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Abstract. The paper deals with a procedure for approxi-
mate symbolic analysis of linear circuits based on simpli-
fying the circuit model. The procedure consists of two main 
steps. First, network elements whose influence on the 
circuit function is negligible are completely removed, i.e. 
their parameters are removed from the resulting symbolic 
formula. The second step consists in modifying the voltage 
and current graphs in order to decrease the number of 
common spanning trees. The influence of each modifica-
tion of the circuit model is ranked numerically. A fast 
method based on the use of cofactors is presented. It allows 
evaluating all the prospective simplifications using at most 
two matrix inversions per one frequency point. 
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1. Introduction 
Within the last several years, we have seen a growing 

interest in the symbolic analysis of large multi-physics 
systems (see [1] and its references). Symbolic analysis is 
used both for obtaining a qualitative description of the 
analyzed system and for the generation of behavioral mod-
els. Originally developed in the field of electrical circuits, 
symbolic analysis can be used in other physical domains on 
the basis of analogies [1], [2]. 

The applicability of exact symbolic analysis in the 
frequency domain is constrained to relatively small 
systems, as the size of the resulting expression grows expo-
nentially with the number of components. If we appropri-
ately restrict the range of frequency and network parame-
ters, the majority of symbolic terms can be removed from 
large expressions without any significant numerical error 
[3]. Negligible symbolic terms are identified numerically, 
based on the known parameters of circuit components. 

The simplification methods can be divided into three 
classes according to the stage of analysis at which the sim-
plification is performed: Simplification Before Generation 
(SBG), Simplification During Generation (SDG), and 

Simplification After Generation (SAG) [5]. The SAG 
methods are simple, but very expensive in terms of com-
putation and storage. Pure mathematical methods of the 
SDG type have problems with the interpretability of 
resulting expressions [4]. The SBG methods simplifying 
the circuit equations or graphs are the most effective ones, 
as they work with a relatively small number of circuit 
equations [4]. 

The only commercially available symbolic simplifi-
cation tool – Analog Insydes – implements a matrix-based 
method [5] where individual matrix elements are removed 
to obtain a simplified solution. However, in some cases the 
equation simplification may surprisingly add symbolic 
terms that were not present in the original expression. The 
SBG method [6] is based on a heuristic approach consist-
ing in modifying the graphs of the numerator and the de-
nominator separately, which does not have a clear physical 
interpretation. 

This paper presents an SBG procedure whose basic 
principle can be explained on a simple circuit in Fig. 1. Let 
the network parameters be: RB = 36 k, r = 4 k, 
gm = 35 mS, ro = 100 k, RL = 4 k. 
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Fig. 1. AC model of simple amplifier with bipolar transistor. 

The exact formula for the voltage transfer ratio is 
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It can be easily seen that, with respect to the parame-
ter values, the expression can be simplified. However, in 
the case of analysis of large systems, an exact formula 
cannot be generated at all. The first step, parametric simpli-
fication (PSBG), consists in removing the negligible circuit 
elements by setting their parameters to zero or infinity. In 
our example ro  RL, and thus it can be removed by setting 
ro. As RB  r , the formula can be further simplified, 
but resistor r cannot be simply removed or its terminal 
shorted. 
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Fig. 2. a) Original; and b) modified graphs. 

The second step, topological simplification (TSBG), 
consists in modifying the circuit topology without remov-
ing any element. Fig. 2a shows the voltage and current 
graphs of the circuit. Let the voltage across input be 1 V. 
Then the voltage across r is 0.1 V. The voltage can be 
neglected in loops {input-GB-g} and {input-GB-gm} but 
not in loop {g-gm}. A simple modification in Fig. 2b 
removes gm and g from the “high-voltage” loop, but 
retains the “low-voltage” loop. The modification leads to 
the expected simplified formula 
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An inspection of the voltage and current graphs 
shows that the voltage-controlled current source from 
Fig. 2a was replaced by a current-controlled current source 
in Fig. 2b. The basic principle of the topological method 
consists in a selective removal of the low-voltage edges 
from the high-voltage loops. Similar transformations can 
be found for cuts of the current graph. 

The simplification of network equations is a sequence 
of individual steps. The control procedure searches for 
steps introducing the lowest error, which is numerically 
expensive for large systems [3]. Section 2 of the paper 
describes in detail the PSBG and TSBG algorithms, 
including an effective method for the evaluation of errors. 
Section 3 provides an example analysis. 

2. Topology Simplification Procedure 

2.1 Control Algorithm 

The simplification introduces an error whose maxi-
mum value should be theoretically guaranteed on the inter-
val FD, where F = <f1, f2> is the frequency interval of 
interest, and D  Rr is the interval of parameters of net-
work elements. Due to computational complexity the error 
is only checked at several selected reference points of FD 
with specified magnitude and phase tolerances M and 
 [5]. 

