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Abstract. In this paper, switched capacitor realizations of 
discretized models of half differentiator and half integrator 
based on a new operator with improved performance have 
been proposed. This Al-Hsue operator is the weighted sum 
of the Al-Alaoui operator and the Hsue operator. The 
discretized models of the Al-Hsue operator have been 
expanded using Taylor Series Expansion and Continued 
Fraction Expansion, to be able to develop the Switched 
Capacitor realizations. These Switched Capacitor realiza-
tions are implemented using Spice and the results obtained 
are compared with the theoretical results of the continu-
ous-time domain half differentiators and integrators. These 
Spice simulation results are also compared with the results 
of existing Al-Alaoui operator and Hsue operator based 
Switched Capacitor realizations of half differentiators and 
integrators of order 1/2. The results validate the effective-
ness of the Switched Capacitor circuit implementation of 
the proposed approach. 
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1. Introduction 

Analog realizations of fractional-order circuits have 
been explored by many researchers [1-7], but work on 
digital realizations is still being considered [8-10]. In this 
paper, sampled-data realizations of fractional-order differ-
entiators and integrators have been explored using SC 
circuits [11-16]. The technique for implementation of frac-
tional-order circuits involves expansion of the z-domain 
transfer function into ladder form using continued fraction 
expansion. Each row of the Continued Fraction Expansion 
(CFE) is realized using Switched Capacitor (SC) amplifiers 
and integrators. Then, the expansions of the rows are 
implemented using parasitic insensitive SC realizations of 
integrators and amplifiers. The designed sampled data 
systems have been simulated using Spice. 

Switched capacitor techniques [11], [12] have been 
developed for discrete data/signal processing to allow inte-
gration of both digital and analog functions on a single 
chip. In SC circuits, the function resistors are realized us-
ing MOS switches and capacitors. The advantage of using 
SC circuits is that the accuracy of the signal-processing 
function is proportional to the accuracy of capacitor ratios. 
The other advantages of SC circuits include – compatibility 
with CMOS technology, good accuracy of time constant, 
programmability, good voltage linearity, flexibility, good 
temperature characteristics, better accuracy and stability 
and ease of fabrication. For proper functioning of switched 
capacitor circuits, the sampling frequency should be at 
least ten times the maximum signal frequency [17]. This is 
in accordance with the Shannon-Kotelnik theorem which 
states that, “If in the process of sampling the information 
must not lose, a frequency of sampling ωs and maximal 
frequency ωm included in the signal spectrum have to com-
ply with a condition ωs ≥ 2ωm [18]”. 

The organization of this paper is as follows: Section 2 
defines fractional-order systems. Section 3 briefly intro-
duces the Al-Hsue operator [19]. Section 4 discusses the 
CFE technique for realization of the Al-Hsue operator 
based models of half differentiator (s1/2) and half integrator 
(s-1/2). Spice simulation results of the half differentiators 
and integrators based on the Al-Hsue operator are pre-
sented in section 5. These simulation results are compared 
with the theoretical results of the half differentiators and 
integrators in continuous-time domain and the Spice simu-
lation results of Al-Alaoui operator [20-22] and Hsue 
operator [23] based SC realizations of half differentiator 
and integrator in section 6. Section 7 concludes the paper.  

2. Fractional-Order Calculus and 
Systems [1] 
The word ‘fractional calculus’ is used for the theory 

of integrals and derivatives of arbitrary order. It is basically 
a generalization of differentiation and integration to a non-
integer order fundamental operator aDt

,   R, where  
and t are the limits of operation [24].  
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The continuous integrodifferential operator [1] is 
defined as  
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where  is the fractional-order which can be a complex 
number and a is the constant related to the initial condi-
tions. The two definitions used for the fractional differinte-
gral a Dt

 are the Grunwald Letnikov (GL) definition and 
the Riemann-Lioville (RL) definition [24]. 

A fractional-order system is represented by a frac-
tional differential equation given by (2). 
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where k (k = 0,1,2,…,m), k(k = 0,1,2,…,n) are real num-
bers and ak(k = 0,1,2,…,n), bk(k = 0,1,2,…,m) are arbitrary 
constants.  

