
880 D. ČERNÝ, J. DOBEŠ, COMMON LISP AS SIMULATION PROGRAM (CLASP) OF ELECTRONIC CIRCUITS

Common LISP as Simulation Program (CLASP)
of Electronic Circuits

David ČERNÝ, Josef DOBEŠ

Dept. of Radio Engineering, Czech Technical University in Prague, Technická 2, 166 27 Praha 6, Czech Republic

cernyd1@fel.cvut.cz, dobes@fel.cvut.cz

Abstract. In this paper, an unusual and efficient usage of
functional programming language Common LISP as simu-
lation program (CLASP) for electronic circuits is proposed.
The principle of automatic self-modifying program has en-
abled complete freedom in definition of methods for opti-
mized solution of any problem and speeding up the entire
process of simulation. A new approach to program structure
in electronic circuit simulator CLASP is described. The defi-
nition of simple electronic devices as resistor, voltage source
and diode is given all together with description of their mem-
ory management in program CLASP. Other circuit elements
can be easily defined in the same way. Simulation methods
for electronic circuits as linear and nonlinear direct current
analysis (DC) are suggested. A comparison of performances
of two different linear solvers (an original and the standard
GNU GSL) for circuit equations is demonstrated by an algo-
rithm for automatic generation of huge circuits.

Keywords
Common LISP, computer simulation, electronic cir-
cuits, device models

1. Introduction
In the middle of the last century, increasing demand

for more complex electronic devices and race with competi-
tors forced companies to think more about their development
processes. Tools for computer simulation and computer-
aided design (CAD) were created. Between the years 1967
and 1971 the first version was formed of the program for
simulation of electronic circuits in the University of Califor-
nia at Berkeley. Originally called CANCER [1], the program
was later renamed to less misleading name SPICE, Simula-
tion Program with Integrated-Circuit Emphasis [2].

The next generation of the program, SPICE2, was com-
pleted in 1975. It came with a new circuit representation,
known as modified nodal analysis (MNA) [3], better mem-
ory management, time-step control mechanism and new re-
liably stable multiple-order integration method. Advanced
capabilities of the program SPICE and its free redistribution
under Berkeley open-source license ensured that the core

of the SPICE program was derived into many other CAD
programs. For example PSpice (Cadence), Affirma Spectre
(Cadence), HSPICE (Synopsys), ELDO (Mentor Graphics),
SmartSpice (SILVACO), NgSpice and many others. More
on the history of the SPICE can be found in [4].

2. Computer Simulation Today
With the beginning of the 21st century, the approach

has changed to computer simulation. It has become a com-
mon part of the manufacturing process used by teams of en-
gineers and scientists. The collaborative way of use resulted
in new requirements for versatility and re-usability of previ-
ous work Development of the Internet and communication
media enabled a new self-enhancing production models, as
“open-source” distribution of software and its development
by collective work of interactive communities.

The modern programs for computer simulation are not
single purpose simulators anymore. They developed into
multi-functional systems that can offer wide range of func-
tionality through defined high-level language or interactive
scripting interface. They also support extension of function-
ality by addition of professional or user-defined packages.

3. Drawbacks of Current Concept
The majority of the simulation systems are shipped to

a user as binary files. The source code is treated as trade
secret and the users are not able to check the accuracy of
simulation algorithms inside. This brings a new unwanted
element to simulation, unreliability of results. Reading man-
uals of simulators one can often find a note challenging re-
sults and recommending testing before final implementation.

The simulators usually come with their own internal
scripting language which originates in the good intention
to make them attractive and more effective. Unfortunately
there exist hundreds of different simulators today. Each with
different programming semantics intended by different com-
panies and with only partially guaranteed backward compat-
ibility. Changes in the user defined simulation are generally
necessary whenever a new version of simulator is released.

RADIOENGINEERING, VOL. 20, NO. 4, DECEMBER 2011 881

Despite all modularity of today’s simulators, in many
situations they are used on the border of their limits and
sometimes the only way to perform optimized simulation
of desired problem is total source code reorganization. It
could be seen especially on the device models, which must
be incorporated in program core to make different simulation
types possible.

The first electronic simulators were written in program-
ing languages as FORTRAN 4 and FORTRAN 77 or later in
far more modern C or C++. There are very powerful pro-
gramming languages, as to their concept in memory alloca-
tion and management, which used to be considered as the
main evaluative criteria of programming language, but less
practical in terms of their own dynamical readjustment. By
the dynamical readjustment is meant the process when inter-
nal functions and variables of program can be redefined in
the runtime to solve the problem. This ability is inherent in
programming languages designed for genetic simulation and
low level machine code languages.

