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Abstract. THz technology for developing imaging systems 
has recently aroused great interest, mainly due to the large 
number of applications in which these frequencies can be 
used: security, vision in hard environments, etc. 

In this paper we propose a method that reduces signifi-
cantly the number of detectors needed for achieving cer-
tain resolution by means of diffraction that paradoxically 
is its main limiting factor in current imaging devices. The 
method uses diffraction as a way of achieving the advan-
tages of the spatial diversity (information spread over a set 
of detectors) giving also the possibility to increase the 
resolution of the obtained images interpolating samples 
between detectors thanks to the slow variation function 
created by the diffraction phenomena. 
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1. Introduction 
THz technology despite having a great potential still 

faces limitations that hinder its development. The most 
important one is the difficulty to produce detectors in large 
numbers at these frequencies. This fact poses serious con-
strains to the possibilities of the imaging systems that use 
them. Many times, the system has to include some kind of 
moving mirrors in order to scan the entire vision field. 
These limitations boost research towards finding alterna-
tive systems and techniques that allow us to overcome the 
shortcomings current technology has. 

When talking about vision systems it is mandatory to 
mention its main detection device in the optical frequency 
band: the CCD (Charge-Coupled Device). The CCDs are 
the paradigm of individual non-cooperative detection. 
Although the elements of a CCD make up an array of sen-
sors, they do not work as one antenna-wise (cooperation 
among elements), but each one is exclusively responsible 
for detecting the information that comes to it. This concep-
tion, which can be extrapolated to lower frequencies, limits 
the maximum achievable resolution, the robustness and the 
complexity of the system. The former is limited by the size 
of the elements, the spacing among them and the total 

number of detectors in the array. The robustness is limited 
to that of a single element since the failure of any of them 
means the loss of the information the damaged one was 
supposed to receive. Finally, the complexity increases due 
to the fact that individual detection itself requires a large 
number of detectors along with the control elements asso-
ciated to each of them. 

Nowadays it is technologically affordable to take this 
non-cooperative approach at optical frequencies since 
components that work in this band are simple and can be 
produced massively, therefore cheaply, in a highly mas-
tered technology such as silicon or CMOS. On the other 
hand we have the low THz band which lies between the 
optical and the microwave domain. Neither optical tech-
nology nor the microwave one provide the necessary tools 
for developing satisfactory solutions at these frequencies. 
Current devices working in this band rely on complex 
detectors that need heterodyne receivers to work in 
an intermediate frequency that present RF technology can 
handle. This complexity seriously limits the amount of 
detectors that can be used in an array.  

Nature has found its way to get round some of these 
weaknesses, achieving more robust and less complex sys-
tems. One of the most representative exponents of this 
success is human eye. Even though it is not fully under-
stood how it works, it is certainly true, and so demonstrates 
the evidence, that its acuity is beyond the theoretical limit it 
is supposed to have. Classical approaches (usually based 
on ray theory) fail to explain this fact and further research 
has yet to be made. This work ascribes this capability to 
a combination of spatial diversity of the information and 
cooperative detection, and aims to explore its usage in 
imaging systems. 

We have developed a method that uses spatial diver-
sity along with cooperative detection to get round the 
shortcomings presented above. It improves the system’s 
robustness while lowering its complexity. The way of ap-
plying it to the CCD case is by forcing each beam of light 
to scatter (using a pinhole for example) so that it illumi-
nates not a spot (single detector) but a region. By doing so 
the information is spread among several detectors rather 
than being received by a single one (spatial diversity). This 
represents a step forward in terms of robustness: if one or 
several detectors fail the information can still be recovered 
from those others receiving it. In addition, spatial scattering 
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using a pinhole is a reversible linear transformation so the 
signal’s original spatial distribution can be recovered. At 
this point it is important to highlight that if signal level 
rather than signal power detection is used, then when being 
reconstructed (spatially), it adds up in amplitude while the 
noise adds up in power (it is received in phase in all de-
tectors), this allows a smaller SNR in each detector, there-
fore it can be simpler. 

Furthermore, spatial diversity also offers a second 
possibility. Given the fact that the information is received 
by several detectors we can get rid of some of them and 
calculate their approximate value through interpolation. 
This technique reduces significantly the number of detec-
tors required for determining the incoming point of the 
signal and its original value, thus diminishing the overall 
complexity of the system. Since decimating implies alias-
ing, the image has to be band-limited. This does not repre-
sent an important constrain as most images have the 
majority of their energy at low (spatial) frequencies.  