The discretized model of a fractional-order system is  
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where (z-1) denotes the discrete operator, expressed as 
a function of the complex variable z or the shift operator z-1 
[10]. 

3. The Al-Hsue Operator  
The Al-Alaoui operator based integrator in z-domain 

is  
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and the integrator obtained by inverting the transformation 
of a wide-band differentiator [23] is  
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where T  is the sampling period.  

To obtain a differentiator that fits better the ideal dif-
ferentiator over the entire normalized frequency band, 
linear mixing of Al-Alaoui differentiator and the wide-
band differentiator is performed as follows: (i) The transfer 
functions of the two integrators of (4), (5) are linearly 
mixed as in (6): 
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where , (0 <  < 1) determines the contribution of each 
operator in the new operator. (ii) The transfer function of 
(6) is inverted and the resulting transfer function of the 
new digital differentiator is 

 ( 1)
( )
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Using Jury’s stability criterion, the differentiator 
Gnew(z) was found to be stable for the condition T < 2.25, 
(0 <  < 1). Choosing T = 0.05 s, (sampling frequency = 
2(1/T) = 125.7 rad/sec), the transfer function of the new 
differentiator [19], [22] is 
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Now,  is varied from 0 to 1 in increments of 0.1. 
The magnitude response of the proposed differentiator is 
plotted for different values of  as shown in Fig. 1. 

The percentage relative magnitude error of the new 
differentiator is compared with the magnitude response of 
the ideal differentiator and plotted in Fig. 2. 

Observations show that best matching with ideal dif-
ferentiator were for  = 0.9. The error is within 2% upto 
0.84 of the Nyquist frequency. Fig. 3 shows the phase of 
the new differentiator for different . The response is al-
most linear with a maximum phase of 8.24° at 0.55 of the 
Nyquist frequency. The ideal linear phase corresponds to 
an ideal differentiator with half a sample of delay. These 
results are comparable with those of Al-Alaoui operator 
based differentiator as suggested in [20]. 

The transfer functions of the new differentiator for 
different values of T viz. 0.05 s, 0.00625 s, 0.001 s, and 
0.000625 s with  = 0.9 are: 
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The magnitude response of (9-12) are plotted and 
compared with the magnitude of ideal differentiator 
(Fig. 4). The relative magnitude errors are plotted in dB in 
Fig. 5. The phase response of the new differentiator and the 
relative phase error is plotted in Fig. 6. 
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Fig. 1. Magnitude response of new operator for various α with 

T = 0.05 s. 

 
Fig. 2. Relative magnitude error as compared to the 

continuous-time differentiator for various α. 

 
Fig. 3. Phase of new operator for various α and corresponding 

linear phase differentiator and phase error for α = 0.9. 

 
Fig. 4. Magnitude response of new operator for different T. 

 
Fig. 5. Magnitude error (in dB) as compared to the continu-

ous-time differentiator for different T.  

 
Fig. 6. Phase response for different T, corresponding linear 

phase differentiator and phase error.  

Hence the Al-Hsue operator is a weighted combina-
tion of the Al-Alaoui operator and the Hsue operator. 

The fractional-order models based on the Al-Hsue 
operator were obtained by expanding fractional powers of 
(10) using Taylor Series Expansion (TSE) and CFE. These 
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fractional-order models showed improved performance in 
terms of both magnitude and phase, over the existing frac-
tional-order models of differentiator and integrator. Hence, 
stable models of Al-Hsue operator based 3rd, 4th and 5th 
order half differentiator and half integrator were developed 
by the expansion of fractional powers of (10) (in this pa-
per, the fractional powers used are r = ±1/2). To realize the 
above-mentioned models, the z-domain transfer functions 
were expanded using CFE as discussed in section 4. 

4. Continued Fraction Expansion 
Technique and Switched Capacitor 
Realization of Al-Hsue operator 
Based Half Differentiators and Half 
Integrators 

4.1 Continued Fraction Expansion Technique  

A discrete transfer function of order n is expressed as 
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where ai’s and bi’s are the coefficients of numerator and 
denominator polynomials for i = 0, 1, …, n. Gn(z) can be 
expanded in different ways [12].  

