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Abstract. In this study, two novel first-order all-pass fil-
ters are proposed using only one grounded resistor and one
grounded capacitor along with a fully differential current
conveyor (FDCCII). There is no element-matching restric-
tion. The presented all-pass filter circuits can be made elec-
tronically tunable due to the electronic resistors. Further-
more, the presented circuits enjoy high-input impedance for
easy cascadability. The theoretical results are verified with
SPICE simulations.

Keywords
Analog filter, all-pass filter, cascadable filter, high-Q
band-pass filter, grounded capacitor, FDCCII, MOS-
FET based resistors.

1. Introduction
In the literature different active elements [1] have been

used in the design of voltage-mode (VM) all-pass filters
[2]–[19] for different useful features, such as high input
impedance, reduced number of active and passive elements
or having grounded capacitors, etc. Some recent VM filter
structures [13]–[19] emphasize the importance of the design
with only grounded passive elements for easy integrated cir-
cuit (IC) implementation. Grounded IC capacitors have less
parasitics compared to floating counterparts. Furthermore,
the floating capacitors require an IC process with two poly
layers. On the other hand, the grounded resistors can be re-
placed by MOS based electronic resistors [20] providing the
advantages of less chip area and tunability. The electroni-
cally tunable circuits have been an important research area
in the design of analog integrated circuits, because the toler-
ances of the electronic components in the IC realization can
be very high and thus fine-tuning is necessary.

In [13], the VM all-pass section is designed by
means of an operational transconductance amplifier (OTA),
unity-gain differential amplifier, active voltage divider, and
grounded capacitor. The VM circuits in [14] employ two

resistors, two capacitors and two current conveyors. The
VM circuits in [15], [16] use two differential difference cur-
rent conveyors (DDCC) [21] and three grounded passive el-
ements and they are cascadable. The circuit in [17] employs
differential voltage conveyor (DVCC) [22] and two resistors.
In [18], applications of the recently introduced analog build-
ing block (ABB) called voltage differencing differential in-
put buffered amplifier (VD-DIBA) is presented. The pro-
posed VM all-pass filter is composed of single VD-DIBA
and one grounded capacitor. The circuits in [19] have a sin-
gle fully differential current conveyor (FDCCII) [23] as ac-
tive elements and two passive components.

In this study, in addition to the FDCCII based canonical
and cascadable circuits of [19] in the literature, two supple-
mentary cascadable VM first-order all-pass filters are pre-
sented. The proposed cascadable circuits employ only one
grounded resistor and one capacitor and they have no ele-
ment matching restriction compared to [14]–[16]. The intro-
duced circuits consist of one fewer active element in com-
parison to [17]. Moreover, as an application example the
proposed all-pass filters are used in the implementation of
the high quality factor (high-Q) band-pass (BP) filter cir-
cuit [24]–[28] that is used frequently in the intermediate fre-
quency stages of the receiver circuits [27]. Different from the
circuits in [24]–[28], the presented high-Q band-pass filter
example has a fine-tuning capability for its pole frequency
and it consists of only grounded capacitors. The simulation
results are used to verify the operation of the circuits.

2. FDCCII and Circuit Description
Fully differential current conveyor (FDCCII) is an

eight-terminal ABB shown symbolically in Fig. 1. Conside-
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In this study, in addition to the FDCCII based 
canonical and cascadable circuits of [15] in the literature, 
two supplementary cascadable VM first-order all-pass 
filters are presented. The proposed cascadable circuits 
employ only one grounded resistor and one capacitor and 
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[11]-[13]. The introduced circuits consist of one fewer 
active element in comparison to [14]. Moreover, as an 
application example the proposed all-pass filters are used 
in the implementation of the high quality factor (high-Q) 
band-pass (BP) filter circuit [20]-[24] that is used 
frequently in the intermediate frequency stages of the 
receiver circuits [23]. Different from the circuits in [20]-
[24], the presented high-Q band-pass filter example has a 
fine-tuning capability for its pole frequency and it consists 
of only grounded capacitors. The simulation results are 
used to verify the operation of the circuits. 