Assuming m reference points ωi the error criterion is 
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where E() = FA()/FR(), and FA() and FR() are sim-
plified and reference network functions, respectively. 

Fig. 3 shows the main cycle of the procedure, which 
is essentially the same for PSBG and TSBG. First, all the 
prospective operations are ranked according to the error 
their application would cause. One or more operations with 
the lowest error are actually performed and the numerical 
solution is updated. The procedure is repeated until the 
maximum error is reached. 

 

Fig. 3. Main cycle of simplification method. 

2.2 Parametric Simplification 

The circuit being analyzed is represented by a set of 
linear equations obtained by using, for example, the Modi-
fied Nodal Analysis [9]. Without independent sources, we 
obtain 

 0Hx   (4) 

where H is a network matrix, and x is the vector of un-
known voltages and currents. 

 

Fig. 4. Parametric simplification of an amplifier. 

Fig. 4 shows a simple circuit where the operational 
amplifier is modeled as a voltage-controlled voltage source 
with a complex transfer function A(s). 

Let p be a parameter representing a single network 
element. Generally, it can appear on one (e.g. A(s) in 
Fig. 4), two, or four (e.g. 1/R1) positions in H. First, the 
parametric simplification procedure tries to eliminate the 
parameter by setting p0 or p. For example, using 
A(s) replaces the controlled source by the ideal opera-
tional amplifier. When no eliminable parameter is left, the 
procedure continues inside parameters, which are given as 
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compute reference numerical solution; 
while A < max  { 
   generate all possible operations; 
   compute the error of each operation; 
   perform operation(s) with the lowest error; 
   update numerical solution and A; 
} 
undo last operation; 
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a formula. For example, in the case of A(s), neglecting sτ 
may be acceptable on low frequencies whereas neglecting 
“1” in the denominator may be acceptable on high frequen-
cies. 

In all cases, the control algorithm has to compute how 
the change of p affects the numerical value of the network 
function for each control frequency. 

Any network function F can be obtained as a ratio of 
two algebraic cofactors of H 
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Matrices H1 and H2 are derived from H by means of 
adding and deleting some rows and columns, α depends on 
the indices of those rows and columns [9]. For parameter p 
appearing on four positions in H1 and H2, network function 
F can be expanded as shown in (5), where 
1 = H1i:i + H1j:j -H1i:j -H1j:i represents the algebraic 
cofactors of H1, 2 represents the cofactors of H2, and pnom 
is the nominal value of the parameter. The coordinates of p 
in H1 and H2 are generally different. If p appears on one or 
two positions, 1 and 2 are expressed just with one or two 
cofactors. 

If we know the determinants and cofactors, it is easy 
to compute how F changes for any value of p, including 
infinity, by using (5). The algebraic cofactors can be 
obtained by a simple matrix inversion 
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where each element of H1, and H2, is the respective alge-
braic cofactor. The computation of one cofactor matrix 
requires approximately O(n3) operations, where n is the 
actual matrix size. The determinant is a byproduct of the 
matrix inversion. 

After the topology change in each step, the determi-
nants and cofactor matrices (6) should be updated. It can be 
done either by computing a new matrix inverse or by using 
the Sherman-Morrison formula, which allows expressing 
the matrix inverse in the case when only a few elements 
were changed [10]. To set a parameter p0 a compensat-
ing term of (-p) should be added to the matrix. Then, the 
inverse of the updated matrix will be 
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Vectors u and v define the coordinates of the updated ma-
trix elements. In the case of the four-position appearance of 
p the vectors are simply u = [0...0,1,0..0,-1,0....0]T and 
v = [0...0,1,0..0,-1,0....0]T. 

2.3 Topological Simplification 

Using the two-graph method [7], [11] the determinant 
of the admittance matrix can be computed as 
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where Y(t) is the tree admittance product of tree t, and 
T(GV)  T(GI) represents the common spanning trees of 
current graph GI, and voltage graph GV. (t) = 1 is the tree 
sign. The technique of augmented circuit allows using (8) 
to compute the cofactors for any network function [7]. 

If all edges represent a unique symbol, there are no 
two identical tree admittance products in (8) that would 
cancel each other. Thus, if there is a transformation that 
decreases the number of spanning trees, it automatically 
decreases the determinant complexity. 

Let V(G) be a set of vertices of a graph G, E(G) a set 
of its edges, and T(G) a set of its trees. The incidence of 
edge e in graph G, (e,G) = (i, j), assigns two vertices i, j 
to edge e. An edge with the incidence (v,v) is called self-
loop. Graph G is said to be separable if there is a vertex 
whose removal splits the graph into two or more compo-
nents. 

