNR = 33 dB, as mentioned in section 2.1.  

The choice of mother wavelets has been inspired by 
a paper [11] dealing with analytical study of wavelet filters 
(mother wavelets) for image compression. The first change 
is the modification via replacing the Daubechies mother 
wavelet of the 7th order by the same mother wavelet of the 
2nd order (more frequently used in MR de-noising) and by 
adding the discrete Meyer mother wavelet (often used in 
MR de-noising [12]). Another change consisted in apply-
ing the following mother wavelets: Haar, Daubechies 2nd 
and 9th orders, bi-orthogonal 2nd.2nd and 4th.4th orders, Sym-
let 5th order, Coiflet 5th order and discrete Meyer. Accord-
ing to experiments in paper [4], the level of the wavelet 
decomposition is 3. The complex image wavelet coefficient 
filtering is only considered, because filtering the coeffi-
cients of magnitude image wavelets introduces a signal-
dependent bias, as shown in Fig. 3. 

 
Fig. 3. a) The original MR image of the phantom having SNR = 11.4 dB, b) magnitude image wavelet coefficients filtering with SNR=27 dB, 

c) complex image wavelet coefficients filtering with SNR=25 dB. 

 
3.2 Results 

Results of de-noising the phantom MR image with 
SNR = 11.4 dB are shown in Tab. 1, and graphically in 
Fig. 4, where the values are normalized according to the 
reference value corresponding to the maximum value of 
a particular parameter. 

The hard thresholding technique best preserves the 
slope edge for all wavelet filters, but it yields a lower SNR 
value in comparison with the soft thresholding technique. 

Using the Wiener filtering technique, we reach the greatest 
balance between the values of SNR and slope edge for all 
wavelet types (except bior2.2) and, in addition, we also 
reach the best contrast. Generally, the contrast value should 
be the highest for a thresholding technique yielding the 
lowest bias, i.e. hard thresholding, but in the case of a low 
original MR image SNR the contrast is strongly affected by 
the presence of noise and therefore better results can be 
achieved even by a technique with higher bias, i.e. soft 
thresholding. 

 

Hard thresholding Soft thresholding Wiener filtering 

Wavelet filter SNR Crel m SNR Crel m SNR Crel m 

haar 16.4 0.74 1.17 22.2 0.80 1.14 24.4 1.03 1.17 

db2 16.3 0.75 0.50 21.3 0.81 0.41 24.6 1.02 0.52 

db9 16.8 0.70 0.51 22.2 0.80 0.44 25.1 0.97 0.41 

bior2.2 14.4 0.63 0.66 20.7 0.78 0.50 19.4 0.84 0.50 

bior4.4 16.0 0.71 0.55 21.9 0.80 0.43 23.5 0.98 0.46 

sym5 15.8 0.69 0.55 22.1 0.80 0.47 23.0 0.97 0.48 

coif5 16.4 0.72 0.54 22.1 0.80 0.48 24.3 1.00 0.55 

dmey 15.0 0.63 0.60 21.8 0.79 0.47 21.3 0.90 0.50 

Tab. 1. Results of de-noising the phantom MR image with SNR = 11.4 dB. 
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Fig. 4. Results of de-noising the phantom MR image with SNR = 11.4 dB. 
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Fig. 5.  Results of de-noising of the phantom MR image with SNR = 19.1 dB. 
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The results of de-noising the phantom MR image with 
SNR = 19.1 dB are shown in Tab. 2 and Fig. 5. There is 
a great amount of similarity with previous results excluding 
the contrast value, where a higher value is achieved for 
hard thresholding than for soft thresholding because of the 
better SNR of the original MR image.  

