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Abstract. The wireless channel of High-Speed Railway
communication system is rapidly time-varying. The or-
thogonal frequency division multiplexing transmitting over
this channel will be exposed to the intercarrier interference
caused by large Doppler spread. The sectorised antenna can
be employed for Doppler mitigation and obtaining Doppler
diversity gain. In this paper the performance of this direc-
tional antenna is analyzed. The preferable partition scheme
for the omnidirectional antenna and the optimal Doppler
compensation frequency are addressed firstly. The uncor-
related property of the signal received from the different sec-
torised antennas is demonstrated originally which can be
utilized for Doppler diversity gain. Finally, it is proved by
the simulation results that this architecture will allows us to
achieve remarkable performance under high-mobility condi-
tions.
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1. Introduction
The development of China Railway High Speed attracts

the world’s attention. In Dec. of 2010, China’s CRH-380A
train set a new speed record for unmodified commercial use
at 486.1 km/h on a test run on the Beijing-Shanghai high-
speed railway [1]. However, there is a technology bottle-
neck between high mobility scenario and broadband wire-
less data transmission either the services for the passen-
gers’ wireless demands or for railway control system in
High-Speed Railway Communications (HRC). Orthogonal
frequency division multiplexing (OFDM) can transmit data
at a high speed over a frequency selective channel. However,
the longer duration of the OFDM symbol will be affected
by the rapidly time-varying channel resulting from severe
Doppler frequency shift which introduces intercarrier inter-
ference (ICI).

ICI caused by the Doppler spread cannot be corrected
by auto-frequency control (AFC) because Doppler shift is
random and in multipath channel the received signal is com-
posed of many incidence waves with different Doppler fre-
quency shifts due to arriving angles. To handle ICI, numer-
ous ICI mitigation methods have been developed such as
time domain windowing [2], all phase OFDM system [3] and
ICI self-cancelation [4]. The frequency efficiency of some
algorithms is lower which is not competent for high data
transmission in HRC. Klenner in [5], [6] applied the sec-
torised antenna architecture for multiple directional recep-
tion. This scheme facilitates high speed data transmission
in isotropic and larger Doppler spread channel. With the di-
rectional antenna, the Doppler spectrum is divided into a set
of sub-spectra which can be compensated by corresponding
frequency. Each sub-spectrum is narrowed so that the time
selectivity is alleviated due to the fact that it experiences
a fraction of the full spread.

Our main concern in this paper is analysis of the per-
formance of this scheme theoretically. Firstly, various parti-
tion schemes for isotropic antenna will be investigated and it
can be concluded that Equal Doppler Spread method outper-
forms others. Then the optimal Doppler compensation shift
scheme will be proposed. In order to obtain the Doppler
diversity, we will originally prove that the received signals
from different directional antennas are uncorrelated under
Jakes’ Doppler spectrum model. Finally, the simulation re-
sults show that sectorised antenna used in HRC is able to
improve the performance of communication system. And
the results of the special cases that line of sight as Rice com-
ponent takes a dominant position and two rays with the op-
posite Doppler shift occur in High-Speed Railway scenario
are firstly presented.

This paper is organized as follows. In Section 2 the
relationship between the partition scheme and time selectiv-
ity is analyzed. Section 3 presents the preferable partition
scheme of the directional antenna. In Section 4 the uncor-
related property of the signal from different directional an-
tenna is demonstrated. Section 5 depicts the performances
of this directional scheme in HRC channel model. Finally,
the conclusions are drawn in Section 6.
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2. Relationship between Doppler
Spectrum and the Time Selectivity
For Jakes’ model [7], the classical Doppler spectrum is

p f ( f ) =

{
1

π fmax
√

1−( f/ fmax)2
| f | ≤ fmax

0 | f |> fmax
(1)

where fmax is the maximum Doppler frequency shift. Here,
the spectrum is based on the following three assumptions:
(a) The propagation of the electromagnetic waves take place
in a two-dimensional plane, and the receiver is located in the
center of an isotropic scattering area. (b) The angles of ar-
rival waves reaching the antenna are uniformly distributed
in the interval [−π,π). (c) The antenna at the receiver side
is circular-symmetrical (omnidirectional antenna). The flat
fading case is assumed for simplicity. If the scatters are
dense and uniformly distributed, the received signal can be
written as a sum of signals. Then the spectrum as (1) can
be divided into several sub-spectra. In [8] an Equal Doppler
Contribution (EDC) partition method is proposed. The angu-
lar interval can be obtained by the following equations which
we will investigate in Section 3 as

√
φK−φK−1 (sin(φK)− sin(φK−1))

