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Abstract. This paper brings a note on systematic circuit 
synthesis methods for modeling the dynamical systems 
given by mathematical model. Both classical synthesis and 
integrator based method is demonstrated via the relatively 
complicated real physical systems with possible chaotic 
solution. A variety of the different active building blocks 
are utilized to make the final circuits as simple as possible 
while preserving easily measurable voltage-mode state 
variables. Brief experimental verification, i.e. oscilloscope 
screenshots, is presented. The observed attractors have 
some structural stability and good relationship to their 
numerically integrated counterparts.  
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1. Introduction 
Chaos can be roughly considered as the long-term 

unpredictable dynamical behavior and resembles noise in 
many aspects. It is a rare type of motion observable in the 
autonomous nonlinear dynamical systems with at least 
three degrees of freedom. The typical features of the 
chaotic signals are its sensitivity to the tiny changes of the 
initial conditions and broad-band continuous frequency 
spectrum. This can be useful in many practical circum-
stances like securing communication channels [1], masking 
signals [2], spreading data sequence or for a generation of 
the random numbers [3]. Of course, chaos is an unwanted 
phenomenon in many situations. The essential problem 
which is faced here is how to distinguish such motion from 
long transient behavior. A spectrum of the so-called 
Lyapunov exponents (LE) is often used as a quantifier [4] 
of chaotic motion. These real numbers measure the average 
ratio of the exponential separation of the two neighborhood 
trajectories. For chaos it is necessary to have one positive 
LE, the second one represents a direction of the flow and 
must converge to zero. The last one must be negative with 
the largest absolute value since the flow is dissipative.  

Another useful tool for chaos visualization is one-di-
mensional bifurcation diagram (BD). As some important 
system parameter varies this diagram is composed of the 

cascaded set of Poincare sections [5]. For the sufficiently 
high resolution graph it is necessary to use very small 
parameter step as well as to numerically integrate the state 
space trajectory for the time long enough. Chaos is up to 
date also from the theoretical standpoint because it is uni-
versal phenomenon repeatedly reported from many distinct 
scientific fields [6]. Overall analysis usually begins by 
handling with the dimensionless differential equations thus 
a physical interpretation of the individual state variables or 
the system parameters are unimportant. All that matters is 
preserving a global behavior as well as the attracting sets 
of the given mathematical model. 

2. Mathematical Models 
To prove and show the universality of the proposed 

circuit synthesis methods several mathematical models 
have been considered. Assume that the first dynamical 
system represents the task taken from the Newtonian dy-
namics. Its state variables are position, velocity and 
acceleration. Such motion can be described by a single 
third-order differential equation in the form 

   xxxxx 321     (1) 

where i are constant parameters adopted from paper [7], 
namely -1 = 2 = -3 = 0.8. It is evident that the state vol-
ume shrinking ratio is given by 1 = -0.8. For simplicity 
assume the nonlinear function is quadratic 

   2xx  , (2) 

or more complex function composed of the finite number 
of the constant segments 
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where i are the stair heights and i determine the positions 
of the vector field boundary planes. The total number of 
the fixed points corresponds to N and the local vector field 
geometry is formed by the unstable focus with stability 
index 1. 

It has been verified that the first dynamical system 
can generate the so-called Rossler-type attractor and the 
second system provides even number of the spirals. The 
third mathematical model under inspection is a member of 



RADIOENGINEERING, VOL. 20, NO. 2, JUNE 2011 439 

extensive class of the dynamical systems with the cycli-
cally symmetrical vector fields. Such systems can be gen-
erally expressed using scalar function as  

      .,,,,,,,, yxzfzxzyfyzyxfx   . (4) 

In particular, the Halvorsen´s attractor [8] can be 
observed in the case if defining function is 

   244,, yzyxzyxf   . (5) 

The flow dissipation is uniquely determined by con-
stant  = 1.27 leading to the state space volume contraction 
ratio V = -3.81. The dynamical system (4) and (5) is 
known for its strong exponential divergence characterized 
by the largest LE about 0.7899. Finally, let us consider the 
model of single inertia excitation/inhibition neuron de-
scribed by the set of the ordinary differential equations [9] 
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Taking into account the basic function of this neuron 
I is the external injected current and x0 is the initial 
potential. To design the universal model of neuron each 
parameter should be fully adjustable through a variable 
resistor. For the first, second and third system given above 
some routing-to-chaos scenario has been experimentally 
confirmed using one variable parameter (resistor). It turns 
out that 3 and  is a good choice.  