While the first tested image (the MR phantom image) 
does not include almost any detailed information and the 
image could be evaluated by measuring only onesignificant 
edge, in the case of the second tested image (the MR image 

of head) the measurement of two various edges was 
applied, which differed in the magnitude of intensity 
change in the neighbourhood of the relevant edge (see Fig. 
6). The values measured are summarized in Tab. 3, where 
m1 defines the linear slope edge approximation with the 
higher intensity change, and m2 with the lower intensity 
change. The resultant graphs can be seen in Fig. 7, but the 
contrast is not depicted here because of unimportant 
changes in contrast in individual thresholding techniques 
and the mother wavelets used. 

 
 

Hard thresholding Soft thresholding Wiener filtering 

Wavelet filter SNR Crel m SNR Crel m SNR Crel m 

haar 25.2 0.93 1.10 30.4 0.95 1.07 34.7 1.06 1.14 

db2 24.7 0.93 0.85 29.6 0.96 0.61 34.1 1.05 0.70 

db9 25.5 0.91 0.73 30.4 0.95 0.47 34.2 1.03 0.49 

bior2.2 22.5 0.87 0.73 28.9 0.95 0.64 28.4 0.98 0.66 

bior4.4 24.5 0.91 0.72 29.9 0.95 0.48 32.9 1.04 0.52 

sym5 24.0 0.90 0.68 30.1 0.95 0.54 32.1 1.03 0.60 

coif5 25.2 0.92 0.75 30.1 0.95 0.56 34.4 1.05 0.65 

dmey 23.2 0.87 0.72 30.0 0.95 0.54 30.3 1.01 0.60 

Tab. 2.  Results of de-noising of the phantom MR image with SNR = 19.1 dB. 

 
Fig. 6.  Test MR image of head with areas of slope edge measurement. 

 

Hard thresholding Soft thresholding Wiener filtering 

Wavelet filter SNR Crel m1 m2 SNR Crel m1 m2 SNR Crel m1 m2 

haar 47.1 0.97 0.99 0.94 50.7 0.97 0.87 0.35 49.8 0.97 0.95 0.79 

db2 43.5 0.97 0.97 0.91 47.9 0.97 0.78 0.62 46.9 0.98 0.83 0.72 

db9 42.3 0.97 0.98 0.97 49.0 0.97 0.79 0.60 47.4 0.97 0.82 0.86 

bior2.2 38.8 0.97 0.98 0.97 46.6 0.97 0.96 0.79 44.4 0.97 1.00 0.91 

bior4.4 42.6 0.97 0.97 0.88 49.5 0.97 0.81 0.77 48.4 0.97 0.84 0.87 

sym5 43.9 0.97 0.86 0.93 49.8 0.97 0.83 0.59 48.7 0.97 0.86 0.86 

coif5 42.7 0.97 0.97 0.73 48.8 0.97 0.80 0.58 47.7 0.97 0.84 0.67 

dmey 41.2 0.97 0.98 0.96 48.4 0.97 0.85 0.80 47.1 0.97 0.88 0.90 

Tab. 3.  Results of de-noising of the MR image of head with SNR = 33 dB. 
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It can be seen from Fig.7 that the influence of 
thresholding itself on the resultant MR image of head 
approximately corresponds to the results for the MR 
phantom image. Therefore it is possible to say that the 
choice of threshold method does not depend much on the 
type of the image being processed. On the other hand, the 
results of the processed MR images are pretty dependent 
on the choice of the mother wavelet. 

It has been shown that it is advantageous to assign the 
mother wavelet to the chosen threshold method. The 
following combinations can be given as examples: hard 
thresholding and the Haar wavelet, soft thresholding and 
the bi-orthogonal wavelet 2.2 or the Wiener filtering and  

the Coiflet wavelet of the 5th order. But the greatest 
influence on the processing of degraded image can be seen 
in the choice of the mother wavelet. It is evident both from 
the differences between the tested images (the Haar 
wavelet used for the MR phantom image or the bi-
orthogonal wavelet 2.2 used for the MR image of head), 
and even from partial areas of the individual MR images. If 
we follow the slope ratio of two edges, m1 and m2, for 
various types of mother wavelet, we suppose that generally 
the slope edge m2 is less than m1. The ratio is thus high for 
some types of mother wavelet (the Haar wavelet, for 
example), but for other wavelets m1 can be approximately 
equal to m2; m2 can even be higher than m1 (the discrete 
Meyer wavelet, for example). 
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Fig. 7.  Results of de-noising of the MR image of head with SNR = 33 dB. 