=
√

φK−1−φK−2 (sin(φK−1)− sin(φK−2))
= · · · · · ·
=
√

φ1−φ0 (sin(φ1)− sin(φ0))

(2)

where φk(k = 0,1, · · ·K) is the angle limit of each directional
angle. If the EDC is employed, the Doppler frequency shift
factor can be compensated before demodulation as

ζk = cos(
φk−1 +φk

2
). (3)

After Doppler adjustment, the relationship between
the time correlation and the Doppler spectrum Psector( f ) as
Fourier transformation is

R(τ) =
∫ Sk

Sk−1

Psector( f )e− j2π f τ d f (4)

where Sk is the frequency bound of the kth sector. Then the
sub-spectrum is to be combined after Doppler compensation,
we can obtain the time correlation as

R(τ) = 1
π

K−1
∑

k=0
e− j2π fmaxζkτ

·
(∫ Sk+1

Sk
1

fmax
√

1−( f/ fmax)
2 e− j2π f τd f

)
.

(5)

Here we give the numerical integration results of the
relationship between the fading rate and Doppler spread par-
tition from (5) as in Fig. 1. It is known that the correla-
tion function of the Jakes’ Doppler spectrum is the 0th-order
Bessel function of the first kind. Here the EDC sector angle
limits are used in [8]. It can be found that correlation value
of the combined signal with Doppler frequency compensa-
tion is increasing with the amount of the sector antenna at
a given time index normalized τ. This means that the signal

exhibits less time-variant behavior when more antennas are
used.
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Fig. 1. Correlation versus normalized time.

3. Different Partition Schemes for
the Omnidirectional Antenna and
the optimal Doppler Compensation
Frequency

3.1 Different Partition Schemes for
the Omnidirectional Antenna
The fading rate mainly depends on the width of the

Doppler spread. In order to guarantee the equal fading rate
after frequency compensation of each sector output, three
schemes are compared. Due to the angle symmetry, we only
consider the incidence angle of the arriving wave located in
[0,π). K antennas are employed where the angle limits are
φk(k = 0,1, · · · ,K), where φ0=0 and φK=π.

(1) Equal Angle (EA): The beam width of each sector is
equal, and φk is obtained as

φ0 = 0,
φ1 = ∆φ,

...
φK = K ·∆φ

(6)

where ∆φ = π

K .

(2) Equal Doppler Spread (EDS) [6], [9]: The whole
Doppler spread spectrum is divided into K equal sub-spectra.
To achieve this criteria, the following equation has to be sat-
isfied [9]

φk = arccos(
K−2k

K
),k = 0,1, · · · ,K. (7)

(3) EDC [8]: Because the average of Doppler profile is not
uniform, this algorithm works based on the fact that each
beam contributes the equal Doppler effect. Then φk can be
obtained as (2).

Here we give an example of K = 4 for comparing these
schemes. The angle limits are listed in Tab. 1.
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In Fig. 2 it can be found that all the three schemes per-
form lower time selectivity than the omnidirectional antenna
case. The solid lines and the broken lines are the power cor-
relation of separated antenna sector respectively. The solid
line stands for the sector near 90◦, and the broken line is for
the sector near 180◦. The power correlation decreases with
the τ increasing. Also we can see the fading rate (or corre-
lation property) of EDC yields the largest correlation value,
whereas the EDS has a very significant improvement over
EDC, which exhibits closely related value. Note that when
OFDM is applied, if the channel fluctuates differently after
Doppler compensation, the ICI of each sectorised antenna
appears at different level. When Maximum Ratio Combin-
ing (MRC) is employed, the performance will degrade due to
the poor antenna. Therefore, EDS is superior to other meth-
ods.

φ0 φ1 φ2 φ3 φ4

EA 0◦ 45◦ 90◦ 135◦ 180◦

EDS 0◦ 60◦ 90◦ 120◦ 180◦

EDC 0◦ 34.1◦ 90◦ 145.9◦ 180◦

Tab. 1. Limits of angles of sectorised antenna with different par-
tition.
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Fig. 2. Correlation with different partition.

