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Abstract. We present a fundamental and accurate 
approach to compute the attenuation of electromagnetic 
waves propagating in rectangular waveguides with finite 
conductivity walls. The wavenumbers kx and ky in the x and 
y directions respectively, are obtained as roots of a set of 
transcendental equations derived by matching the tangen-
tial component of the electric field (E) and the magnetic 
field (H) at the surface of the waveguide walls. The electri-
cal properties of the wall material are determined by the 
complex permittivity ε, permeability μ, and conductivity σ. 
We have examined the validity of our model by carrying 
out measurements on the loss arising from the fundamental 
TE10 mode near the cutoff frequency. We also found good 
agreement between our results and those obtained by 
others including Papadopoulos’ perturbation method 
across a wide range of frequencies, in particular in the 
vicinity of cutoff. In the presence of degenerate modes 
however, our method gives higher losses, which we 
attribute to the coupling between modes as a result of 
dispersion. 
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1. Introduction 
Propagation of electromagnetic waves in circular 

waveguides has been widely investigated, for waveguides 
with lossy [1] and superconducting walls [2], [3], 
unbounded dielectric rod [4], bounded dielectric rod in 
a waveguide [5], and multilayered coated circular wave-
guide [6]. The computations given by these authors were 
based on a method suggested by Stratton [7]. The circular 
symmetry of the waveguide allows the boundary matching 
equations to be expressed in a single variable which is the 
radial distance r. The eigenmodes could therefore be ob-
tained from a single transcendental equation. This ap-

proach cannot be implemented in the case of rectangular 
symmetry where a 2D Cartesian coordinate system must be 
used. 

Rectangular waveguides are employed extensively in 
microwave and millimeter wave receiver [8] ,[9], [10] 
since they are much easier to manipulate than circular 
waveguides (bend, twist) and also offer significantly lower 
cross polarization component. Despite that, not much has 
recently been published on analyzing the guided propaga-
tion of electromagnetic signals in lossy or superconducting 
rectangular waveguides. 

The approximate power-loss method has been widely 
used in analyzing wave attenuation in lossy rectangular 
waveguides as a result of its simplicity and because it gives 
reasonably accurate result, when the frequency of the sig-
nal is well above cutoff [7], [11], [12], [13]. In this method, 
the field expressions are derived assuming perfectly con-
ducting walls, allowing the solution to be separated into TE 
and TM modes. To calculate the attenuation, ohmic losses 
are assumed to exist due to small field penetration into the 
conductor walls. The power-loss method however fails 
near cutoff, as the attenuation obtained using this method 
diverges to infinity when the signal frequency f approaches 
the cutoff frequency fc. 

Bladel [14], and Robson [15] discussed degenerate 
modes propagation in lossy rectangular waveguides, but 
neither was able to compute the attenuation values accu-
rately near cutoff. Like the power-loss method, their theo-
ries predict infinite attenuation at cutoff. An expression 
valid at all frequencies is given by Kohler and Bayer [16] 
and reiterated by Somlo and Hunter in [17]. This expres-
sion however is only applicable to the TE10 dominant 
mode. 

The perturbation solution developed by Papadopoulos 
[18] shows that the propagation of a mode does not merely 
stop at fc. Rather, as the frequency approaches fc, transition 
from a propagating mode to a highly attenuated mode takes 
place. The propagation of waves will only cease when 
f = 0. Papadopoulos’ perturbation method (PPM) shows 
that the attenuation at frequencies well above fc remains in 
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close agreement with that computed using the power loss 
method for non-degenerate modes. Because of this reason, 
PPM is perceived as a more accurate technique in com-
puting the loss of waves traveling in waveguides. A similar 
solution has been derived by Gustincic using the varia-
tional approach in [12], [19]. 

In [20], we have introduced a novel accurate tech-
nique to compute the propagation constant of waves in 
rectangular walls with finite conductivity. The method has 
been applied to investigate the attenuation of the dominant 
mode. In this paper, we shall develop further the method in 
[20] to show the presence of mode coupling effects in 
degenerate modes. Here, in order to present a complete 
scheme, we outline the derivation of the transcendental 
equation in [20] for convenience. In our method, the solu-
tion for the attenuation constant is found by solving two 
transcendental equations derived from matching the tan-
gential components of the electromagnetic field at the 
waveguide walls and making use of the surface impedance 
concept. The attenuation constants for the dominant non-
degenerate TE10 mode and the degenerate TE11 and TM11 
modes are computed and compared with the power-loss 
method and the PPM. We will demonstrate that our method 
gives more realistic values for the degenerate modes since 
the formulation allows co-existence and exchange of power 
between these modes while other methods treat each one 
independently. 