 

4. Conclusion 
In this paper, an evaluation of the wavelet-based de-

noising efficiency for various mother wavelets is de-
scribed. The real and imaginary parts of the MR image are 
filtered separately and the evaluation of filtering efficiency 
is realized on the output complex MR image, using three 
parameters: SNR, image intensity contrast, and intensity 
gradient in chosen parts of the MR image. 

Generally speaking, contrast depends on bias, and 
thus also on the sharpness of the whole image, which is 
defined by the high slope of edges. Taking in account our 
experiments, we can claim that this only holds for less 

degraded input images. For other input images, the contrast 
is more dependent on enhancing the SNR than on preserv-
ing the steepness of edges.  

The effect of the thresholding methods used can be 
characterized as follows: hard thresholding preserves the 
edge steepness of the input image and then the resultant 
contrast is higher. At the same time, SNR is not so high 
because of discontinuities between cancelled and retained 
wavelet coefficients. On the other hand, soft thresholding 
thanks to fewer discontinuities among wavelet coefficients 
improves the SNR, but reduces the edge steepness (the 
image is more blurred), and bias is inserted and results in 
less contrast. The Wiener filtering of the wavelet coeffi-
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cients suppresses the disadvantages of the two above-men-
tioned thresholding methods, but only on condition that 
parameter τ is known apriori. Its value depends on the 
particular MR image. Therefore, the Wiener filtering is not 
useful for full automatic processes. It can be said that hard 
thresholding is useful for high SNR input images, soft 
thresholding is more convenient for low SNR input images, 
and, finally, the Wiener filtering is useful for all MR 
images, but if optimum parameter τ can be estimated in 
advance. 

The choice of the mother wavelet (wavelet filter) 
greatly affects the resultant image quality. Eight various 
mother wavelets were taken into account in this paper. The 
Haar wavelet was the most useful for simple images (not 
many details) with high slope edges (sharp transitions), 
especially with hard thresholding. The greatest disadvan-
tage of hard thresholding is the difficulty of obtaining 
smoothly reconstructed images, which shows by disturbing 
rectangular artifacts. Mother wavelets of the Daubechies 
type are typical representatives of non-symmetrical wave-
lets, which are used with both plain images and images 
with many details (so complicated) to obtain a higher SNR 
value (but less steep edges, of course). It is the reason why 
they are combined with soft thresholding. If the order of 
the Daubechies wavelets increases, then the slope steepness 
tends to decrease and, on the contrary, SNR becomes 
higher. Bi-orthogonal wavelets, which belong to symmetri-
cal wavelets, yield a good balance between high slope edge 
and high SNR for all threshold methods. Consequently, 
they are optimal wavelets for much complicated images in 
order to obtain good balance between SNR and image 
sharpness. Higher-order bi-orthogonal wavelets give out-
puts similar to wavelets of the Daubechies type. Wavelets 
of the Coiflet or Symlet type give identical results for plain 
images. They give a high SNR at the cost of lower slope 
edge. When the Coiflet and Symlet wavelets were applied 
to more complicated image, then they differed in edge 
slope ratios m1 and m2 for hard thresholding. It can be said 
that they behave like the Daubechies wavelets. The discrete 
Meyer wavelets exhibit advantages that show, in particular, 
when the Wiener filtering of wavelet coefficients is used 
for more complex images. A high degree of correspon-
dence between SNR and the preservation of the steepness 
of the two image edges measured, m1 and m2. A similar 
correspondence was obtained in the application of soft 
thresholding. The discrete Meyer wavelet is recommended 
to be used as a universal mother wavelet for processing 
complicated images in combination with soft thresholding. 
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