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Abstract. The need of low-loss substrate materials with 
stable dielectric performances is a strong requirement 
when working at millimeter frequencies, where standard 
dielectrics exhibit prohibitive losses. In this paper, the 
authors focus their attention on a polymer material, the 
benzocyclobutene (BCB), having a low dielectric constant 
and a low loss tangent, with a stable behavior up to THz 
frequencies. A specific in-house manufacture technology is 
described to realize millimeter-wave structures on a BCB 
dielectric substrate. Experimental validations on BCB-
based circuits and antennas prototypes are discussed.  
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1. Introduction 
In recent years, strong research efforts have been 

devoted to the investigation of innovative materials and/or 
fabrication technologies for the realization of efficient low-
loss circuits and antennas well working at millimeter 
frequencies but requiring a minimal increase in cost. To 
guarantee good performances as dielectric substrate at 
millimeter waves, the material should have low losses and 
a low dielectric constant, stable within the operating 
frequency range, so the values of material permittivity and 
dissipation factor should be accurately considered, but also 
the thermal stability of these parameters has a relevant role 
for a proper material selection, especially for space appli-
cations. Potential substrates with excellent performances 
extending throughout the millimeter-wave range can be 
found in the polymer category. Among different polymer 
materials, such as PDMS [1], Polymide [2], Parylene-N 
[3], whose electrical parameters are summarized and 
discussed in [4], our attention has been focused on BCB as 
giving low values of permittivity and loss tangent, together 
with a low coefficient of thermal expansion, thus guaran-
teeing a stronger dielectric stability versus temperature [4]. 
BCB has already been successfully applied in literature as 
a covering film for packaging and interconnections on 

a silicon substrate [5-9]. In this paper, the use of BCB as 
substrate material for planar microstrip structures is dis-
cussed in order to overcome difficulties related to the 
occurrence of large dielectric losses in the high microwave 
range. Furthermore, a low cost in-house fabrication tech-
nology is described to realize single-layer and multilayer 
substrates from a small quantity of BCB liquid material. 

2. BCB Dielectric Properties 
BCB is a promising organic material showing stable 

permittivity values and low losses over a broad frequency 
range. The producer [10] claims a dielectric constant r = 
2.65, with a few percent variations between 10 GHz and 
1.5 THz, and a loss tangent between 0.0008 and 0.002 
from 1 MHz to 10 GHz. Additional data are also available 
[10] in the frequency range between 400 GHz and 
1500 GHz, which confirm a stable dielectric behavior of 
the BCB on a broad frequency range. However, no specific 
electrical values are provided in the middle microwave 
range, below 400 GHz. In order to guarantee the accurate 
design and performance level of BCB-based microstrip 
structures also in the uncovered frequency range, a broad-
band dielectric characterization has been performed by the 
authors up to 65 GHz [11]. A conductor-backed coplanar 
waveguide (CBCPW) has been adopted as test structure 
and the dielectric parameters of BCB have been extracted 
from on-wafer S-parameter measurements. As reported in 
Fig. 1, an approximately steady value near the manufac-
turer specification r= 2.65 is obtained, and a close agree-
ment with the simulation results can be observed within the 
measurement frequency range [11]. The extracted values of 
the loss tangent, reported in Fig. 2, show a variation be-
tween 0.001 and 0.009 in the measurement range between 
11 GHz and 65 GHz [11]. 

3. Manufacturing Process of BCB-
Based Microstrip Structures 
The fabrication process for BCB-based microstrip 

structures is fully performed into the Microwave Labora-
tory at University of Calabria. A three steps procedure, 
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essentially based on deposition, curing and etching, is 
adopted to realize single-layer or multi-layer structures, as 
described in the process flow-chart of Fig. 3. The BCB is 
first deposited on the copper ground plane, by using a spin 
coater at a speed of 1000 rpm, which gives a dielectric 
thickness equal to 26 m. A soft-cure process is then ap-
plied in a convection oven under nitrogen at a temperature 
of 210°, to avoid polymer oxidation. The two processes of 
deposition and soft-curing are then repeated for all subse-
quent dielectric layers. In order to achieve a full 100% 
polymerization, a hard-cure process is applied in a convec-
tion oven under nitrogen at a temperature of 250°. The top 
copper layer is then deposited by a physical vapor deposi-
tion and the circuit pattern is finally etched by using a laser 
and photo-etching procedure. 