2. Diffraction 
Diffraction is a phenomenon present in every single 

imaging system. It is the main constrain to the maximum 
resolution achievable. It arises from the finite nature of any 
real imaging system compared with the infinitude of the 
incoming plane wave. This finitude produces the spatial 
windowing of the latter. The main effect of diffractions is 
transforming point sources in the landscape into blobs on 
the image. The shape of these blobs (also known as dif-
fraction patterns) depends on the shape of the system’s 
smallest aperture. 

A rigorous study of such a phenomenon would in-
clude the use of Maxwell’s equations given the electro-
magnetic nature of light. However several approximations 
have been made along the History, being the ones made by 
Arnold Sommerfeld, Jean Fresnel and Joseph von Fraun-
hofer the most relevant ones. All of them treat light as 
a scalar phenomenon neglecting the intrinsic vectorial 
nature of electromagnetic fields as described in Maxwell’s 
equations. The good news is that in the microwave region 
of the spectrum, under certain conditions, these approxi-
mations produce very accurate results. In our case we have 
used the Fraunhofer approximation.  

The Fraunhofer approximation gives an accurate 
estimation of diffraction pattern of an aperture under the 
following conditions:  

 The dielectric medium is linear, isotropic, homogene-
ous, nondispersive and nonmagnetic. 

 The diffracting aperture is large enough compared 
with the wavelength. 

 The diffracting fields must not be observed too close 
from the aperture (far field). 

The mathematical formulation assumes a diffracting 

aperture lying in the (,) plane illuminated in the z posi-
tive direction according to Fig. 1. The illumination consist 
of a monochromatic scalar field u(P,t) = A(P) cos(2t-
(P)) being P any point in the (,) plane and t the time. 
For simplicity it can also be represented as a phasor 
U(P)=A(P)ej(P). According to this, the diffraction pattern 
produced at the image plane (U,V), parallel to (,), lo-
cated at a distance F is given by (1) which is nothing else 
but the Fourier transform of the field distribution in the 
aperture itself. 
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In order to control and define the diffraction pattern, 
a circular diaphragm is commonly used. The intensity dif-
fraction pattern it produces is given by (2) and (3). 
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where a is the radius, I0 is the maximum intensity at the 
centre of the disk, J1 is the Bessel function of the first kind 
and order one,  is the angle between the axis perpendicu-
lar to the aperture and centered on in and the line between 
the observation point and the aperture’s centre, P0 is the 
incident power at the aperture, λ is the wavelength and 
k = 2π/λ is the wave number. The resulting profile is 
shown in Fig. 2. 

 
Fig. 1. Scheme of variables for the Fraunhofer approximation. 

 
Fig. 2.  Airy disk’s intensity profile. 
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This intensity pattern is called “Airy Disk” after 
G. B. Airy who first calculated it and corresponds to the 
intensity of the Fraunhofer diffraction pattern of the circu-
lar aperture. Its importance arises from the fact that it is 
used for defining the theoretical maximum resolution limit 
of an imaging system. 

3. Diffraction Vs. Resolution 
The question now is: how close can two Airy disks be 

before they stop being distinguishable? In a diffraction-
limited imaging system with a circular pupil two incoher-
ent point sources are said to be “barely resolved” when the 
center of the Airy intensity pattern generated by one of 
them falls exactly on the first zero of the Airy pattern 
generated by the other, Fig. 3. This criterion is known as 
the Rayleigh criterion. 

 
Fig. 3.  The Rayleigh criterion. 

The relation between this criterion and the maximum 
resolution achievable in a classical imaging sensor such as 
the CCD is simple. In a CCD the resolution is given by the 
size and number of sensors: the smaller (i.e. the more) the 
sensors are, the more resolution you get (Fig. 4). But this 
cannot be applied endlessly. The maximum resolution 
achievable will be given by the smallest sensor size which 
still allows the diffraction pattern to fit most of its energy 
within a single detector, Fig. 5. If smaller sensors are used 
the result is a blurry image. This is why these systems are 
diffraction limited. 

The Rayleigh criterion establishes that the minimum 
distance to formally be able to distinguish two identical 
Airy Disk functions at the image plane is given by their 
radius: 
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Using average dimensions of a human eye 
(F = 16 mm, λ = 555 nm, a = 1.5 mm) in the equation 
above, it yields a minimum distance on the retina of about 
3.6 µm. Given that the diameter of a photo-detector is 
1.5 µm, that the separation among sensors is about 0.5 µm 
and that the Airy Disk diameter is 7.2 µm two conclusions 

are evident: first, a single Airy Disk covers several photo-
detectors therefore it should create a blurry image, accord-
ing to the diffraction limit for CCDs; second, the minimum 
detectable detail size, given by the minimum angle of 
resolution through this criterion, is about 50 seconds of arc. 

