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Abstract. Relating coupling and external quality factor of 
a filter to the physical parameters of the structure which is 
the final step of any filter design is usually complicated due 
to geometrical complexities of the filter, or in the case of 
microstrip resonators due to the lack of the exact solution 
for the field distribution. Therefore, common approach is 
using time consuming full wave simulations. In this paper 
active learning method (ALM) which is a fuzzy-based mod-
eling technique developed by a procedure algorithmically 
mimics the information-handling process of the human 
brain, is proposed to overcome this drawback. Modeling 
steps of an unknown function using ALM will be described 
using an illustrative example. Afterwards, the modeling 
approach will be implemented to model coupling factor 
between two coupled spiral resonators (SRs) for two differ-
ent coupling structures and external quality factor of the 
same resonator. Accuracy of the extracted surfaces is vali-
dated using two different criteria. Using the extracted 
surfaces; a four pole Chebychev bandpass filter was de-
signed and fabricated. Good agreement between the meas-
ured response and simulation validated the accuracy of the 
extracted surfaces again. Comparing the fabricated SR 
filter with a square open loop resonator (SOLR) one dem-
onstrates more than 70% of filter area reduction. 

Keywords 
Active learning method, coupling factor computation, 
external quality factor computation, soft computing 
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1. Introduction 
Due to the increasing complexity and variety of mi-

crowave structures, the number of design variables is on 
the rise. Although Maxwell’s equations are satisfied in all 
electromagnetic structures, but still a lot of different struc-
tures could be found without any analytical solution which 
motivated designers using numerical methods. Time con-
suming process of these full wave simulations prompted 
designers to the use of circuit-based models which are not 
precise as EM-based models are, but they are fast enough. 

The main idea of this paper is to introduce a method for 
microwave structure modeling with different modeling 
parameters which benefits from EM-based modeling tech-
niques accuracy, circuit-based modeling fastness but does 
not suffer from the huge amount of calculations. In this 
regard, the ability of soft computing techniques in model-
ing complicated problems may provide such a useful facil-
ity. Among the soft computing techniques the ability of 
fuzzy inference method in solving complicated electro-
magnetic problems such as; microwave filter tuning [1], 
[2], EMC problems [3], resonant frequency computation 
[4], [5], also antenna modeling [6], [7] has been proved in 
various publications. Artificial neural network (ANN), 
which is also a well-known soft computing technique, has 
been used recently in microwave filter design [8]. Al-
though the modeling steps of these methods seem to be 
very similar to the human logical-thinking the amount and 
complexity of mathematics which is used, even in ordinary 
fuzzy-based modeling techniques [9], [10], is usually for-
gotten. 

ALM which is a relatively new soft computing 
technique [11], [12] does not suffer from the mathematical 
complexity of fuzzy algorithms, time consuming training 
process of ANN-based techniques, also difficulty of the 
interpretation of the embedded knowledge in the trained 
ANNs. This method is similar to the way which human 
being looks at any phenomena, acquires data from it, 
extracts knowledge about the observed events and finally 
the decision he makes about the total system. In ALM, any 
multi-input single-output (MISO) system is supposed to be 
as the combination of some single-input single-output 
(SISO) one. Behavior of each SISO system which is 
a curve and a spread related to it is extracted by the ink 
drop spread (IDS) method versus the corresponding inde-
pendent variables. Then using an appropriate combination 
rule of inference, the general behavior of the system is 
understood.  

Considering the simplicity, interpretability, fastness 
and accuracy of the ALM method, in this paper a quite 
general ALM-based approach for coupling and external 
quality factor computation is proposed. The paper is or-
ganized as follows. Basic definitions of ALM, clarifying 
the modeling steps using an illustrative example and its 
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general formulation are described in section 2. Section 3 is 
devoted to the implementation of ALM for coupling and 
external quality factor modeling of SRs versus two and 
three important physical parameters respectively. In section 
4 extracted coupling and external quality factor surfaces 
are implemented to design a four pole Chebychev SR filter, 
then comparison of the dimensions of the designed SR 
filter and an open loop resonator one illustrates the amount 
of miniaturization provided by the SR configurations. Fi-
nally, conclusions are presented in section 5.  

