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Abstract. Partial transmit sequence (PTS) is one of the 
most important techniques for reducing the peak to 
average power ratio (PAPR) in OFDM systems. This paper 
presents a low complexity PTS scheme by applying a new 
phase sequence. Unlike the conventional PTS which needs 
several inverse fast Fourier transform (IFFT) operations, 
the proposed scheme requires half IFFT operations only at 
the expense of slight PAPR degradation. Simulation and 
results are examined with QPSK modulation and OFDM 
signal and power amplifier with memory effects.   
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1. Introduction 
An orthogonal frequency division multiplexing 

(OFDM) system has been proposed as a standard for the 
mobile communication systems. Despite the advantages of 
OFDM signals like high spectral efficiency and robustness 
against ISI, the OFDM signals have some disadvantages 
among which the main one is the high PAPR [1], [2]. This 
high PAPR signal when transmitted through a nonlinear 
power amplifier creates spectral broadening and also an 
increase in the dynamic range of the digital to analog 
converter (DAC). The result will be an increase in the cost 
of the system and reduction in efficiency. To overcome this 
impact, several techniques for reducing the PAPR have 
been proposed. Some of the most important techniques are 
selected mapping (SLM) [3] which is in frequency domain 
and PTS [4], [5] � [7] which is in time domain. Authors 
have proposed a combinational method to reduce the com-
plexity of the PTS method [10]. In [4], [5] authors 
proposed phase weighting method, subblock phase 
weighing but they didn’t achieve complexity reduction. 
Here with applying the new phase sequence by first 
generating the matrix of phase sequence and then 
partitioning it based on the requirement for PAPR 
reduction and also complexity. With this new phase 

sequence the complexity of PTS reduces significantly as it 
reduces the number of IFFT but it only degrades the PAPR 
performance slightly. In simulation the proposed PTS 
scheme is examined with considering the power amplifier 
(PA) model with memory effects [8].  

This paper is organized as follows, section 2 is the 
basic introduction about OFDM systems and definitions, in 
section 3 the new PTS method is proposed. Section 4 and 5 
discuss the simulation results and conclusions respectively. 

2. PAPR Definition 
In OFDM systems, a fixed number of successive input 

data samples are modulated first (e.g. PSK or QAM), and 
then jointly correlated together using IFFT at the 
transmitter side. IFFT is used to produce orthogonal data 
subcarriers. Mathematically, IFFT combines all the input 
signals (superposition process) to produce each element 
(signal) of the output OFDM symbol  1
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where xn is the n-th signal component in OFDM output 
symbol, Xk is the k-th data modulated symbol in OFDM 
frequency domain, and N is the number of subcarriers.  

The PAPR (in dB) of the transmitted OFDM signal 
can be defined as [2]:  
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where E[·] is the expected value operator. The theoretical 
maximum of the PAPR for N number of subcarriers is as 
follows: 

 dB)log(10max NPAPR  . (3) 

PAPR is a random variable, because it is a function of 
the input data and the input data are random variable. 
Therefore PAPR can be calculated by using level crossing 
rate theorem that calculates the average number of times 
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that the envelope of a signal crosses a given level. 
Knowing the amplitude distribution of the OFDM output 
signals, it is easy to compute the probability that the 
instantaneous amplitude will be above a given threshold 
and the same goes for power. This is performed by 
calculating the complementary cumulative distribution 
function (CCDF) for different PAPR values as follows: 

 )Pr( 0PAPRPAPRCCDF  . (4) 

In this paper, the power amplifier with memory 
effects [9], [10] and [11] is applied for demonstrating the 
effec-tiveness of the proposed PTS method in reducing the 
spectral broadening. 

 
(a) 

 
(b) 

Fig. 1. AM-AM and AM-PM characteristics of the PA with  
memory effects: (a) AM/AM (b) AM/PM. 

The power amplifier with memory effects is based on 
the memory polynomial method [8] as follows: 
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where akq are the coefficients of the power amplifier, K is 
the order of nonlinearity and Q is the memory length. The 
extracted coefficients when Q = 2 and K = 3 are given by: 
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30 31 32

50 51 52

a = 1.4513 + 0.132i a = -0.123 - 0.023i a = 0.012 - 0.0043i,

a = -0.132 - 0.430i  a = 0.322 + 0.243i a = -0.0123 - 0.12i,

a = -0.755 - 0.654i a = -0.213 - 0.411i a = 0.233 + 0.233i.