Definition 1: Separation of a connected subgraph GS from 
a graph G is an operation that transforms G into 
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vc is an arbitrarily chosen vertex )()\( SSc GVGGVv  . 
The operation, illustrated in Fig. 5, will be denoted 

S' GGG  . Transforming the incidence by (10) may lead 
to the occurrence of selfloops, but |E(G’)| = |E(G)|. 
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Fig. 5. Example of separation GS = {e1,e2,e3}:  

a) original graph G;  b) graph G
~

;  c) SGGG ' . 

Lemma 1: Let G and G’ be two connected graphs for 
which it holds: E(G’)  E(G) and |V(G’)| = |V(G)|. If for 
any loop L  G, E(L)  E(G’) there exists a loop L’ G’ 
such that E(L’)  E(L), then for any tree t’  T(G’) there 
exists a tree t  T(G) such that E(t’) = E(t). 

Proof: Let us assume that the conditions of Lemma 1 hold, 
yet there exists a tree t’  T(G’) such that t’  T(G). Then 
there must be a subgraph GS  G induced by E(GS) = E(t’) 
containing at least one loop L  GS because it is not a tree 
in G. However, if there exists a loop L’  G’ for L such 
that E(L’)  E(L), then E(L’)  E(t’) because E(L)  E(GS) 
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and E(GS) = E(t’). This is a contradiction of the initial 
assumption that subgraph t’ is a tree in G’.  

Theorem 1: Let G be a connected non-separable graph 
consisting of at least two edges. The separation of any 
connected subgraph GS  G consisting of at least one edge 
decreases the number of trees of the transformed graph 

S' GGG   without the occurrence of alien trees. 

Proof: The proof strategy consists of: (a) verifying the 
absence of alien trees, (b) decreasing the number of trees. 

a) The absence of alien trees will be proved by verifying 
the conditions of Lemma 1. Since |V(G’)| = |V(G)| and 
E(G’) = E(G), then it is sufficient to show that for any loop 
L  G there exists a loop L’  G’ such that E(L’)  E(L). 
Let us consider a loop L in graph G. As subgraphs GS and 
G \ GS are edge-disjoint and G = GS  (G \ GS), only one 
of the following three cases may happen: 

1. The whole loop L is contained in GS, i.e. 
E(L)  E(GS). Then there exists a loop L’  G’ such that 
E(L’) = E(L), because GS is also a subgraph of G’. 

2. Loop L is contained in both GS and G \ GS. Let 
GC = L  (G \ GS), then there exists at least one open trail 
with endpoints vi, vj  V(GS) in GC. Both these endpoints 
are transformed by (10) into vC, which forms at least one 
loop L’  G’. 

3. The whole loop L is contained in G \ GS, i.e. 
E(L)  E(G \ GS). Transformation (10) of G \ GS causes the 
occurrence of one or several loops or selfloops Li’ such that 
E(Li’)  E(L) holds for each of them. 

b) Subgraph G \ GS may be disconnected. Therefore, let us 
consider an arbitrary component C  G \ GS and its tree 
tC  T(C). Evidently, there exists a tree t  T(G) such that 
tC  t. Since G is non-separable, subgraph C and its com-
plement G \ C have at least two vertices u and v in common 
such that u, v  E(GS). Vertices u and v are transformed by 
(10) into a single vertex. This creates a loop L’  G’ such 
that E(L’)  E(t). Thus the edges of t cannot be a tree in 
G’. Therefore, the separation decreases the number of 
trees.  

Let the circuit be represented by current graph GI and 
voltage graph GV with edges e1, e2, …, eb , whose weights 
are the magnitudes of branch currents and voltages ob-
tained numerically for a particular frequency. 

Let L1, L2,…, LB   GV be all the loops of the voltage 
graph GV. The voltage v(ej) of an edge ej  E(Li) will be 
considered numerically negligible in loop Li if 
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where V  (0, 1) is the threshold value. Provided that it 
causes an acceptable numerical error it is possible to re-
move all negligible edges from Li . 

Let us assume that voltage graph GV can be 
decomposed into two edge-disjoint subgraphs GH

V and GL
V 

such that the condition 
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holds for any loop L  GV that is contained in both sub-
graphs. Then it is possible to remove the low-voltage edges 
by 
 V

LVV' GGG   . (13) 

Let C1, C2, …, CQ  GI be all the cuts of the current 
graph GI. The current i(ej) of a cut edge ej  E(Ci) will be 
considered numerically negligible in Ci if 
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where I  (0, 1) is the threshold value. 

It is convenient to reformulate criterion (14) for cut 
edges into another criterion for loops of the current graph. 
Let us consider current graph GI and its arbitrary loop 
L  GI containing an edge emin with the minimum weight, 
Fig. 6. Let t be a tree of GI such that L \ {emin}  t, Fig. 6a. 
In accordance with (14) it is possible to neglect i(emin) in 
the maximum-current cut, i.e. edge emax can be removed 
from loop L. 
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Fig. 6. a) Loop in GI;  b) Modified graph. 