2. ALM Definition 
ALM is mainly characterized by its intuitive pattern-

based processing, which is based on the hypothesis that 
humans interpret information in the form of pattern-like 
images rather than numerical or logical forms. Confronting 
any new experiment creates a new pattern in the brain. 
Therefore, each pattern represents a simple concept, and by 
the combination of these basic patterns, complicated sub-
jects can be expressed and understood. Fig. 1 shows the 
flow diagram of the method. According to this flow dia-
gram, ALM uses the following steps to model an unknown 
system or function versus the total number of independent 
variables that affect its behavior or output value. 

 At first, sample data are gathered by any numerical 
method or measurement technique.  

 In the second step which is usually called projection 
step, all the gathered data are projected on each xi-y 
plane where xi is the ith input variable and y stands 
for the output.  

In this step, we are trying to imagine that the system is 
composed of some SISO one. If the system was really 
a SISO one, the projected data would provide a narrow 
unique path, but because of the effect of other inputs, 
a spread is detectable around each narrow path. This 
spread shows the effect of other input variables on the 
corresponding xi-y plane. It can be easily deduced that, 
the narrower this spread; the effects of other input 
parameters on the output computation are less. 

 In the third step, the IDS algorithm is run for each 
initial data point in the corresponding xi-y plane, to 
extract the behavior of each SISO system.  

In the IDS method, we assume each data point in each  
xi-y plane as a light source which has a cone shaped 
beam width. When the vertical distance from this point 
increases its pattern spreads and interferes with the pat-
tern of other data points which are now other sources of 
light. Indeed these cones are three dimensional member-
ship functions which show the degree of confidence to 
other points near data points. If the mixed patterns are 
plotted on the corresponding input-output plane in gray-
scale, a pattern will be constructed as shown in Fig. 2. 
The process of grayscale representation of the data in 
each xi-y plane is called IDS. 

Gathering input-output data

Projecting the gathered data on each xi-y plane

Running IDS algorithm

Extracting narrow path for each xi-y plane

Extracting spread related to each of the extracted narrow 
paths

Generating the appropriate Fuzzy rules

Calculating the output

Measuring the error using predefined threshold

Is the error less 
than the threshold?

Divide the data domains of the 
variables to more sections or add 

intermediate data points 

Start

Stop

Yes

No

Save the model

 
Fig. 1. Flow diagram of ALM for modeling an unknown 

function. 

 In the fourth step, behavior of each SISO system is 
extracted from the IDS pattern using (1). 
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where ( )x  is the extracted narrow path for the input 
parameter x. d(a, b) is the value of darkness in point 
(a,b). This value is 1 for the darkest points which are the 
most confident points in the plane and is 0 for the lightest 
ones. 

 In the fifth step for each extracted narrow path, 
a spread is calculated using (2). This parameter indi-
cates the effect of the corresponding input in overall 
system output.  

        0,min0,max  yxdyyxdyx  (2) 

 In the sixth step according to the number of divisions 
for each input variable, appropriate fuzzy rules of 
inference will be produced. 

As an example if, for a two-input function, each input 
domain is divided into two sections there are four infer-
ence rules as follows. 

 
Fig. 2. A typical IDS pattern. 
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where ψij is the jth narrow path for the ith input variable, 
and Aij denotes the jth membership function for the ith 
input variable. 

 Finally, the model output is obtained by aggregating 
the narrow paths. For a two-input function, with two 
divisions for each variable, model output is calculated 
as follows. 

 2222212112121111 or  or  or   is y    (4) 

where or is the union operator and βij denotes the weight 
of the jth narrow path for the ith input variable. The value 
of β is determined from the spread and the degree of truth 
of the antecedent part in (3). It is calculated as follows. 
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 In the eighth step, the output of the constructed model 
is compared with the original output by a predefined 
threshold error. If the model is not accurate enough, 
the input domains will be divided in more sections, 
and if it is necessary intermediate data points will be 
added to the previous ones. The active learning 
method is run again to reduce the error of the model. 

2.1 A Two-Input Function Modeling by ALM 

In order to explain the modeling process of ALM, we 
use a two-input function that has an input-output relation-
ship as shown in Fig. 3(a). For the simplicity of explana-
tion, each input domain is divided into two parts as shown 
in Fig. 3(b). Therefore, four SISO systems are generated, 
i.e., A, B, C, and D. In this figure, Aij is the jth membership 
function for the ith input variable. Projected data of parts B 
and C on the corresponding xi-y plane are shown in Fig. 4. 
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Fig. 3. (a) Input-output relationship of a two-input function 

and (b) input domains divisions and corresponding 
membership functions.  