3.2 The Optimal Doppler Compensation
Frequency Algorithm

For OFDM system, the ICI deteriorates the perfor-
mance in high-speed mobility scenario. The ICI power PICI
is as [9], [10]

PICI = 1−
∫ 1
−1

∫
π

−π
(1−|x|)p(φ)e j2π fmaxTsxcosφ dφdx

= 1−
∫

π

−π

p(φ)sinc2[ fmaxTs cosφ]dφ (8)

where P(φ) denotes the probability distribution function of
the arrival angle and Ts is the sample interval of the system.
After frequency adjustment PICI is as follows

PICI = 1−
∫

π

−π

p(φ)sinc2 { fmaxTs [cosφ−ζ]}dφ (9)

where ζ is the correction factor for frequency tracking algo-
rithm. Because the sub-spectrum of each sector antenna is
not uniform, the optimal Doppler compensation frequency
is the barycenter of the kth sub-spectrum as

f op
k =

∫ φk
φk−1

f ·Psector ( f )d f∫ φk
φk−1

Psector ( f )d f
. (10)

When this is applied in practice, the computation com-
plexity is intractable. Sometimes (10) normalized by fmax
can be approximated as [9]

ζ
1
k = cos(

φk−1 +φk

2
), (11)

which corresponds to the center of the sub-spectrum. Ad-
ditionally, the precise moving speed of the train can be em-
ployed in HRC as prior information which accompanied by
the maximum Doppler frequency shift fmax. Then real-time
Doppler compensation frequency can be obtained naturally.

4. The Uncorrelated Property of
Received Signals from the Different
Sectorised Antennas
Here the Clarke model [11] assumes that incidence sig-

nal at the receiver is composed of N scattered waves with
random phase and equal average amplitude. The scattered
waves experience a similar fading over small scale distance.
Then the received signal represented as the sum of all inci-
dence multipath waves is

r(t) =
N

∑
i=1

ciexp( j(2π fmax cosφit +θi)) (12)

where ci, φi and θi are the amplitude, incidence angle and the
random phase of the ith wave respectively. For the omnidi-
rectional antenna, φi ∈ [−π,π). Due to the equal average am-
plitude in Clarke model, it satisfies that ci = c j, i, j ∈ [1,N].
The expected power value of all the multipath waves is 1,

then
N
∑

i=1
|ci|2 = 1 can be obtained, so

ci = 1/
√

N i ∈ [1,N]. (13)

Then (12) can be rewritten as

r(t) =
1√
N

N

∑
i=1

exp( j(2π fmax cosφit +θi))

=
1√
N

N

∑
i=1

cos(2π fmax cosφit +θi)

+ j
1√
N

N

∑
i=1

sin( j(2π fmax cosφit +θi).

(14)
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Fig. 3. Sectorised antennas used on the vehicle.

When sectorised antennas are used as in Fig. 3, the re-
ceived components in directional antenna P and Q become

rP (t) = 1√
NP

NP
∑

p=1
cos(2π fmax cosφpt +θp)

+ j 1√
NP

NP
∑

p=1
sin(2π fmax cosφpt +θp)

(15)

and

rQ (t) = 1√
NQ

NQ

∑
q=1

cos(2π fmax cosφqt +θq)

+ j 1√
NQ

NQ

∑
q=1

sin(2π fmax cosφqt +θq)

(16)

where φp ∈ [φA,φB] and φq ∈ [φC,φD]. NP and NQ are the
amounts of the incidence waves satisfying

NP = N
φB−φA

2π
,

NQ = N
φD−φC

2π
,

(17)

and θp,θq ∈ [0,2π]. For simplicity, θ is used instead of θp
and θq. Then the mathematic expectation of rp(t) is

E
[
rP (t)

]
= 1√

NP

NP
∑

p=1
E [cos(2π fmax cosφpt +θ)]

+ j 1√
NP

NP
∑

p=1
E [sin(2π fmax cosφpt +θ)] = 0.

(18)

Similarly, the mean value of rQ(t) is

E[rQ(t)] = 0. (19)

and the correlation of received signal from P and Q direc-
tional antenna is

RPQ (t1, t2) = E
(

rP (t1)
(
rQ (t2)

)∗)
= 1√

NPNQ

NP
∑

p=1

NQ

∑
q=1
{R1−R2}+ j 1√

NPNQ

NQ

∑
q=1

NP
∑

p=1
{I1 + I2}

(20)

where
R1 = E [cos(2π fmax cosφpt1 +θ)cos(2π fmax cosφqt2 +θ)] ,
R2 = E [sin(2π fmax cosφpt1 +θ)sin(2π fmax cosφqt2 +θ)] ,
I1 = E [cos(2π fmax cosφpt1 +θ)sin(2π fmax cosφqt2 +θ)] ,
I2 = E [sin(2π fmax cosφpt1 +θ)cos(2π fmax cosφqt2 +θ)] .

(21)

After some mathematical operations, we have

RPQ(t1, t2) = 0. (22)

From (18) – (21) it can be found that the received sig-
nals at the sector P and Q are uncorrelated, and the corre-
lation value is not allied to beam width of each sector. The
Doppler full diversity gain can be derived due to uncorre-
lated property in each directional antenna. Similarly, the sig-
nal after Doppler compensation is also uncorrelated.