This transfer function G(z) can be expanded in 
different ways. One of the expansions is:  
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where Ap and Bp are coefficients of CFE for p = 1,2,…,n 
and  Ap= an/bn.   

There are several other expansion techniques involv-
ing different methods of division [25], but we have re-
stricted our examples to only a selected few. Two of these 
transfer function expansion are of the following forms: 
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
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Fig. 7 shows two schematic realizations of continued frac-
tion expansion.  
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Fig. 7. Two schematic realizations of CFE. 

All the expansions are based on mixed Cauer form 
involving terms of the form (Ap+ Bpz) and (Ap+ Bpz

-1) [25].  

Each row of the transfer function of (13) can be rep-
resented by any one of the following recursive relation-
ships given in (16). 
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where m = 1,2,…,(n-1) and p = m + 1.  

Equation (16) represents transfer functions of leaky 
inverting and non-inverting integrators, which are realiz-
able using SC integrators. The constant term represents 
gain or attenuation, and is realized using SC amplifier. The 
SC circuit for the half differentiator and integrator are then 
obtained by connecting the different blocks of integrator 
and differentiator in ladder form.  

4.2 Switched Capacitor Realization 

To illustrate this technique, the procedure for SC re-
alization of Al-Hsue operator based 3rd order half differenti-
ator model obtained using CFE is discussed.  

The 3rd order half-differentiator model (T= 0.001 s; 
where T is the sampling period) is  
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Equation (17) is expanded as  
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The term A0 is a constant and the terms 1/gi(z) i = 1,2,3 
are transfer functions of integrator of the form  
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where BP, AP are the coefficients of the expansion.  

The z-domain transfer functions of the other third 
order models of half differentiator and half integrator 
(obtained using TSE and CFE) for T = 0.001 s are 
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The basic building blocks of switched capacitor cir-
cuits are the SC amplifier/attenuator and the SC integrator 
[12]. Fig. 8 shows the stray-insensitive switched capacitor 
implementation of an amplifier with gain A0= C1/C2. Figs. 
9, 10 show the signal flow graph and the SC realization of 
an integrator having a transfer function of the form of (19). 
The switches are controlled by two non-overlapping clock 
waveforms ‘e’ and ‘o’ shown in Fig. 11. The clocks have 
been realized using CMOS transmission gates (Fig. 12). 
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Fig. 8. Switched capacitor amplifier. 
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Fig. 9. Signal flow graph of integrator of (19). 
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Fig. 10. Switched capacitor integrator. 
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Fig. 11. Non-overlapping clock  o→odd clock, e→even clock. 
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Fig. 12. SC summer and CMOS transmission gate. 

The blocks of Figs. 8 and 10 are connected in ladder 
form to yield the SC realization of the third order half dif-
ferentiator (obtained using CFE of the z-domain transfer 
function) shown in Fig. 13. In the figure, the three SC 
integrator blocks are of the form shown in Fig. 10. The 
summers used to connect various blocks of the ladder have 
been realized using switched capacitors (Fig. 12).  
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Fig. 13. Al-Hsue operator based third order SC half 

differentiator (using CFE). 

The models given in (19-22) are expanded and real-
ized in the same manner as discussed above, and their SC 
realizations are shown in Figs. 14-16. 

Simulations of all the fractional-order differentiator 
discussed above are done on Spice using Level 3 MOSFET 
models with 2 technology and CMOS transmission gates 
as switches. 

The amplitude of the input and clock signal along 
with supply voltages applied are listed in Tab. 1. 
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Fig. 14. Al-Hsue operator based third order SC half 
differentiator (using TSE). 
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Fig. 15. Al-Hsue operator based third order SC half integrator 
(using CFE). 
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Fig. 16. Al-Hsue operator based third order SC half integrator 
(using TSE). 