2. FDCCII and Circuit Description 
Fully differential current conveyor (FDCCII) is an 

eight-terminal analog building block shown symbolically 
in Fig. 1. Considering the non-idealities caused by the  
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Fig. 1. The symbol of the FDCCII. Fig. 1. The symbol of the FDCCII.
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Fig. 2. (a) Presented general structure of VM all-pass filter,
(b) first presented VM all-pass filter circuit,
(c) second presented VM all-pass filter circuit.

ring the non-idealities caused by the physical implementa-
tion of the FDCCII [23], it is described with a matrix equa-
tion as follows:


VX+

VX−
IZ+
IZ−

=


0 0 β1 −β2 β3 0
0 0 −β1 β2 0 β4

αP 0 0 0 0 0
0 −αN 0 0 0 0




IX+

IX−
VY1
VY2
VY3
VY4


(1)

where ideally β1 = β2 = β3 = β4 = 1 and αP = αN = 1 that
represent the voltage and current transfer ratios of the FD-
CCII, respectively.

The transfer function of an all-pass filter can be given
as follows: Vo(s)

Vi(s)
= K

1− sτ

1+ sτ
(2)

where K is the gain constant and its sign determines whether
phase shifting is from 0 to π or from π to 0, and τ is the
time constant. The proposed circuits are shown in Fig. 2.
The general VM transfer function of the circuit in Fig. 2(a)
is given for the ideal case (β1 = β2 = β3 = β4 = 1 and
αP = αN = 1):

Vo

Vi
=

Z1−Z2

Z1 +Z2
. (3)

Transfer function in (3) yields to two all-pass filter cir-
cuits under the specialization of Z1 and Z2 shown in Fig. 2(b)
and 2(c). Their transfer function can be given as follows:

Vo

Vi
= K
−1+ sCR
1+ sCR

(4)

where K = +1 for Z1 = R and Z2 = 1/sC illustrated in
Fig. 2(b) and where K = −1 for Z1 = 1/sC and Z2 = R il-
lustrated in Fig. 2(c). Considering the active element non-
idealities as given in (1), the transfer function for the circuit
in Fig. 2(c) can be given as follows:

Vo

Vi
=
−αNβ4 +αPβ3sCR
(αN +αPsCR)β2

. (5)

The parasitic capacitances in the implementation of the
active elements limit the high frequency operation. To eval-
uate high frequency performance, the frequency dependency
of the current and voltage transfer ratios should be taken into
account. Therefore, α(s) and β(s) for FDCCII will be mod-
eled with first-order functions for simplicity as:

αN(s) =
αN0

1+ sτN
, αP(s) =

αP0

1+ sτP
, βk(s) =

βk0

1+ sτβk
,

(6)

for k = 1,2,3,4 and where the αN0, αP0, and βk0 are the
value of the current and voltage transfer ratios at low fre-
quencies and ωN = 1/τN , ωP = 1/τP, and ωβ = 1/τβ repre-
sent their corresponding poles. Combining (5) and (6), the
frequency dependent transfer function of the presented all-
pass circuit in Fig. 2(c) can be obtained as follows:

Vo

Vi
=

(
1+ sτβ2

)[ −αN0β40 (1+ sτP)
(
1+ sτβ3

)
+

+αP0β30sCR(1+ sτN)
(
1+ sτβ4

) ]
β20

[
αN0 (1+ sτP)+

+αP0sCR(1+ sτN)

](
1+ sτβ3

)(
1+ sτβ4

) .
(7)

Equation (7) shows that extra poles appear due to one-
pole model additional to pole at 1/CR. If the frequency of
these additional poles are sufficiently higher than the pole of
the presented all-pass filter such as (CR)−1�min{ωβ3, ωβ4,
ωαP, ωαN}, their effect on the frequency can be ignored.