 

The AM/AM and AM/PM characteristics of this PA 
are shown in Fig. 1. Fig. 1a and 1b show the AM/AM and 
AM/PM characteristics of the power amplifier with 
memory effects respectively. As it can be observed, the 
impact of memory causes these curves to spread over their 
linear behavior. The type of memory effects that cause 
these effects is electrical memory effects or also called 
short term effects and the power amplifier for modeling it, 
is based on the specific case of Volterra series [9]. This 
memory effect causes spectrum broadening. 

3. Proposed Phase Sequence 
In this section the proposed phase sequence of PTS 

method is presented. But fist the conventional PTS (C-
PTS) is discussed in details. 

3.1 Conventional PTS (C-PTS) 

Let X denote a random input signal in frequency domain 
with length N. X is partitioned into M disjoint subblocks 
xv=[Xv,0,Xv,1,…,Xv,N-1]

T, v=1, 2, …, M such that 
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and then these subblocks are combined to minimize the 
PAPR in time domain. By applying the phase rotation 

factor ,  1,  2,  ...,vj
vb e v M  to the IFFT of the vth 

subblock Xv, the time domain signal after combining is 
given by: 
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where 0 1 1( ) [ ( ),  ( ),  ... ( )]T
NLb x b x b x b   x  and L is the 

oversampling factor. The objective is to find the optimum 
signal ( )bx with the lowest PAPR. Both b and x can be 

shown in matrix form as follows: 
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It should be noted that all the elements of each row of 
matrix B are of the same values and this is in accordance 
with the C-PTS method. Now, the process is performed by 

choosing the optimization parameter b with the following 
condition: 
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After finding the optimum b̂ , the optimum signal is 

transmitted to the next block. To obtain the optimum b , we 
should perform exhaustive search for (M-1) phase factors 
since one phase factor can remain fixed, b1 = 1. Hence to 
find the optimum phase factor, WM-1 iterations should be 
performed, where W is the number of allowed phase 
factors. 

3.2 Proposed Phase Sequence 

In order to decrease the complexity of C-PTS, we 
generate a new phase sequence. This new phase sequence 
is based on the generation of N random values of {1 -1}, If 
we consider the number of allowed phase factors is W = 2. 
Hence the new phase subsequence has a formation as 
follows: 
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According to (10), N random phase sequences are 
generated and periodically M/2 times will be generated 
where M is the number of subblock partitioning. Despite C-
PTS where each row of the matrix B̂  has same values and 
followed by multiplying with x according to (6), in the 
proposed phase sequence, each row of the matrix in (10) 
has different phase factors which are random values of  
{1 -1} and this will cause reduction in PAPR due to having 
more possibility of low PAPR. This will be shown later in 
simulations.  

The random phase sequence also can be in the form of 
interleaved and adjacent as follows: 
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where (11) and (12) are the interleaved the adjacent phase 
sequence respectively and D is the number of partition in 
the phase sequence and is defined as: 
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After generating the matrix of phase sequences, the 
matrix should be extended for D rows as follows: 
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where D is from (13) and W=2.  

In this paper we use random phase sequence matrix in 
(14). For computing the actual PAPR, the oversampling 
needs to be considered. Hence the matrix in (14) can be 
expressed as: 
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where L is the oversampling factor. It should be noted that 
in order to have exact PAPR calculation, at least 4 times 
oversampling is necessary [5]. As oversampling will add 
zeros to the vector, then after multiplying phase sequence 

B̂  with X, the only section that counts in the multiplication 
will be N elements, hence the new phase sequence matrix 
in (15) still has N rows and the oversampling factor does 
not have any effect on that. 

Fig. 2 shows the block diagram of the proposed PTS 
scheme with PA. By applying the new phase sequence, (6) 
can be expressed as follows for the specific case of M = 2: 

 
kklklk xbbxb ,2,1,,1)( x  (16) 

where l = 1, 2, …, D-1 and k = 1, 2, …, N. 

There is a trade off for choosing D, whereas lower 
number of partitions results in less PAPR reduction but less 
complexity and higher number of division has higher 
PAPR reduction with higher complexity. The side 
information is the same as the C-PTS because the number 
of iterations is the same, however as the size of the phase 
sequence is increased larger memory space is required to 
store the phase sequence matrix. As an example assume 
N = 256, and the number of allowed phase factor and 
subblock partitioning are W = 2 and M = 4 respectively, 
with C-PTS there are WM-1 = 8 possible iterations, whereas 
for the proposed method, in the case of V = 1, D = 8, the 
phase sequence is a matrix of [8x256] elements according 
to (16). In this case, we have the same number of iterations 
for finding the optimum phase sequence compared to C-
PTS,  
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Fig. 2. Block diagram of the proposed PTS scheme with power amplifier. 