 

S. No. Parameters Values 

1 Supply voltage ±7.5 V 
2 Clock signal -10 V to +10 V 
3 Input ±2.5V 

Tab. 1. Parameters of the clock and input. 

5. Performance Results and Discussion 
The simulation results are discussed as follows: 

1) The frequency responses of the third order half 
differentiator based on the Al-Hsue operator obtained 
using TSE and CFE are shown in Fig. 17.  

 The magnitude plots of both the forms are in close 
conformity to the theoretical results of continuous-
time domain half differentiator and the MATLAB 
results presented in [19], but the third order half dif-
ferentiator obtained using CFE shows better perform-
ance in terms of magnitude.  

 The phase of Al-Hsue half differentiator approaches 
~45° beyond 150 Hz. The phase shift of the third 
order half differentiator obtained using TSE is 
observed to be approximately linear. 

2) The frequency responses of the third order half 
differentiator based on the Al-Alaoui operator and the 
Hsue operator are shown in Fig. 18. 

 The magnitude responses of the Al-Hsue operator 
based half differentiator models match better with the 
theoretical results of half differentiator than the re-
sults of Al-Alaoui and Hsue operator based models.  
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 The phase response of Al-Alaoui operator based 3rd 
order half differentiator model approximates 45°better 
than the Al-Hsue operator (CFE) based model and the 
phase of Hsue operator and Al-Hsue operator (TSE) 
based 3rd order half differentiator vary linearly over 
the frequency range 0 to 600 Hz. 

 
Fig. 17. SC results: Frequency response of Al-Hsue operator 

based half differentiator. 
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Fig. 18. SC results: Frequency response of Al-Alaoui and Hsue 

operator based half differentiators. 

 
Fig. 19. SC results: Frequency responses of Al-Hsue operator 

based half integrator. 

 
Fig. 20. SC results: Frequency response of Al-Alaoui and Hsue 

operator based half integrators  

3) The frequency response of the third order half 
integrator based on the Al-Hsue operator obtained using 
TSE and CFE are shown in Fig. 19.  

 The magnitude plot of the 3rd order half integrator 
obtained by CFE and TSE of the Al-Hsue operator 
follow with the theoretical results of continuous-time 
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domain half integrator as well as the MATLAB 
simulation results presented in [19], but the CFE 
results match better.  

 The phase of half integrator obtained using CFE 
approximates -45° over the frequency range 100 to 
900 Hz with a maximum error of ±5°. The phase of 
half integrator obtained using TSE varies linearly 
from ~ -15° to ~ -50° over the frequency range 100 to 
900 Hz. 

4) The frequency responses of the third order half 
integrators based on the Al-Alaoui and the Hsue operator 
are shown in Fig. 20.  

 The magnitude responses of both Al-Alaoui and Hsue 
operator based discretizations match with the MAT-
LAB simulation results [19] and also with the theo-
retical result of half integrator in continuous-time 
domain, but best matching occurs for the Al-Hsue 
operator (CFE) based discretization of half integrator.  

 The phase of the Al-Alaoui operator based third order 
integrator varies linearly in the frequency range 100 
to 900 Hz, and that of the Hsue operator based third 
order half integrator realization using CFE is also  
~-45°over the frequency range 100 to 900 Hz with 
a maximum error of ±5°. 

Higher order models of the Al-Hsue operator based 
fractional-order differentiator can also be easily realized 
using the proposed method, but the complexity of the SC 
circuit increases. 

6. Conclusions 
In this paper, we have developed switched capacitor 

realizations of half differentiator and half integrator 
(sr; r = ½) based on the Al-Hsue operator which has im-
proved performance over its parent operators. This method 
can be extended to develop fractional-order models and 
their switched capacitor realizations for different values of 
r; -1 < r < 1. 

The sampling period for all the approximations in this 
paper is chosen as 0.00 1s. However, approximate mathe-
matical models of fractional-order differentiators and frac-
tional-order integrators can be obtained for different values 
of T.  

It is observed that the Spice results of the discretiza-
tions of Al-Hsue operator for half differentiators and half 
integrators show relatively better results as compared to its 
originators. 
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