3. Simulation Results
To verify theoretical results the proposed filter circuit

shown in Fig. 2(c) is simulated by the SPICE simulation
program. The FDCCII was realized based on the CMOS im-
plementation in [23] (Fig. 3) and simulated using 0.35 µm,
level 3 MOSFET parameters. The aspect ratios of the MOS
transistors are given in Tab. 1. DC supply voltages of±1.3 V
and Vbp, Vbn biasing voltages of 0 V are used. Biasing
currents are chosen as 150 µA. The frequency response of
the proposed circuit in Fig. 2(c) is given in Fig. 4(a) for
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Fig. 3. CMOS FDCCII implementation based on [23].

C = 100 pF and R = 1.5 kΩ. The effects of the tempera-
ture on frequency response are examined for 10◦C, 27◦C,
and 50◦C in Fig. 4(b). The frequency response is slightly
affected by the temperature. Time domain analysis of the
proposed circuit in Fig. 2(c) for a 0.4 V peak-to-peak input
signal at 100 kHz is given in Fig. 5 for passive element val-
ues of C = 100 pF and R = 10 kΩ. Total harmonic distortion
at this frequency is found as 1.1 %. There is a 25 mV off-
set voltage at the output caused by the non-idealities of the
FDCCII.

The presented all-pass filter is used to implement an
electronically tunable high-Q band-pass (BP) filter applica-
tion [24]–[28] as shown in Fig. 6. The quality factor of the
band-pass filter is determined by RA and RB that is approx-
imately equal to Q ≈ RA/RB [27]. In Fig. 6(a), the ca-
pacitor and resistor values are chosen as C1 = C2 = 30 pF,
R1 = R2 = 2 kΩ, RA = 30 kΩ, and RB = 1 kΩ for a pole fre-
quency of 2.65 MHz. Although the theoretical Q value is 30,
in the simulations we have obtained Q = 25. The simulation
results are given in Fig. 7. The center frequency of the BP
filter circuit is found as 2.2 MHz in the simulation. Devi-
ations from the ideal response result are caused by the non-
idealities of the FDCCII used in the simulations. Fortunately,
this deviation in the pole frequency can be corrected by fine
tuning that can be achieved replacing grounded resistors with
MOSFET based resistors [20] as shown in Fig. 6(b). The
simulation results for the fine tuning of this circuit are illus-
trated in Fig. 8. The transistor aspect ratios for the MOS-
FET based electronic resistor in Fig. 6(b) are chosen as
(W/L)M1 = (W/L)M2 = 10.5 µm/1.4 µm and capacitor values
are chosen as C1 =C2 = 30 pF. The pole frequency of the cir-
cuit is tuned between 3.14 MHz and 4.7 MHz by changing
the control voltage VC is changed between 0.8 V and 1.0 V.
The parasitics and the non-idealities of the active elements
cause change in the magnitude of the gains at the center fre-
quency of the filter at high frequencies.

Transistors W(µm) L(µm)
M1-M6 4.4 0.35
M7-M9, M13-M15, M18, M19, M22,
M23, M25, M27, M29, M30, M33,
M34, M37, M38, M41, M42 35 0.35
M10-M12, M16, M17, M20, M21,
M24, M26, M28, M31, M32, M35,
M36, M39, M40, M43, M44 8.8 0.35

Tab. 1. Transistor aspect ratios.
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Fig. 4. (a) Frequency response of the presented circuit, (b) the
effect of the temperature change on the frequency re-
sponse.
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Figure 5. Time domain analysis of the presented circuit 
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(b) Electronically tunable form of the example band-pass filter 
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Fig. 5. Time domain analysis of the presented circuit.
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Fig. 6. (a) A high-Q band-pass filter example using presented
all-pass filter, (b) electronically tunable form of the ex-
ample band-pass filter.

4. Conclusion
In this study, two minimal first order all-pass filter re-

alizations are given using only grounded passive elements.
The proposed circuits have the advantage of having high in-
put impedance for easy cascadability. The presented all-pass
filter circuits are used in a tunable high-Q band-pass filter
example. Simulations are performed to verify the theory.
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