In order to extract the behavior of the system in the 
shaded area of Fig. 3(b), it is only necessary to consider x1 

in the interval [-1 0] of the part B and x2 in the interval [0 
0.5] of the part C. As it can be seen in Fig. 4, for the men-

tioned interval of x2 in the part C a wide spread is detect-
able, therefore, no information about the output can be 
elicited from this projected data. On the other hand, in the 
mentioned interval for the x1 in the part B there is a thin 
spread which means a high correlation between x1 and the 
output. Therefore, part B effectively elicits the system 
feature of the shaded area. In order to extract the behavior 
of the system in the total variation range of the inputs, all 
data of parts A to D should be utilized. For each of these 
parts, the related narrow path which explains the behavior 
of the corresponding SISO system, and, the related spread 
which explains the effect of other inputs on the extracted 
narrow path, are obtained using IDS algorithm as shown in 
Fig. 5. 

-1 -0.5 0 0.5 1
5

6

7

8

9

10

x
1

Y

X
2
=[0 0.5] B

-0.5 0 0.5
5

6

7

8

9

10

x
2

Y

X
1
=[-1 0] C

 
Fig. 4. Projected data on the corresponding xi-y plane for the 

parts B and C.  

Spread

Spread

 
Fig. 5. IDS pattern of four SISO systems. Red curves are 

extracted narrow paths. Spreads, which are the width 
of the dark area in the y direction, are also visible in 
these figures.  

 
Fig. 6. Extracted input-output relationship.  

Finally, using extracted narrow paths and spreads the 
output of the system is computed using (4) as shown in 
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Fig. 6. It should be mentioned that the utilized membership 
functions for this modeling have cosine form as follows. 
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where x is variable. 

2.2 ALM for Three-Input Systems 

In this section, the ALM formulation for modeling of 
an unknown function with three independent variables 
which are referred to as x1, x2 and x3 is described. Suppose 
each input domain is divided into m1, m2 and m3 partitions 
respectively. Therefore, the number of IDS units is calcu-
lated as follows. 
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where L is the total number of IDS units, and li denotes the 
number of IDS units for the input variable xi. L also de-
notes the number of inference rules. Some of these infer-
ence rules are as shown in (8). 
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Finally, all the extracted narrow paths, spreads, and 
membership functions are used for output model computa-
tion (9). 
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where βik is calculated as follows. 
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In this equation Γik is calculated using (11). 
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where   is the intersection operator of the fuzzy sets. 

It should be emphasized that the flow diagram of 
Fig. 1 is valid for ALM modeling of an unknown function 
with any required number of input variables. 

3. Coupling and External Quality 
Factor Modeling Using ALM 
In the following subsection, coupling and external 

quality factor are briefly described, and some references 
are addressed concerning common approach to open loop 
filter design using coupling factor matrix. In the next sub-
section, ALM is implemented for modeling these two fac-
tors for a distinct SR. Extracted ALM-based coupling and 
external quality factor surfaces are utilized in section 4 as 
a filter design tool.  

3.1  Brief Definition of Coupling and External 
Quality Factor 

Coupling factor, which is the most important quantity 
in designing any narrow band filter, can be calculated 
using the following equation. 

   
2 2

2 2
e m

e m

f f
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f f

-
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+
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where fe and fm are even and odd resonant frequencies of 
the two coupled resonators, which occur at the frequencies 
where S11 has its minimum value [13]. Fig. 7(a) and 7(b) 
show two different structures of the coupled SRs.  

 
Fig. 7. Coupled SRs, (a) mixed coupling and (b) magnetic 

coupling. (c) Typical tapped-line feeding structure for 
a SR. 

Another important quantity in the filter design is 
external quality factor (Qext). This factor can be described 
as the coupling of a resonator to an external circuit. For 
every resonant circuit, Qext can be computed by the aid of 
unloaded quality factor (QU) and loaded quality factor (QL) 
as it is shown in (13) [14]. 