 
Proposed Method Number of 

Subblocks 
Complex 

Computation 
C-PTS 

V = 1 CCRR V = 2 CCRR 
Multiplication 14336 7168 50 % 12288 14.2 % M = 4 

Addition 14336 7168 50 % 10240 28.5 % 
Multiplication 303104 151552 50 % 299008 1.3 % M = 8 

Addition 245760 122880 50 % 237568 3.3 % 

Tab. 1. Computational complexity comparison for N = 256, W = 2. 

 
and rows of matrix of (14) multiply point-wise with the 
time domain input signal x with length [2x256]. 

The reduction of subblocks to 2 is done because it 
gives almost the same PAPR reduction as C-PTS with 
M = 4. It should be noted that if V = 2, D = 16 then the 
complexity increase and PAPR reduces more. 

3.3  Computational Complexity  

When the number of subcarriers is N = 2n and 
oversampling factor is L = 2l, the total complexity 
including IFFT and phase factor combination and PAPR 
calculation can be expressed as [5]: 
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where M is the number of subblocks and W is the number 
of allowed phase factors.  

These values for proposed method are: 
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The number of IFFT in the proposed method reduces 
to half and the number of iterations is D according to (13). 
It should be noted that the main reason that the number of 
subblocks in the proposed method as mentioned in the 
latter section is the same PAPR performance can be 
achieved compared to C-PTS. This is also shown in the 
simulation results.  

Tab. 1 shows the computational complexity of C-PTS 
and the proposed method. Here we calculate the 
complexity for N = 256, M = 4, W = 2 and l = 0. 

The computational complexity reduction ratio 
(CCRR) of proposed technique over the C-PTS is defined 
as [2]: 
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It is clear that the CCRR is improved for both values 
of V. the amount of improvement is more when V = 1 
whereas the PAPR reduction is less compared to C-PTS. 

4. Simulation and Results 

In order to evaluate and compare the performance of 
the proposed method with C-PTS, Matlab simulation is 
performed. We employed QPSK modulation with IFFT 
length of N = 256. To obtain the complementary cumula-
tive distribution function (CCDF), 100 000 random OFDM 
symbols are generated and the oversampling factor is 4.  

Fig. 3 shows the CCDF of three different types of 
phase sequences, interleaved, adjacent and random. From 
this figure, PAPR reduction with random phase sequence 
outperforms the other types and hence this type of phase 
sequence is applied in the following simulations. 

Fig. 4 shows the comparison of CCDF of the 
proposed method  and  C-PTS. It can be observed that the 
PAPR  reduction  for  our  proposed  PTS scheme degrades  
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Fig. 3. CCDF of PAPR of the different phase sequence forms 

for  M = 2 and 4. 

 
Fig. 4. CCDF of PAPR of proposed method compared to 

C-PTS for M = 4 and 8. 

 
Fig. 5. Power spectral density of the PA with memory effects 

with the proposed PTS. 

compared to C-PTS while complexity is enhanced. The 
simulation is examined for V = 1 and 2 and M = 4 and 8 
respectively. It is clear that the PAPR reduction of C-PTS 
when M = 4 is almost the same as PAPR reduction of the 
proposed method when M = 2. If V = 2 the PAPR reduction 
is higher than with V = 1 because more partitions are 
applied in the phase sequence matrix. 

Fig. 5 shows the power spectral density (PSD) for the 
power amplifier with memory effects. This figure shows 
the effectiveness of PTS method in reducing the out of 
band distortion. The bold line indicates the power amplifier 
without PAPR and the light color line indicates the PSD 
when PTS with new phase sequence is applied which has 
the highest PAPR reduction among others with M = 4 and 
V = 2. The results are shown when input back off (IBO) is 
8 dB and 13 dB. It can be seen that for higher IBO the 
effect of applying PAPR is higher and this is because the 
PA works in more linear region. As the PAPR is almost the 
same for the proposed method and C-PTS, there is no dif-
ference in PSD and hence it is not shown for the C-PTS 

5. Conclusion 
In this paper a new phase sequence of PTS scheme 

has been proposed. In this approach, matrix of possible 
random phase factors is first generated and then multiplies 
point-wise with the input signal. By applying this technique 
the number of IFFT is reduced to one half which results in 
lower complexity compared to C-PTS at the expense of 
slight PAPR degradation. By adding the PA with memory 
effects the performance of the PAPR is also examined and 
it proves the effectiveness of the proposed method in 
reducing the out of band distortions. 
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