3. Classical Circuit Synthesis 
There exist several ways how to realize analog cha-

otic oscillator. The most of these procedures are straight-
forward and have been already published in books and 
journal articles. One possibility is to implement the linear 
part of the vector field by higher-order admittance function 
[10]. This is an approach suitable especially for equation 
(1). To manifest this fact let us assume the third-order 
general admittance function is in the form of fraction 
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Here I(s) and U(s) are Laplace transforms of input current 
and voltage respectively. Of course, (7) can be expanded 
into continuous fraction using repeated division or partial 
fractions expansion. Since every chaotic system has one or 
multiple unstable equilibrium represented usually by some 
negative ai or bi this synthesis method leads in general to 
the necessity of creating the negative resistors, capacitors, 
inductors or even frequency dependent negative resistors. 
This proposition does not hold for every chaotic oscillator.  

For example, Chua’s oscillator [11] has admittance 
network (7) which is eventually passive. Laplace’s opera-
tor can be considered in time-domain as derivative of the 
fundamental network quantity. Let us consider the two-port 
shown in Fig. 1 and situated on the left side of eventually 

variable resistor R3. As the first approximation, assume that 
general current conveyor (GCC) defined by simple 
relations 
 xzxyyx IγIIβIVαV  ,,  (8) 

is used. For such a case one can get 

  
  

  
   

     .rrαβαβrcc

γrcrrcca

,rcrrcαβb

,αβrrccb

,αγβccca

,γβαb

,
r

a

,rrccca

21232

1321212

132121

21322

3211

0

3
0

213213

1

1

11

1














  (9) 

The next step is based on another assumption that 
GCC is replaced by the integrated circuit marked as 
EL2082. It is a negative second generation current con-
veyor (CCCII-) [12] with current gain β externally con-
trollable by some DC current source. By substitution [13] 
the associated voltage transfer constant  = 1, current 
transfer constant  = 0 and current gain -1 (which holds 
if the control voltage of EL2082 equals to 1 V) one can get 
significant simplification of (9) resulting into the formula 
for admittance 
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In spite of the fact that  affects all terms of the third-
order admittance it has been experimentally verified that 
this parameter can be used for smooth tracing of chaos 
evolution through the well known period-doubling bifur-
cation sequence. The reason for this lies in the fact that it 
directly changes the time constant of the last differential 
equation excluding the nonlinear term. By comparing (10) 
and values of individual i´s the normalized values of the 
capacitors and resistors can be considered as 
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Note that these relations are very simple and this is the 
major advantage of the proposed circuit. The capacitances 
and resistances in (11) are supposed to be fixed. By defini-
tion the situation 1 = 0 eventually turns (10) into the 
second-order admittance and motions associated with third-
order systems cannot be modeled. This circuit cannot be 
used for the conservative dynamics either. Strictly speak-
ing, it is quite difficult to realize volume preserving sys-
tems, but it is still possible, see [14] for further details. 

The circuitry implementation of (1) together with (2) 
is shown in Fig. 1. For this conception an integrated circuit 
AD633 has been used as a four-quadrant multiplier. It has 
five high impedance inputs and versatile transfer function 
W = K(X1-X2)(Y1-Y2) + Z with internally trimmed constant 
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K = 0.1. A nonlinear element input current equals to 
Iin=(K/r4)Vin

2 and the normalized values of the resistors are 
r3 = -1/3 and r4=K/. Here  is a parameter of the nonlin-
ear function. It is possible to generate a mirror chaotic 
attractor simply by connecting node X1 to the input signal 
and X2 to the ground. The list of the passive element 
values calculated using terms (11) is C1 =C2 = 5 nF, 
C3 = 40 nF, R1 = R2 = 10 k, R3 = 12.5 k and R4 = 1 k. 
Resistor R3 is supposed to be variable over finite range to 
allow some routing-to-chaos scenario, as it is displayed in 
high resolution (parameter step 3 = 0.0005) in Fig. 1. 
The piece of the extensive gallery of the oscilloscope 
screenshots is shown in Fig. 4. 

 
Fig. 1. Circuitry implementation of quadratic canonical 

oscillator and the corresponding BD with a resistor 
adopted as a bifurcation parameter. 