   
1 1 1

ext L UQ Q Q
= -  . (13) 

A typical tapped line feeding structure which is used to 
excite a SR has been shown in Fig. 7(c). Qext of this 
structure is modeled in the following subsection. 

Early after the first introduction of SOLRs in [15], 
different coupling structures and a filter design example 
using coupling coefficient approach was described in [13]. 
The same process has been applied to other kinds of open 
loop resonators such as triangular [16], pentagonal [17], 
hexagonal [18], and even SRs. The final step of the 
approach, which has been described in [13] and imple-
mented in [16]-[18], is devoted to the calculation of re-
quired coupling factors through the use of time consuming 
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full wave simulators. In these references, the problem of 
external quality factor computation for all kinds of open 
loop resonators was neglected. To avoid this time con-
suming process of coupling factor computation and, to 
introduce an approach for determination of the feed line 
physical parameters according to the required external 
quality factor use of ALM is proposed. 

3.2 Modeling Steps 

In this subsection, the effect of substrate height (h) in 
the range of [0.5 mm 2 mm] and spacing between resona-
tors (S) in the range of [0.3 mm 3.3 mm] on the mixed and 
magnetic coupling factors (Fig. 7(a) and 7(b)) is modeled 
using the discussed modeling technique. Afterwards, the 
effect of feed line length (Lf), feed line position (Df), and 
feed line width (Wf) on the Qext is modeled for the structure 
shown in Fig. 7(c). In this modeling Lf, Df, and Wf are 
within the range of [2 mm 12 mm], [0 2 mm], and [0.2 mm 
0.8 mm] respectively. In order to clarify the modeling steps 
a distinct SR with the following dimensions is used; 
W = 0.7 mm, g = 0.6 mm, L = 5.6 mm, and d = 0.3 m. Se-
lected substrate permittivity for these modelings is 9.8. In 
the Qext modeling, the substrate height is selected to be 
1.27 mm. 

The following steps have been carried out to construct 
the ALM-based coupling and external quality factor 
surfaces: 

 Mixed and magnetic coupling factors have been cal-
culated using Ansoft HFSS-13 for 36 points within 
the variation range of the modeling parameters, i.e., h 
and S. These are the required initial input data for the 
construction of coupling factor model. In the same 
way, Qext of Fig. 7(c) has been calculated using An-
soft HFSS-13 for 120 data points within the variation 
range of Wf, Lf, and Df. These data points are the re-
quired initial inputs for the construction of Qext model. 

 Concerning the mixed and magnetic coupling factor 
modeling, the variation range of h and S has been di-
vided into 3 and 8 sections respectively. Concerning 
the Qext modeling, the variation range of Wf, Lf, and 
Df has been divided into 4, 5, and 3 sections respec-
tively. 

 Initial data of each section have been projected on the 
corresponding xi-y plane, and related IDS patterns 
have been constructed for each SISO system. 

 Using the constructed IDS patterns, the narrow path 
and spread of different SISO systems have been com-
puted by the aid of (1) and (2) respectively. 

 Finally, the model output has been calculated using 
(9). In this calculation extracted narrow paths and 
spreads and the cosine form membership functions 
(6), which are allocated to each of the independent 
variables according to the number of divisions, have 
been used. 

Fig. 8 shows the extracted ALM-based coupling fac-
tor surfaces for the mixed and magnetically coupled SRs. 
According to the number of independent variables for the 
Qext modeling which are three ones, we need a four dimen-
sional space for representation of the results in one figure, 
which is not possible. In this regard, Fig. 9(a) - 9(c) show 
the extracted Qext surfaces versus two of the modeling 
parameters. In each of these figures, one of the independent 
variables has been set to three different values, and the 
other ones sweep their own range of variations. 

 
Fig. 8. ALM-based extracted coupling surfaces for the cou-

pled SRs, (a) mixed coupling, (b) magnetic coupling. 

 
Fig. 9. Extracted Qext for the structure of Fig 7(c), (a) Df=0 

(top), Df= 1 mm (middle), Df= 2 mm (bottom),  
(b) Wf= 0.2 mm (top), Wf= 0.5 mm (middle), 
Wf= 0.8 mm (bottom), and (c) Lf= 12 mm (top), 
Lf= 7 mm (middle), Lf= 2 mm (bottom). 