5. Simulation Results
In this section, we present results for an OFDM com-

munication system with parameters listed in Tab. 2. The
virtual subcarriers and the DC tone are ignored and the cen-
tral frequency is set to 2.4 GHz. Here we define the normal-
ized Doppler frequency as fN = Tsys · fmax, where Tsys is the
OFDM symbol duration. Because the high speed railway is
usually built in the open, the radio propagation channel per-
forms distinctively from the mobile cell channel in the urban
area. Generally, the line of sight or direct path called Rice
path takes a dominant role. Here COST 207 rural area (RA)
channel model [12] is used for simulation. The angle limits
of each sectorised antenna are presented in [6], [8]. The ve-
locity we consider belongs to the range 0 km/h – 500 km/h.

Bandwidth 10MHz

FFT/IFFT 2048

CP Length 256

Mapping Coherent BPSK

Pilot Interval 32

Channel Estimation Transform Domain Method

Combined Scheme MRC

Tab. 2. OFDM system simulation parameters.

Fig. 4 depicts the Bit Error Rate (BER) performance
of the OFDM system versus the normalized Doppler fre-
quency, where fN ∈ [0∼ 1]. The pentagram line shows
that the system is affected by the maximum Doppler fre-
quency fmax without Doppler compensation. The square
line works under the same condition but with Doppler
compensation. The circle lines from S1∼S7 represent
the directional antennas with beam widths

[
−π
/

2,π
/

2
]
,

[−1.2310, 1.2310], [−1.2310, 1.2310], [−1.0472, 1.0472],
[−0.9273, 0.9273], [−0.8411, 0.8411], [−0.7752, 0.7752]
and [−0.7227, 0.7227] respectively. The approximation for
the Doppler compensating frequency is fmax corresponding
to ξ1

k = cos
(
(φk +φk−1)

/
2
)
. After Doppler correction, the

BER performance improves. When the beam is reduced to
the minimum width, the system performs as the square line
corresponding to the pure Doppler case.
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Fig. 4. BER performance of sectorised antenna reception versus
normalized Doppler frequency shift.
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Fig. 5. BER performance of sectorised antenna reception under
COST 207 RA channel model.

Fig. 5 gives the BER performances of sectorised an-
tenna under COST 207 RA channel model with different ve-
locities. Compared with omnidirectional antenna, it can be
seen that improvement is significant when sectorised recep-
tion scheme is employed. The error floor level decreases
with increasing sectorised antenna number. It can be found
that when S = 6 is employed, error floor nearly disappears.
Reducing time selectivity alleviates the ICI upon each sub-
carrier which brings more reliable data detection. Addition-
ally, Doppler diversity gains can be obtained when multiple
directional antennas are used which push the performances
to the non-time selectivity cases.

In high mobility scenarios, in order to decrease the han-
dover times Base Band Unit (BBU) + Remote Radio Unit
(RRU) architecture is proposed [13] as in Fig. 6. The core
idea is to separate several RRUs apart from the BBU com-
ponent so that the BBU is placed in the central location, and
the RRU is connected with the optical fiber which can en-
large the cell scale. However, a bad special case occurs when

the train travels at the middle area of two RRUs. Two rays
with opposite Doppler frequency shift reach the receiver at
the same time. The omnidirectional antenna architecture can
not cope with this condition well.

We depict the BER performance of this two rays sce-
nario in Fig. 7. For simplicity, one ray from each RRU is
assumed. The Doppler spectrum is Rice spectrum as the first
path in COST 207 RA channel [12]. The average path gains
of the two rays are [0, 0] dB and [0, -6] dB. We observe using
sectorised reception also bring benefits under this condition.
Time selectivity is alleviated. Error floor is avoided when
S = 4 directional antennas are used.

maxfmaxf

RRU RRU

Fig. 6. Distributed BBU + RRU principle.
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Fig. 7. BER performance of sectorised antenna reception under
two rays model.

6. Conclusion
In this paper, we analyze performance of the Doppler

diversity based on sectorised antenna architecture. It can
provide the improvement of reducing the time selectivity and
diversity gain for transmission. We have shown that after
Doppler frequency compensation, in EDS partition scheme
similar a fading rate appears and can be applied for MRC
directly without considering weighted value. It is demon-
strated that the signals received from different directional an-
tennas are uncorrelated and after the approximated Doppler
frequency compensation this scheme can reduce the ICI
power by reducing the Doppler spread and mitigating the er-
ror floor under high mobility condition. Moreover, the spe-
cial case that two rays with opposite Doppler frequency shift
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in HRC is considered that the benefits can be obtained with
this sectorised antenna scheme.
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