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Abstract. Biomedical microwave imaging is a topic of 
continuous research for its potential in different areas 
especially in breast cancer detection. In this paper, 3D 
UWB Magnitude-Combined tomographic algorithm is 
assessed for this recurrent application, but also for a more 
challenging one such as brain stroke detection. With the 
UWB Magnitude-Combined concept, the algorithm can 
take advantage of both the efficiency of Fourier Diffraction 
Theorem-based tomographic formulation and the 
robustness and image quality improvement provided by 
a multi-frequency combination. 
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1. Introduction 
Microwave imaging is a topic of intense research for 

its potential in biomedical applications and especially in 
breast cancer detection. X-ray mammography is the 
generally well-established clinical breast imaging 
technique for preventive screening and cancer treatment. 
Other imaging techniques including MRI (magnetic 
resonance imaging), ultrasounds or PET (positron emission 
tomography), are recommended for cases where X-ray 
mammography does not succeed, such as in women with 
dense breasts or with high cancer risk to avoid exposition 
to ionizing radiation, as reported in [1]. This, jointly with 
other concerns, such as the ionizing character of X-ray 
radiation, its uncomfortable (and even painful) application, 
motivate the research in complementary or alternative 
imaging methods exploiting other physical properties of 
tissues. In this framework, the potential of microwave 
imaging relies on the capability of microwaves to 
differentiate among tissues based on the contrast in 
dielectric properties, which is more important than those 
exploited by X-ray mammography (the attenuation of 
waves when passing through the breast structures) [2]. The 
advantages for its practical clinical usage are significant, 
including relatively low cost, the use of low-power non-
ionizing radiation and patient comfort.  

Active microwave imaging relies on obtaining 
information about a target from the scattered fields 
measured at a number of probes, when the target is 
illuminated with an incident field. This inverse scattering 
problem can be addressed either by radar-based techniques 
(refer to [3] for a review of UWB radar methods) or 
tomographic methods. Tomographic approaches try to 
solve the non-linear and ill-posed inverse scattering 
problem, by either linearizing it or iteratively approaching 
the solution. Many research groups are focused on iterative 
algorithms to obtain quantitative reconstructions of the 
dielectric properties of the target. Those are compu-
tationally intensive, above all for 3D reconstructions, and 
usually contain some regularization scheme that requires 
a priori information about the target, having a direct 
influence into the algorithm convergence [4]. A number of 
different methods and optimization schemes have been 
proposed, [5]-[7], reporting useful 3D reconstructions of 
numerical models, phantoms and first 2D measurements on 
real patients [8]. However more research towards 
increasing computational efficiently of the algorithms is 
needed for a real time imaging. This opens the door to less 
computationally heavy algorithms as the ones based on 
linearizing approximations.  

Linearizing approximations, on which the method 
proposed here is partially based, allow to obtain robust 
reconstructions, in a very efficient way, being however 
limited to small relatively low-contrast targets to produce 
quantitative reconstructions [9]. In general, biological 
organs do not accomplish these requirements, thus, line-
arizing methods are restricted to qualitative recon-
structions. In [10], useful qualitative images of a trans-
versal cut of a human forearm were presented, retrieving 
clearly the two bones.  

The use of multi-frequency information in a con-
venient manner has been recognized as an opportunity for 
linearizing methods to improve the image quality in non-
Born scenarios [11]. To this extent, it has not been used in 
linearized tomography methods due to the well-known 
frequency-dependent residual phase errors that appear 
when electrically large and highly contrasted targets are 
imaged. In the algorithm validated herein, namely 3D 
UWB Magnitude-Combined (UWB-MC) tomography, an 
amplitude (phase-less) multi-frequency combination is 
proposed to overcome this undesired effect [12].   
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Brain stroke detection is also addressed in this paper 
to investigate the potentiality of the proposed algorithm in 
such a challenging application, as proposed previously by 
[5], [13]. The motivation to explore this case is the 
difficulty to differentiate the cause of the stroke between 
a hemorrhage or a blood clot. Both present similar symp-
toms, but opposite treatment, which must be given with the 
maximum promptness. Up to now, the diagnosis relies on 
bulky imaging methods, such as CT (computed 
tomography), PET and MRI, which are not available in all 
medical emergency units. This deficiency may definitely 
delay or complicate the decision and eventually cause 
important after-effects. 

2. 3D UWB Magnitude-Combined 
Tomographic Imaging Algorithm 
3D UWB Magnitude-Combined tomographic imag-

ing, as the name suggests, proposes a compound coherent 
multi-view image addition, which is typical of the 
linearized-tomography-based algorithms, followed with 
a magnitude multi-frequency image combination, in the last 
step of the algorithm. In this paper a 3D cylindrical 
geometry, as shown in Fig. 1 is studied. The cylindrical 
array of both the transmitting and the receiving antennas is 
composed by ௭ܰ, 2ܽ-diameter rings of థܰ angularly 
equispaced antennas. For a given transmitter, situated at ݎԦ்ᇱ , 
the scattered field is measured at the receiver positions, ݎԦோ

ᇱ . 
This procedure is successively repeated for each transmitter 
to complete a maximum of థܰ ൈ ௭ܰ acquisitions. 