The linear admittance network in Fig. 1 can be also 
used as a core engine for generation of the multi-spiral 
attractors. From fundamental nullor definition, the CCII 
block can be directly replaced by standard voltage feed-
back operational amplifier. To design a one-port with the 
desired AV curve (3), parallel connection of the compara-
tors can be used as it is demonstrated in Fig. 3. Each com-
parator has its own voltage threshold level i (it directly 
specifies one boundary plane) derived from the resistor 
divider. This feature allows us to study the effect of AV 
curve non-symmetry on the global behavior of the circuit 
without changing feeding DC voltage sources. Each com-
parator switches its output voltage between positive and 
negative saturation.  

These voltages contribute current to the summing 
node and the final current is eventually conveyed to make 
a voltage drop on a single resistor. Normally we should 

deal with the individual state space segments separately in 
order to obtain the values of the conversion resistors. This 
leads to the necessity of solving the non-homogenous sys-
tem of the linear algebraic equations. Fortunately the AV 
characteristics we are looking for is odd-symmetrical so 
that each conversion resistor has the same normalized 
value ri = 2Vsat/ where  is the basic step level. For the 
values of circuit components given above  = 200 A. If 
the oscillator is required to operate in the lower frequency 
band the hysteresis effect of TL084 does not have negative 
effect on AV curve. For practical verification of the meas-
ured multi-spiral chaotic attractors the passive circuit com-
ponents of the linear admittance network are 
R1 = R2 = 2.5 k, R3 = 1 k, C1 = C2 = 33 nF and 
C3 = 100 nF. For the nonlinear resistor values 
Rd1 = Rd6 = 11 k and Rd2 = Rd3 = Rd4 = Rd5 = 2 k should 
be utilized if symmetrical voltage supply 15 V is consid-
ered. Up to six spirals have been experimentally confirmed, 
as it is demonstrated in Fig. 6. The associated AV curves of 
the nonlinear resistor are given in Fig. 5. For the purpose 
of current summation and current-to-voltage conversion 
AD844 integrated circuit is an optimal choice. There are 
several possible modifications of the multi-spiral oscillator. 
For example, it should be noted that if the input admittance 
(7) with (10) employs CCII+ with  = 1 the nonlinear AV 
characteristic can be composed of the segments with only 
positive slopes. Such curve can be realized by diodes. By 
using current-mode approach with negligible effect of the 
parasitic capacitances due to the low nodal impedances 
there is also chance to improve oscillator performance in 
the frequency domain. 

4. Integrator Based Synthesis 
The universal approach to obtain an electronic circuit 

suitable for modeling complicated system of the differen-
tial equations including multi-grid attractors [15] is based 
on the integrator block schematic. Three basic building 
blocks are necessary: inverting integrator, differential or 
summing amplifier and some two-port with a desired trans-
fer curve. The main disadvantage is the large amount of 
active and passive circuit elements. This drawback is even 
more significant if only voltage-mode active devices 
(probably voltage feedback amplifiers) are used. It is be-
cause one active block is needed for each signals summa-
tion or inversion. On the contrary to this, current-mode 
(CM) summation is automatically done using a single node. 
Moreover, better frequency responses of CM devices re-
duce their filtering effect which is highly unwanted. In 
other words, a limited gain-bandwidth can destruct the 
state space attractor. The key elements are lossless inte-
grators with positive second generation current conveyor 
(CCII+) with output voltage follower, which is commer-
cially available as AD844 [16]. More details about this 
method can be found in [17]. 

In the case of (4) the easiest way for desired nonlinear 
functions realization is to use four-quadrant voltage-mode 
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analog multiplier, for example AD633 again [18]. It is 
obvious that by setting VX2 = VY1 = VZ = 0 V and 
connecting node X1 with Y2 we get the desired square 
rooting two-port cell. In general, the dynamical systems 
with cyclically symmetrical vector field are difficult to 
realize due to the necessity of three complex nonlinear 
feedback functions. The advantage of (4) is that feedback 
branches can be directly summed. Although the linear 
transformation of the coordinates can make the linear part 
of the vector field more suitable for practical realization the 
nonlinear function can turn into much more complicated 
simultaneously. That is the reason why the basic forms of 
the equations are used for the circuit design. To validate 
integrator-based circuit design approach the dynamical 
system (4) with (5) has been utilized. The final circuitry 
implementation using only six active devices is provided in 
Fig. 3 and measured results are in Fig. 7. In this analog 
oscillator parameter  is represented by resistors R1, R5, 
R9. To obtain the typical shape of the state space attractor 
for Halvorsen´s dynamical system the following list of the 
linear circuit components has been adopted 
R1 = R5 = R9 = 8.1 k, R2 = R3 = R6 = R7 = R10 = R11 = 2.7 k 
and C1 = C2 = C3 = 2.2 nF. The individual state variables 
are easily accessible on the voltage outputs of AD844. Due 
to chosen large time constant  =2.210-5 s the parasitic 
properties of the active devices need not to be respected. 
Circuits mentioned so far have been realized on the con-
tactless board and fed by ±15 V supply voltage. 