Let GI be decomposed with respect to a threshold 
value I  (0, 1) into two edge disjoint subgraphs GH

I and 
GL

I, and for any loop L  GI contained in both subgraphs 
the condition 
 )(min)(min

)(
I

)( I
H

eiei
LGEeLEe 

   (15) 

holds. Then it is possible to remove all edges of GH
I from 

any loop contained in both GH
I and GL

I by means of 

 I
HII' GGG   . (16) 

The topology transformations can be interpreted as a 
graph-edge changeover between vertices. Fig. 7 shows the 
effect on the nodal matrix if the edge represents a conduc-
tance, originally between nodes m and n. 

Fig. 7. Edge transformation and its influence on the nodal 
matrix. 
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The changeover to node o can be modeled by adding 
four compensating elements to the original matrix. In the 
case of the voltage graph modification we obtain 
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and similarly for H2 and the current graph. Thus the effect 
of graph transformation can be evaluated similarly to (7). 

2.4 Lossless Topological Simplification 

This step consists in identifying the series or parallel 
connections of similar two-ports, and transforming them 
into a single element. This step does not introduce any 
error, but can greatly simplify the symbolic expression. 

 

Fig. 8. Losless simplification of ladder network. 

Fig. 8 shows a simple ladder network and the SNAP 
output for the input impedance [2], [8]. The same formula 
in the expanded plain format contains 34 terms in the 
numerator and 21 terms in the denominator. 

3. Example Analysis 
The capabilities of the topological transformation are 

demonstrated on an analysis of the A741 operational 
amplifier [5], Fig. 9. All transistors were modeled using the 
Standard Gummel-Poon Spice model. The aim was to sim-
plify the circuit model for open-loop gain in the neighbor-
hood of the dominant pole frequency of 3 Hz. The required 
accuracy was 1.5 dB for magnitude and 5° for phase 
checked at frequencies of 0.1 Hz and 5 Hz. The original 
number of symbolic terms in the denominator is estimated 
to be 1019 [5]. 

The parametric preprocessing reduced the original 
196 network parameters to 14. The topological procedure 
was able to further reduce the number of terms in the nu-
merator and the denominator. Candidates for separation 
were generated for V = I = 0.2. The topological algorithm 
separated two subgraphs from the voltage graph: 
 { g16, gm16 }, {go4 , go6 , g17 , gm17 , G8 , G9 } 
and two subgraphs from the current graph: 
 { go131 , gm17 , g17 , gm16 , G8 , G9 }, 
 { go131 , gm17 , G8 }. 
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Fig. 9. Internal structure of A741. 

 

 PSBG TSBG SAG 
allowed  1.5dB Mmax 

real 0.81dB 
@0.1Hz 

1.08dB 
@0.1Hz 

1.39dB 
@0.1Hz 

allowed  5 max 
real 0.53@5Hz 1.30@5Hz 2.17@5Hz 

kN 12 1 1 
kD 120 16 14 
np 14 14 14 

runtime 1.8s 1.2s 0.7s 

Tab. 1. Results of simplification steps for 741 opamp (Mmax – 
magnitude error, max – phase error, kN, kD – number 
of symbolic terms in numerator and denominator, np – 
number of circuit parameters). 

After TSBG, the formula for voltage transfer was 
further simplified by means of the SAG method, which 
reduced only the denominator terms from 16 to 14. 

Fig. 10 shows a similar analysis for circuit with a cur-
rent-feedback amplifier [12]. PSBG reduced the original 
100 network parameters to 14. TSBG separated two sub-
graphs from the voltage graph and one subgraph from the 
current graph. 

4. Conclusions 
The paper presents an effective procedure for simpli-

fying the circuit model, which is independent of method 
used for subsequent symbolic analysis. The utilization of 
cofactor matrices allows evaluating all the prospective 
simplifications using at most two matrix inversions per one 
reference frequency point. 
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Fig. 10. Circuit with current-feedback amplifier (CFA). 
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Input impedance: 
(R1+R2||(R3+R4||(R5+R6||(R7+R8))) 
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 PSBG TSBG SAG 
allowed  1.5dB @ 1kHz and 600kHz Mmax 

real 0.47dB 
@1kHz 

0.56dB 
@600kHz 

0.21dB 
@1kHz 

allowed  3@ 1kHz and 600kHz max 
real 2.4 

@600kHz 
2.4 

@600kHz 
3.0 

@600kHz 
kN 44 4 3 
kD 232 65 46 
np 14 14 14 

runtime 4.9s 1.3s 0.9s 

Tab. 2. Results of simplification steps for CFA (see Tab. 1 for 
parameter description). 
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