 
Fig. 1. The target of permittivity ߳ሺݎԦ, ଴݂ሻ is immersed in a me-

dium of permittivity ߳௘௫௧ሺ ଴݂ሻ. The measurement cylin-

drical array of antennas is composed by ܰݖ rings of ܰ߶ 
antennas of radius ܽ, separated a distance ∆௭. ݎԦ் ,ோ

ᇱ  
refers to the position of the transmitting and receiving 
antennas respectively, and ்̂ݎ ,ோ is the direction of the 
synthesized plane wave. 

The theoretical basis for 3D UWB-MC to obtain the 
dielectric contrast of the target is as follows. Let ܿሺݎԦ, ଴݂ሻ be 
the dielectric contrast expressed as 

ܿሺݎԦ, ଴݂ሻ ൌ 1 െ
߳ሺݎԦ, ଴݂ሻ

߳௘௫௧ሺ ଴݂ሻ
 (1) 

߳ሺݎԦ, ଴݂ሻ and ߳௘௫௧ሺ ଴݂ሻ being the complex permittivities of 
the target and the external medium respectively, measured 
at a particular frequency	 ଴݂.  

The dielectric contrast can be related to the induced 
current on the target, 	ܬԦሺݎԦ, ଴݂, Ԧோݎ

ᇱ ሻ, by 

,ԦݎԦሺܬ  ଴݂, Ԧோݎ
ᇱ ሻ ൌ െ݆2ߨ ଴݂൫߳ሺݎԦ, ଴݂ሻ െ ߳௘௫௧ሺ ଴݂ሻ൯ܧሬԦ௧ሺݎԦ, ଴݂, Ԧோݎ

ᇱ ሻ ൌ 

 ൌ ߨ2݆ ଴݂߳௘௫௧ሺ ଴݂ሻܿሺݎԦ, ଴݂ሻܧሬԦ௧ሺݎԦ, ଴݂, Ԧோݎ
ᇱ ሻ (2) 

where ܧሬԦ௧ is the total electric field including the scattered 
and the incident field. 

Using the reciprocity theorem (3), one can obtain the 
induced current on the target, ܬԦோ, from the scattered field 
measured along the antenna 

Ԧ்ܬ∭  ൉ ሬԦோܧ ்ݒ݀ ൌ∭ܬԦோ ൉  ோ .  (3)ݒ݀	ሬԦ்ܧ

Ԧ்ܬ  is the electric current on the cylindrical antenna acting as 
a transmitter which radiates a plane wave electric field, ܧሬԦ்	, 
propagating to a direction ்̂ݎ  Ԧோ is the electric current onܬ .
the target induced by a plane wave incident field pro-
pagating along the vector ̂ݎோ (ܧሬԦோ

௜  ሬԦோ, is the scattered fieldܧ .(
produced by  ܬԦோ. 

When the cylindrical array is composed by linear z-
polarized antennas, ܬԦ்  is also z-directed, therefore, only the 
z component of the ܧሬԦோ field is needed, thus permitting 
a scalar formulation. 

Under Born approximation (the scattered field is 
negligible in front of the incident field), the induced current 
 Ԧோ can be expressed asܬ

,ԦݎԦோሺܬ ଴݂, Ԧோݎ
ᇱ ሻ ≅ ߨ2݆ ଴݂߳௘௫௧ሺ ଴݂ሻܿሺݎԦ, ଴݂ሻܧோ

௜ ሺݎԦ, ଴݂, Ԧோݎ
ᇱ ሻ	ߠ෠ோ= 

ൌ ,Ԧݎோሺܬ ଴݂, Ԧோݎ
ᇱ ሻ	ߠ෠ோ.  (4) 

Then, replacing (4) in (3), a Fourier transform ap-
pears, and the spectrum of the contrast profile can be 
expressed as 

ሚܥ ቀ݇଴,௘௫௧ሺ்̂ݎ ൅ ோሻቁݎ̂ ൌ
ܽଶ

ߨ2 ଴݂߳௘௫௧ሺ ଴݂ሻ
෍ ௭௦ܧ

ேഝ,ே೥,ேഝ,ே೥

௜,௝,௞,௠ୀଵ

ቀݎԦோ೔ೕ
ᇱ , ଴݂; Ԧ்ݎ ೖ೘

ᇱ ቁ 

Ԧ்ݎఏ൫ܫ ೖ೘
ᇱ , ଴݂; ݎ்̂ ൯ܫఏ ቀݎԦோ೔ೕ

ᇱ , ଴݂;  ோቁ (5)ݎ̂

where ܧ௭௦ ቀݎԦோ೔ೕ
ᇱ , ଴݂; Ԧ்ݎ ೖ೘

ᇱ ቁ is the scattered field measured at 

a probe positioned at ݎԦோ೔ೕ
ᇱ  when an antenna placed at ݎԦ்

ೖ೘
ᇱ is 

transmitting. ܫఏ൫ݎԦ் ,ோ
ᇱ , ଴݂; ݎ்̂ ,ோ൯ represents the amplitude to 

be applied to a probe situated at ݎԦ் ,ோ
ᇱ  to synthesize a plane 

wave towards ்̂ݎ ,ோ and vertical polarization [15] as a com-
bination of cylindrical waves emanating from a number of 
probes. 

From (5) it can be derived that for a given frequency, 
when the object is illuminated with an incident plane wave 
directed to ்̂ݎ , the Fourier transform of the scattered field 
obtained at a direction ̂ݎோ may be translated into the angular 
spectrum of the dielectric contrast of the target sampled on 
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