Finally, we would like to emphasize that significant 
deviation between the power loss and rigorous methods 
computations start to appear at frequencies well below 
cutoff where waveguides are used as filters and for other 
applications. At frequencies immediately below cutoff, the 
attenuation diverges at very high rate that at some stage 
power transmission in the waveguide becomes negligible. 
At these frequencies (very close to cutoff) the deviation in 
the computed results between our method and the power 
loss results is substantial. Experimentally measured at-
tenuation confirms the integrity of our computation close to 
cutoff. 

2. Formulation 

2.1 Fields in Rectangular Waveguides 

In a lossless waveguide, the boundary condition re-
quires that the resultant tangential electric field Et and the 
normal derivative of the tangential magnetic field Ht/an 
to vanish at the waveguide wall, where an is the normal 
direction to the waveguide wall. Due to the finite conduc-
tivity of the waveguide material, both Et and Ht/an are 
not exactly zero at the boundary. To account for the pres-
ence of fields inside the walls, we have introduced two 
phase parameters; x and y, which we shall refer to as the 
field’s penetration factors in the x and y directions, respec-
tively. 

 
Fig. 1. A rectangular waveguide. 

For waves propagating in a lossy rectangular wave-
guide, as shown in Fig. 1, a superposition of TM and TE 
waves is necessary to satisfy the boundary condition at the 
wall [3], [7]. The longitudinal electric and magnetic field 
components Ez and Hz, respectively, can be derived by 
solving Helmholtz homogeneous equation in Cartesian 
coordinate. Using the method of separation of variables 
[13], we obtain the following set of field equations:  

    yyxxz ykxkEE   sinsin0 ,  (1) 

    yyxxz ykxkHH   coscos0   (2) 

where E0 and H0 are constant amplitudes of the fields and 
kx and ky are the wavenumbers in the x and y directions, 
respectively. A wave factor of form exp[j(ωt – kzz)] is 
assumed but is omitted from the equations for simplicity. 
Here, ω = 2πf is the angular frequency and kz is the propa-
gation constant. kz for each mode will be found by solving 
for kx and ky and substituting the results into the dispersion 
relation:  

 222
0 yxz kkkk  .  (3) 

Here, k0 is the wavenumber in free space. kx, ky, and kz are 
complex and may be written as:  

 xxx jk   ,  (4) 

 yyy jk   ,  (5) 

 zzz jk     (6) 

where βx, βy and βz are the phase constants and αx, αy and αz 
are the attenuation constants in the x, y, and z directions, 
respectively. 

Equations (1) and (2) must also apply to a perfect 
conductor waveguide. In that case Ez and Hz/an are either 
at their maximum magnitude or zero at both x = a/2 and 
y = b/2, therefore:  
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Solving (7), we obtain,  
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where the integers m and n denote the number of half cycle 
variations in the x and y directions, respectively and every 
combination of m and n defines a possible TEmn and TMmn 
modes. For waveguides with perfectly conducting wall, 
kx = mπ/a and ky = nπ/b, (8) and (9) result in zero penetra-
tion and Ez and Hz in (1) and (2) are reduced to the fields of 
a lossless waveguide. To take the finite conductivity into 
account we allow kx and ky to take complex values yielding 
non-zero penetration of the fields into the waveguide mate-
rial. This in turn results in complex value for the propaga-
tion constant of the waveguide kz (see (3)) which yields 
loss in propagation. 

Substituting (1) and (2) into Maxwell’s source-free 
curl equations and expressing the transverse field compo-
nents in terms of Ez and Hz [13], we obtain: 

   )cos()sin(0002 yyxxyxzx ykxkEk ωHkk
h

j
  H  

   (10) 

   )sin()cos(0002 yyxxxyzy ykxkEkωHkk
h

j
  H  

   (11) 

   )sin()cos(0002 yyxxyxzx ykxkHkωEkk
h

j
  E  

   (12) 

   )cos()sin(0002 yyxxxyzy ykxkHkωEkk
h

j
  E  

   (13) 

where μ0 and ε0 are the permeability and permittivity of 
free space, respectively, and h2 = kx

2 + ky
2. These expres-

sions show that the field is a superposition of TE and TM 
modes. 