  

  
Fig. 4.  Resolution improvement of the obtained image as the 

sensor size is reduced, being increased the number of 
them in a CCD. 

 
Fig. 5.  Diffraction vs Resolution in a CCD. 

Neither the apparent blur nor the minimum angle of 
resolution limits the real capabilities of the human eye, 
since we are able to see clear images and details much 
smaller than those. All this suggest that there are mecha-
nisms -different from the CCD approach- which allow 
resolution beyond the diffraction limit. 
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4. Fourier Optics and Signal Detection 
Imaging systems can be studied using a powerful set 

of mathematical tools known as Fourier Optics. These 
tools, as they name suggests, use Fourier analysis and 
synthesis to study classical optics. They are particularly 
appropriate and handy for studying Fraunhofer diffraction 
patterns and its impact in imaging systems. 

Let’s call Ug(u,v) the diffraction-free image predicted 
by geometrical optics. According to [5] the image 
produced by a diffraction-limited space-invariant imaging 
system will be given by (5). 
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where hλ,F(u,v) is the amplitude impulse response (corre-
sponding to the Fraunhofer diffraction pattern) of the exit 
pupil for a wavelength λ at a distance F. This is nothing but 
the convolution of both functions; therefore all Fourier 
transform properties apply. 

However actual images are not monochromatic, but 
polychromatic. It turns out that under narrow band condi-
tions (as is the case of imaging systems) one can consider 
the amplitude impulse response to be approximately con-
stant (hλ,F(u,v)   hF(u,v)). 

Even so, under polychromatic incoherent illumination 
the resulting phasor U(u,v,t) is the sum of the different 
components at the various frequencies. As a result the 
different impulse responses (that we assume to be the 
same) interact in an uncorrelated fashion causing it to vary 
over time; therefore they must be added in power rather 
than in amplitude. When power is involved then luminous 
intensity plays a key role. 

In Physics, intensity is the measure of the time-aver-
aged energy flux. The need to time-average the instantane-
ous intensity arises from the long time it takes to the 
detector to integrate the incoming power compared to the 
reciprocal of the bandwidth. For an electromagnetic wave 
this measure is given by time-averaging the Poynting 
vector associated with it (6). Luckily Fourier analysis is 
still valid for incoherent imaging systems as shown in (7). 

 2
),,(),( tvuUvui    (6) 

  








  ddivuhvui gFi ),(),(),(
2

,
  (7) 

The intensity profile appears at the image plane where 
the sensors are located, generally, in a regular matrix-like 
fashion. 

Without loosing generality, the 1D detection process 
works as follows. The output level of the detector of length 
X spanning from a to b (Fig. 6) using an integration time T 
is given by (8). 

 

Fig. 6.  Intensity profile detection. 
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Assuming regularly-spaced equal-sized contiguous 
sensors, the detection process is equivalent to the linear 
system presented in Fig. 7. 

 
Fig. 7.  Intensity profile detection equivalent linear system. 

The spatial spectrum P(f) of the detected light 
intensity profile p(x) is given by (9) 
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It is clear that the zeros introduced by the sinusoidal 
term destroy information. The way of addressing this issue 
is taking advantage of the fact that sine’s period is 2/X so 
to locate its zeros as far as possible then small values of X 
have to be used. For such values the spectrum in (9) can be 
approximated by a simpler expression shown in (10) 

 XfjefIXTfP  )()( .  (10) 

However the smaller X is the less energy is detected 
by each sensor. For this reason it has to be compensated by 
extending the exposure time T. In the end, a trade-off be-
tween the two quantities has to be made. The final result 
will depend on the relation between the sine’s first zero at 
f = 1/X and the high frequency components of I(f). 

Finally the spectrum Ps(f) of the sampled signal p[n] 
(corresponding to the detectors output level), based on 
(10), is given by (11). 
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5. Resolution Beyond the Diffraction 
Limit 
Switching domain and reducing the problem to one 

dimension so that Ii(f), H(f) and Ig(f) are the spectrums of 
ii(u), |h(u)|2 and ig(u) respectively, it is immediate that 
Ii(f) = H(f)Ig(f). 

Assuming an X small enough so (10) can be used, that 
most of the information in Ii(f) is located at low spatial 
frequencies and that H(f) is a good enough anti-aliasing 
LPF it is possible to simplify (11) down to (12) in the  
f  (-½,½) interval. 
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The recoverability of the diffraction free image from 
the detected one is reflected in (12). The resolution im-
provement arises from the possibility of using detectors 
which are smaller than the diffraction pattern. 