Resolution of the extracted coupling factor surfaces is 
0.005 mm for each of the independent variables. For the 
extracted Qext surfaces, resolution is equal to 0.05 mm, 
0.002 mm, and 0.002 mm, for Lf, Df, and Wf respectively. 
Considering the above resolution each of the mixed or 
magnetic coupling surfaces consists of 601×301 points and 
the extracted quality factor consists of 241×301×901 
points. ALM needs a few minutes, for modeling each of 
these mixed and magnetic coupling surfaces, and less than 
half an hour for modeling external quality factor versus its 
three independent variables, while Ansoft HFSS-13 needs 
9 minutes for each point of these coupling factor surfaces, 
and 3 minutes for each point of the external quality factor 
surfaces. In other words, Ansoft HFSS-13 needs more than 
3 years for computing each of the coupling factor surfaces 
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and 373 years for computing external quality factor data. 
This comparison clearly shows the ability of the ALM 
method in providing a vanishingly fast modeling tool, with 
a high resolution of the extracted data for coupling and 
external quality factor computations within a wide varia-
tion range of the independent variables which seems almost 
impossible by the full wave approach. It should be empha-
sized that the modeling approach and modeling simplicity 
remains unchanged when the number of modeling vari-
ables increases because, in this modeling technique, every 
complex system is broken down into its simpler aspects, to 
acquire useful information in a more comprehensible form. 

In order to verify the model accuracy, the error be-
tween the target function (full-wave-based extracted data) 
and the constructed model (ALM-based extracted data) 
was measured using two different criteria, i.e., the fraction 
of variance unexplained (FVU) and correlation coefficient 
(CC), which are defined as follows. 
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where yl and ŷl denote the lth data point of the output 
vector and the constructed model respectively. N is the 
total number of the output vector.  
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Fig. 10. ALM-based extracted coupling curves and full wave 

simulation, (a) h = 0.75 mm cut of Fig. 8(a), and (b) 
h = 1.27 mm cut of Fig. 8(a). 

FVU is proportional to the mean square error. As the 
model accuracy increases, the FVU approaches zero and 
CC approaches one. To consider the accuracy of the 
extracted surfaces two different cuts of Fig. 8(a) as 
an example are considered (h = 0.75 mm and 
h = 1.27 mm). These two cuts are shown in Fig. 10 by solid 
lines while the corresponding full-wave-based extracted 
data are demonstrated by dashed lines. As it is seen they 
are in good agreement. Computing FVU and CC results in 
FVU = 0.0039 and CC = 0.9999 for Fig. 10(a) and 
FVU = 0.0005 and CC = 0.9999 for Fig. 10(b). These 

values show the modeling accuracy of the proposed 
approach. Accuracy of the extracted surfaces is validated 
again in the next section by a filter design example. 

4. Filter Design  
In order to show the accuracy of the extracted cou-

pling and external Q surfaces, a four pole Chebychev 
bandpass filter was designed and fabricated. Required 
physical parameters of the structure were related to the 
coupling and external Q of the filter using ALM-based 
extracted surfaces. Center frequency and the fractional 
bandwidth of the filter are 1.765 GHz and 5% respectively. 
The coupling matrix and Qext are as follows. 
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Physical structure of the filter is shown in Fig. 11. 
Dimensions of the resonators are W = 0.7 mm, g = 0.6 mm, 
L = 5.6 mm and d = 0.3 mm (Fig. 7). The filter is fabri-
cated on a substrate of Rogers, TMM10i, with a relative 
permittivity of 9.8. In order to satisfy the center frequency 
of the filter, substrate thickness is selected equal to 
1.27 mm. Considering the physical structure of the filter, 
the first and the last two resonators are mixed coupled 
while the second and the third resonators are magnetically 
coupled. Therefore, the spacing between the mixed coupled 
resonators, i.e., S12 and S34 (Fig. 11) is determined easily 
using h = 1.27 mm cut of Fig. 8(a) which is shown in 
Fig. 10(b) with the solid line. This curve results in 
S12= S34= 0.55 mm. In the same way, considering 
h = 1.27 mm cut of Fig. 8(b) results in S23= 0.5 mm. Using 
ALM-based extracted Qext surfaces, for Qext= 19.2 various 
triplets of (Lf, Wf, Df) are calculated. Among these different 
choices, Lf, Wf, and Df were selected 5 mm, 0.4 mm, and 
1.6 mm respectively. The simulated and measured re-
sponses of the filter are demonstrated in Fig. 12. As it is 
seen they are in good agreement.  