A very interesting and for future research promising 
mathematical description to be implemented is a model of 
single inertia neuron. The authors believe that by coupling 
many such neurons into layers using fully analog weight-
ing n-ports the real-time analog optimization can be simu-
lated. For this purpose it is necessary to design circuit 
capable to precise model the neuron itself (6) with all its 
parameters fully and independently adjustable. It is a three 
dimensional dynamical system with three nonlinear terms. 
Thus its circuitry implementation given in Fig. 3 consists 
of three inverting integrators and amplifiers with TL084 
and four analog multipliers (AD633 can be employed). In 
practice the DC sources are replaced by voltage dividers 
realized by the potentiometers. 

 
Fig. 2. Prototype of single neuron with audio output. 

In the given schematic voltage V1 = 1 V represents 
constant term in (6), voltage V2 corresponds to parameter I 
divided by 100, voltage V3 and V4 defines parameter b and 
x0 respectively. Other system parameters are defined by 
gains, namely parameter a by resistor R10 and parameter d 
by resistor R14. Time constant of circuit is determined by 
the capacitors C1 = C2 = C3 = 100 nF as well as the associ-
ated resistors R1 = R2 = R3 = R4 = R5 = 1 k, R7 = 100 k 
and R8 = 10 . The main drawback of the proposed circuit 
lies in the necessity of many integrated circuits. The 
experimental results are in Fig. 8. 

5. Conclusion 
The advantage of the inductorless structure of the first 

chaotic oscillator proposed in this paper is an easy relation 
between parameters of the mathematical model (equivalent 
eigenvalues) and the circuit elements. Moreover, a huge 
number of the laboratory experiments prove a perfect 
agreement between numerical integration and practical 
measurement, see Fig. 9 and Fig. 10. This is the reason 
why Pspice circuit simulator does not bring new informa-
tion and particular simulations in time domain have been 
performed but the results are not given. The multi-spiral 
oscillator can be also considered as canonical in the sense 
of minimum circuit components. The second oscillator 
proves the versatility of the circuit synthesis based on the 
integrator block schematic. The Halvorsen´s equations 
have been picked up as a challenge to practically imple-
ment oscillator with cyclically symmetrical vector field. To 
date, referring to the best knowledge of the authors the 
experimental observation of the corresponding Halvorsen´s 
attractor has not been published. The same proposition 
holds for the model of neuron. The practical application of 
the synthesized circuit is still an unanswered question and 
represents an interesting topic for further research. The 
rather extensive list of the references provides an opportu-
nity to study chaotic motion from many different view-
points. The algebraically simple dynamical systems with 
minimum terms [19] are suitable for practical training in 
the analog chaotic oscillator design. Some useful proce-
dures leading to the chaos generation can be also found in 
[20]. A quite different overview on the chaos evolution is 
given in [21]. 
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Fig. 3. Circuitry implementation of the one-dimensional multi-spiral generator (upper left picture), Halvorsen´s cyclically symmetrical 

dynamical system (upper right picture), and fully analog representation of single inertia neuron (lower picture). 
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Fig. 4. Selected plane projections of the signals generated by quadratic oscillator and measured by means of digital oscilloscope HP54603B. 

 
Fig. 5. The piecewise-constant AV curve of the nonlinear resistor used inside a generator of multi-spiral attractors  

measured using AD844 connected as current-to-voltage converter, digital oscilloscope HP54603B. 

 
Fig. 6. Generation of multi-spiral attractors using canonical admittance network and stair-type of the nonlinear resistor,  

selected screenshots obtained using digital oscilloscope HP54603B. 

   
Fig. 7. Typical plane projections of the cyclically symmetrical Halvorsen´s oscillator measured using digital oscilloscope HP54603B,  

chaos evolution through changing the parameter . 

 
Fig. 8. Typical plane projections and associated waveforms measured using digital oscilloscope HP54603B, Halvorsen´s oscillator.
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Fig. 9. Numerical integration process, typical chaotic 

attractors for oscillator with quadratic nonlinearity and 
multi-spiral generator. 

  
Fig. 10. Numerical integration process, typical chaotic 

attractors for Halvorsen´s dynamical system and third-
order model of neuron. 
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