2.2 Constitutive Relations for TE and TM 
Modes 

Using Maxwell equations it can be shown that the 
ratio of the tangential component of the electric field to the 
surface current density at the conductor surface is given by 
[21] 
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where μ and ε are the permeability and permittivity of the 
wall material, respectively, and  /  is the intrinsic 
impedance of the wall material. The subscript t in (14) 
denotes tangential fields. The dielectric constant is 
complex and ε may be written as 

 

 j 0   (15) 

where σ is the conductivity of the wall.  

At the surface of the waveguide in the x-direction at 
y = b, Ez/Hx = −Ex/Hz =  / . Substituting (1), (2), (10), 
and (12) into (14), we obtain:  
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Similarly, at the surface in the y-direction, x = a, we 
obtain Ey/Hz = −Ez/Hy =  / . Substituting (1), (2), (11), 
and (13) into (14), we obtain: 
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By letting the determinant of the coefficients of E0 
and H0 in (16) and (17) vanish we obtain the transcendental 
equations:  
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In the above equations, kx and ky are the unknowns 
and kz can then be obtained from (3). A multi-variable root 
searching algorithm such as the Powell Hybrid root-
searching algorithm in a NAG routine [22] can be used to 
find the roots of kx and ky. The routine requires initial 
guesses of kx and ky for the search. For good conductors, 
suitable guess values are clearly those close to the perfect 
conductor values. For TE10 mode, m and n are set to 1 and 
0, respectively, hence the search starts with kx = π/a and 
ky = 0. For TE11 and TM11 modes, m and n are both set to 1 
and the initial guess values are π/a and π/b respectively for 
both modes. It is worthwhile noting that when a search is 
started with exactly these values, the solution did not 
always converge to the required mode. It was often neces-
sary to refine the initial values slightly in order to ensure 
convergence to the correct mode. 

3. Results and Discussion 
To validate the results experimentally, we measured 

the loss as a function of frequency for a 20 cm long rectan-
gular waveguide using an Anritsu 37369C Vector Network 
Analyzer (VNA). The VNA was calibrated using the Thru-
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Reflect-Line (TRL) method. The waveguide was made of 
copper and had dimensions of a = 1.30 cm and 
b = 0.64 cm. The loss was observed from the S21 parameter 
of the scattering matrix. The measurement was performed 
in the frequency range where only TE10 mode could propa-
gate, while other higher order modes are evanescent. 

We compared the attenuation of the TE10 mode below 
cutoff as predicted by our method, the conventional power-
loss method, and the PPM as shown in Fig. 2. As can 
clearly be seen, the attenuation constant αz computed from 
the power-loss method diverges sharply to infinity, as the 
frequency approaches fc, and is very different to the 
measured results, which show clearly that the loss at 
frequencies below fc is high but finite. The attenuation 
curves computed using our method and the PPM in Fig. 2 
match very well and in fact are indistinguishable on the 
plot. The figures for the loss between 11.47025 GHz and 
11.49950 GHz computed by the two methods agree with 
measurement to within 5% which is comparable to the 
error in the measurement.  

Fig. 3 shows the attenuation curve when the fre-
quency is extended to higher values. Here, the loss due to 
TE10 alone could no longer be measured as higher-order 
modes, such as TE11 and TM11, etc., start to propagate. At 
higher frequencies the loss due to TE10 predicted by the 
three methods, i.e. our method, the power-loss method, and 
the PPM are in very close agreement. 

 
Fig. 2. Loss of TE10 mode in a hollow rectangular waveguide 

below cutoff.  our method, 

 the power-loss method, 

 the Papadopoulos’ Perturbation 

method, and  the measurement 
result. 

Next, we compared the propagation constants kz of 
TE11 and TM11 degenerate modes, which have equal phase 
constants βz in the lossless case. Here the power-loss 
method can only give αz whereas both the PPM and our 
method give both βz and αz. Fig. 4 shows that the phase 
constant βz for TE11 mode computed using our method is in 
good agreement with that computed using the PPM. For 
TM11 mode however, the results differ slightly. Unlike that 

of the lossless case, the values of βz differ slightly for the 
different modes in a lossy waveguides due to dispersive 
effects. 

 
Fig. 3. Loss of TE10 mode in a hollow rectangular waveguide 

below cutoff. our method, 

 the power-loss method, 

 the Papadopoulos’ Perturbation 
method.  

 
Fig. 4. Phase constant βz of TE11 and TM11 in a rectangular 

waveguide. and
indicate βz of TE11 computed using the PPM and our 

method, respectively. and 
indicate βz of TM11 computed using the PPM and our 
method, respectively.  