6. Reduction of the Number of Sen-
sors: Decimation and Interpolation 
There is an important fact, already mentioned in the 

introduction, which is crucial in regard to the system com-
plexity. Diffraction transforms point sources into blobs, 
and if small-enough detectors are used then information is 
spread among several of them. This allows a reduction in 
the number of detectors (decimation) thus reducing the 
system complexity. The value of the removed sensors can 
be interpolated. On the cons side a more restrictive (narrow 
banded) LPF H(f) is required as will be shown. 

Given the original signal p[n] and its spectrum Ps(f), 
the spectrum Pi(f) of the signal resulting of applying 
a decimation factor M followed by the interpolation 
process required to recover the decimated samples using 
an interpolation filter Hi(f) is given by (13) 
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It is clear that if Ps(f) is to be recovered from Pi(f) 
then the former has to be band limited to the interval  
f  (-1/M, 1/M). According to (12) H(f) is the one that has 
to do the job of band limiting Ig(f). 

An important fact to remark is that whichever deci-
mating factor M is applied the system complexity (i.e. 
number of detectors) decays by a 1/M2 factor due to the bi-
dimensionality of sensor matrix. This implies that small 
decimation factors such as 2 or 3 produce a system com-
plexity reduction of 4 and 9 times respectively. 

7. Proposed Method and Results 
The method that has been developed puts together all  

the ideas presented to this point. It uses the diffraction 
pattern produced by the diaphragm (assumed known and 
constant for the entire image) to create a spatial diversity 
(phase plane) strategy to be able to perform the detection in 
optimal conditions. It assumes that the blur generated by 
the diaphragm is perfectly reversible by just applying the 
inverse function (Fig. 8). 

 
(a) 

 
(b) 

 
(c) 

Fig. 8.  (a) Original image. (b) Blurred image. (c) Recovered 
image. 

Now we go a step forward and apply the decima-
tion/interpolation process explained in section 6. Taking 
advantage of the fact that the diffraction pattern is a slow 
variating function (LPF) over the image (many detectors 
will be “sampling” that function rather than integrating it) 
we can interpolate new points in it thus increasing, artifi-
cially, the number of sensors and therefore improving the 
resolution of the final image. In order to compare the re-
sults, we decrease intentionally the number of detectors 
(pixels) once the original image (Fig. 8a) has been blurred 
by the diaphragm. In Fig. 9, a point source (a), which 
originally would be missed by the array, is spread through 
the sensors by diffraction (b). Once detected, the missing 
values are calculated through interpolation (c) and then the 
whole image is de-blurred (d) and presented. 

In Fig. 10 and Fig. 11, an inverse problem -maintain-
ing the resolution (number of pixels) of the final image and 
reducing the required detectors- is presented. The image is 
detected by a decimated array of sensors (Fig. 10a), then it 
is interpolated (Fig. 10b) and finally it is deblurred (Fig. 11 
right).  
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Fig. 9.  The proposed method: (a) point (direction) to be 

detected, (b) blurred image over the detectors, (c) 
interpolated image and (d) final improved image. 

 

 
(a) (b) 

Fig. 10.  Size comparison, assuming equal size for the detectors 
and for the final pixels, between the image captured by 
a decimated CCD (a) and the interpolated image (b). 

The images obtained using different number of de-
tectors are shown Fig. 11, proving that the shapes (high 
frequencies) are properly restored despite the reduced 
number of sensors. On the left column the result of using 
a classic CCD with certain amount of detectors is shown 
while the right column shows the result of using our 
method with the very same amount of detectors. 

  
(a) 

  
(b) 

  
(c) 

Fig. 11.  The original image of NxN sensors shown in Fig. 8 
treated with the proposed method. Image obtained with 
NxN/16 detectors (a), with NxN/36 (b) and NxN/100 
(c). 

8. Conclusions 
Two main conclusions arise from this study: first, it is 

possible to get resolution beyond the diffraction limit 
(Fig. 4); second, the method proposed reduces significantly 
the number of sensors needed to achieve certain resolution. 
Note that a decimation factor M implies a M2 reduction in 
the number of sensors. 

Last but not least, our method produces a more robust 
system since the interpolation applied recovers not only the 
decimated pixels, but also the damaged ones. This is possi-
ble because diffraction spreads out the information that in 
a CCD would be received by a single pixel across several 
ones. 
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