 
Fig. 1. Dielectric constant of BCB substrate [11]. 

 
Fig. 2. Loss tangent of BCB substrate [11]. 

4. CBCPW on BCB Substrate 
A first validation test of the manufacturing process 

for BCB-based microstrip structures has been performed 
on a CBCPW configuration. As a matter of fact, the copla-
nar structure is widely adopted at high frequencies in alter-
native to microstrip lines, because providing best features 
in terms of dispersion and radiation losses, and also for its 
easy fabrication and integration capability. To simplify the 
realization process, the value of BCB thickness is chosen  

equal to the maximum height for single coating (26 m for 
the adopted Cyclotene series 3022 [10]). 

 
Fig. 3. Process sequence and conditions for BCB-based 

microstrip structures. 

In this case, a hard-cure process is adopted which is 
typically carried out for realizing a single polymer layer, 
and leads to achieve 100% conversion from liquid to solid. 
The central conductor width W and the ground strip sepa-
ration G are chosen by simulations on commercial Ansys 
software to match a 50  characteristic impedance. The 
values of loss tangent previously determined (Fig. 2) are 
used for the accurate characterization in the simulation 
stage. A photograph of the realized 7 mm length CBCPW 
on BCB substrate is reported under Fig. 4. The experi-
mental validation of the CBCPW prototype is performed 
by using a vector network analyzer Anritsu 37397B and 
a probe station fitted with 500 m GGB GSG contact 
probes (Fig. 5). 

 
Fig. 4. Photograph of the realized CBCPW on BCB substrate 

(W = 70 m, G = 30 m ). 

The comparison between measured and simulated 
CBCPW insertion loss is illustrated in Fig. 6. The non-
perfect agreement between them can probably be attributed 
to some non-calibrated measurement inaccuracies, primar-
ily given by the probe contact and the positioning errors. 
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Fig. 5. Photograph of the test setup for the experimental 

validation of CBCPW on BCB substrate. 

 
Fig. 6. Comparison between simulated and measured insertion 

loss of CBCPW on BCB substrate. 

5. V-band Patch Antenna on BCB 
Substrate 
As a further validation example, a V-band inset patch 

antenna has been designed on a BCB dielectric substrate. 
The layout of the antenna prototype, with the full indica-
tion of all dimensions, is reported in Fig. 7. In order to 
perform on-wafer measurements, a microstrip-to-coplanar 
waveguide transition is also included in the design, as 
illustrated in Fig. 7. The patch antenna is realized on a 
single layer of BCB, having thickness equal to 26 m. The 
simulation characterization is performed by assuming the 
exact loss tangent at the design frequency as reported in 
Fig. 2, approximately equal to 0.009. In the realization 
stage, a 0.5 mm copper layer is first adopted as deposition 
support for the BCB dielectric layer. A hard-cure process is 
then applied to realize the BCB polymerization, and a 1m 
copper layer is subsequently deposited by the vaporization 
procedure.  

The antenna layout is finally etched by a laserwriter 
machine. A photograph of the realized V-band antenna 
prototype, with a particular showing the microstrip-to-
coplanar waveguide transition, is reported in Fig. 8. The 
test setup adopted to perform on-wafer measurements is 
illustrated in Fig. 9, and the excellent comparison between 
the simulated and the measured return loss is reported in 
Fig. 10.  

 
Fig. 7. Layout and dimensions of V-band patch antenna on 

BCB substrate. 

 

 

(a) 

 

(b) 

Fig. 8. (a) Photograph of the realized V-band patch antenna 
and (b) particular of the microstrip-to-coplanar wave-
guide. 

6. Conclusion 
The use of BCB polymer as dielectric substrate for 

millimeter-wave circuits and antennas has been discussed 
in this paper. A specific in-house manufacture technology 
has been developed to realize at low cost BCB-based mi-
crostrip structures of arbitrary thickness by polymerization 
of small quantities of liquid BCB. The effectiveness of the 
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fabrication methodology has been successfully tested on 
millimeter-wave prototypes of coplanar waveguides and 
patch antennas. 

 
 

Fig. 9. Photograph of the test setup for the experimental 
characterization of V-band patch antenna on BCB 
substrate. 

 
Fig. 10. Comparison between simulated and measured return 

loss of V-band patch antenna on BCB substrate. 
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