 
Fig. 11. Fabricated SR filter. 

In order to show the miniaturization degree of the SR 
filter in comparison with an ordinary open loop resonator 
one, a SOLR filter with the same degree and nearly the 
same electrical characteristics (center frequency equal to 
1.64 GHz and fractional bandwidth equal to 4%) was de-
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signed and fabricated on the same substrate. The fabricated 
filter and responses are shown in Fig. 13. The total active 
area of this filter (excluding feed lines) is 4.97 cm2 while 
this area is 1.34 cm2 for the SR one (Fig. 11). It shows 
more than 70% of miniaturization for the SR filter in com-
parison with the SOLR one.  
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Fig. 12. Measured and simulated response of the spiral filter, 

(a) amplitude of the S21 (in-band response is shown 
inset) and (b) amplitude of the S11 (in-band response is 
shown inset). 

Design process of the SOLR filter is similar to the 
explained procedure of the SR filter design. In this regard, 
we implemented ALM to model coupling and external 
quality factor. Modeling parameters of the external quality 
factor were feed line length, feed line width and feed line 
position. Coupling factor was also modeled for two differ-
ent coupling structures, i.e., electric and magnetic coupling. 
In this modeling, three different parameters were consid-
ered which are spacing between resonators, resonator 
length, and substrate permittivity. Successful ALM-based 
modeled coupling and external quality factor in the case of 
SOLRs and SRs shows the ability of ALM in modeling 
different resonant structures. Considering three different 
parameters in coupling factor modeling of the coupled 
SOLRs, in comparison with two ones for the coupled SRs, 
validates the capability of ALM in extending the number of 
modeling parameters. These surfaces provide a fast and 
useful tool for SOLR filter design in a relatively wide 

variation range of required filter characteristics such as 
center frequency and bandwidth. Samples of extracted 
ALM-based coupling factor surfaces for the electrically 
coupled SOLRs have been represented in Fig. 14.  
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Fig. 13.  (a) Fabricated square open loop resonator filter, (b) 

amplitude of the S21 (in-band response is shown inset), 
and (c) amplitude of the S11 (in-band response is 
shown inset).  

5. Conclusions 
In this paper, a novel approach based on ALM has 

been proposed to model coupling and external quality 
factor of SRs. Spacing between resonators and substrate 
height were the coupling factor modeling parameters, and 
feed line length, feed line width, and feed line position 
were the external quality factor modeling parameters. The 
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modeling was carried out within a wide range of modeling 
parameters surprisingly fast and accurate. Accuracy of the 
extracted surfaces was verified using two different error 
measures. Using the ALM-based-extracted coupling and 
external quality factor surfaces one four pole Chebychev 
bandpass filter was designed and fabricated. Good agree-
ment between the measured and full wave simulated 
response of the filter validated the accuracy of the 
extracted surfaces again. The same process, using ALM-
based-extracted coupling and external quality factor 
surfaces, was carried out to design a SOLR filter. Good 
agreement between the measured and full wave simulated 
response of the filter shows the accuracy of the method and 
its generality in modeling different resonant structures. 
Comparison between these two filters determined more 
than 70% of area reduction for SR filters. The proposed 
modeling approach for coupling and external quality factor 
is general and can be used for other kinds of coupling 
configurations, other resonators or other feeding structures 
with the same degree of simplicity. It is also possible to 
consider more than three parameters in the proposed 
modeling approach simply, if we add initial required data 
of the new parameters to the previous ones. 

(b)

(c) (d)

εr
SN

SN r

(a)

 
Fig. 14.  (a) Electrically coupled SOLRs. Extracted coupling 

surfaces for the electrically coupled SOLRs shown in 
Fig. (14-a), (b) L = 6 mm (top), L = 9 mm (middle), 
L = 12 mm (bottom), (c) εr= 3 (top), εr= 4 (middle) 
εr= 12 (bottom), and (d) SN= 0.08 (top), SN= 0.16 (mid-
dle), SN= 0.35 (bottom). SN is the normalized spacing 
between resonators (SN= S/L).  
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