The behavior of the degenerate TE11 and TM11 modes 
is illustrated in Fig. 5 to Fig. 8, both near cutoff and in the 
propagating region. In Fig. 5 and Fig. 6, αz computed by 
the PPM and our method, agree very well near cutoff. 
However, Fig. 7 and Fig. 8 show that when the frequency 
increases beyond 28.5 GHz for TE11 and 27.0 GHz for 
TM11, the results start to disagree significantly. 

To explain this disagreement we recall that power 
losses of a number of modes that propagate simultaneously 
in a waveguide is not simply additive [23]. The cross 
product terms between the different modes gives rise to 
additional dissipation, making the total loss greater than the 
one obtained from the addition of loss in independent 
propagation of single modes. This is because the product of 
the average power density, Pav = ½ Re(E1 × H2*) of the 
electric field of mode 1 E1 and magnetic field of mode 2 
H2, when integrated along the boundary, is not zero and the 
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current induced by H2 will deliver power to mode 1, and 
vice versa. In this case, there will be coupling of power 
between multiple propagating modes, which give rise to 
power loss as a result of the change in the amplitude distri-
bution of the fields across the area of the waveguide [23]:   
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                                                                                        (19) 
Here, A(TE) and A(TM) are arbitrary amplitude coefficients 
for the TE and TM modes respectively, R is the surface 
resistance, c is the contour around the inner surface of the 
waveguide, which is also normal to the propagating z axis. 
The subscript c represents the component of the transverse 
field tangential to the contour c. M is the number of differ-
ent TE propagating modes, and M’ is the number of differ-
ent TM propagating modes.   

It turns out that mode coupling increases the interac-
tion between the propagating power and the waveguide 
walls, making the attenuation dependent on the axial dis-
tance from the source. Integrating the exponential terms in 
(19), the factor that determines coupling between modes 
can be written as [23]:   
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where βm and βn are the phase constants of 2 different 
modes which could be either TM or TE, while l is the 
length of the waveguide.  

 
Fig. 5. Loss of TE11 mode in a hollow rectangular waveguide 

near cutoff. our method, 

 the power-loss method, 

 the PPM.  

As expected, equation (20) shows that the cross cou-
pling is significant when the difference between the phase 

constants of the propagating modes that exist in the wave-
guide is small. Therefore, we expect that the coupling 
effect between TE11 and TM11 in a waveguide fabricated 
from a good conductor to be significant because the phase 
constants for TE11 and TM11 are very close as shown in 
Fig. 4.  

 
Fig. 6. Loss of TM11 mode in a hollow rectangular waveguide 

from 20 GHz to 100 GHz. our method, 

 the power-loss method, 

 the PPM.  

 
Fig. 7. Loss of TE11 mode in a hollow rectangular waveguide 

from 20 GHz to 100 GHz. our 

method,  the power-loss method, 

 the PPM.  

 
Fig. 8. Loss of TM11 mode in a hollow rectangular waveguide 

from 20 GHz to 100 GHz. our method, 

 the power-loss method, 

 the PPM.  

In Fig. 7 and Fig. 8 we plotted the attenuation con-
stant for the TE11 and the TM11 modes at frequencies when 
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both of them can propagate simultaneously. It can clearly 
be seen that in this region, the computed attenuation using 
our method is significantly higher then the one computed 
using the power loss method. This is of course to be 
expected because the power loss method attenuation will 
exclude coupling losses. It is interesting to see however 
that in this range, the attenuation computed by PPM is even 
lower than that obtained by the power loss method, indi-
cating that the PPM method under-estimates the loss 
significantly in degenerate mode propagation. 

4. Conclusion 
We have proposed a fundamental and accurate 

technique to compute the propagation constant of waves in 
a lossy rectangular waveguide. The formulation is based on 
matching the electric and magnetic fields at the boundary, 
and allowing the wavenumbers to take complex values. 
The resulting electromagnetic fields were used in conjunc-
tion with the concept of surface impedance to derive trans-
cendental equations, whose roots give values for the 
wavenumbers in the x and y directions for different TE or 
TM modes. The wave propagation constant kz could then 
be obtained from kx, ky, and k0 using the dispersion relation. 

Our computed attenuation curves are in good agree-
ment with the PPM and experimental results for the case of 
the dominant TE10 mode. An important consequence of this 
work is the demonstration that the loss computed for de-
generate modes propagating simultaneously is not simply 
additive. In other words, the combined loss of two co-ex-
isting modes is higher than adding the losses of two modes 
propagating independently. This can be explained by the 
mode coupling effects, which is significant when the phase 
constants of two propagating modes are different yet very 
close. 
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