4. Common LISP
The LISt Processing language (LISP) was designed by

John McCarthy from Massachusetts Institute of Technology
(MIT) in 1958 as a new symbolic data processing language
[5]. But most attention was given to LISP during the artifi-
cial intelligence (AI) boom of the 1980s, when LISP became
a tool for solving hard problems such as automated theorem
proving, computer vision or artificial intelligence simulation.
Also the Cold War helped as the Pentagon supported projects
for large-scale battlefield simulations, automated planning,
and natural language interfaces. In 1981, the standardizing
process of a new language called Common LISP (CL) be-
gan that combined the best features from the existing LISP
dialects. It resulted in granting of standard by the American
National Standards Institute (ANSI) in 1996 [6].

CL is an expression-oriented language. It reads expres-
sions, evaluates them in accordance with the rules of CL,
and prints the result. That endless cycle of reading, eval-
uating and printing is called read-eval-print loop (REPL). It
must be pointed out that unlike most other languages, no dis-
tinction is made between “expressions” and “statements”;
program code and data are written in a form of symbolic
expressions (SEXPS), which makes the syntax of language
extremely regular [?].

CL SEXPS are composed of forms. The most common
CL form is function application. For instance the application
of mathematical notation f1(x1,x2, . . . ,xn) is defined by CL
syntax as

(F X1 X2 . . . XN) .

The use of parentheses is very typical for CL. Anything
inside parentheses is treated as a list. CL evaluates lists by
picking the first element as the name of a function and the

rest of the elements as arguments to the function. As in other
programming languages CL evaluates functions in applica-
tive order, which means that all the argument forms are eval-
uated before the function is invoked. When CL evaluates
expression:

(+ 1 (∗ 2 3))

CL reader evaluates list of three elements: symbol “+”
which refers to function for addition, symbol 1 which is self-
evaluating form (evaluates itself) and nested list:

(∗ 2 3)

which is evaluated before it is passed as an argument to the
addition function.

The syntax of CL is case-insensitive. It means that it
does not matter whether it is written as (factorial n) or (FAC-
TORIAL N). But to better recognize the mathematical for-
mulas, the capital letter notation will be used for CL.

Variable assignments (and creating new variables) can
be done with the SETQ function. The code below creates
a variable called VAR and stores a list in it:

(SETQ VAR (QUOTE (HELLO WORLD ! !)))

The QUOTE function in this example is used to des-
ignate that something in brackets is not a SEXPS but a list,
which can itself be an argument of the function.

Functions in CL are represented internally as distinct
function objects. For their definition DEFUN macro is used.

(DEFUN FUNCTION−NAME (ARGUMENTS . . .)
” F u n c t i o n d o c u m e n t a t i o n s t r i n g . . . ”
BODY . . .)

DEFUN macro defines a new function named
FUNCTION-NAME in the global environment. It can be
used to define a new function, to install a corrected version of
an incorrect definition, to redefine an already-defined func-
tion, or to redefine a macro as a function. The example of
the use of DEFUN macro is shown by implementation of
factorial n! = ∏

n
k=1 k definition:

(DEFUN FACTORIAL(N)
(COND ((EQUAL N 0) 1)

(T (∗ N (FACTORIAL (− N 1))))))

The principle of previous CL code incorporates the use
of recursion for evaluation of product over k. The condition
defined by macro COND stands for recursion stopping cri-
teria. The symbol “T” in code stands for condition branch
called whenever none of the conditions is met. The FAC-
TORIAL function is recursively called until the condition
(N = 0) is met, then recursion calls finish and last function
call returns number 1.

One major aspect of CL is its ability of general abstrac-
tion by “functionals”. The term “functional” denotes a spe-
cial function that has one or more functions as arguments, or

882 D. ČERNÝ, J. DOBEŠ, COMMON LISP AS SIMULATION PROGRAM (CLASP) OF ELECTRONIC CIRCUITS

returns a function as a result. For instance in CL it is pos-
sible to pass a function as an argument to another function.
This function (denotable as a “general functional”) can re-
turn another function with redefined behavior. The definition
of such general functional follows:

(DEFUN FUNGEN (F X)
(FUNCTION

(LAMBDA (Y)
(FUNCALL F X Y))))

This example defines a new contemporary function (so
called LAMBDA function) with one argument Y. The body
of this function is composed by FUNCALL function:

(FUNCALL FUNCTION &REST ARGUMENTS . . .)

FUNCALL is special function which evaluates its first argu-
ment as a function call. The following arguments are eval-
uated in the standard way. It must be pointed out that in
CL, the names of functions are represented as symbols. The
symbol “+” shall be quoted by function QUOTE or by its
syntactic abbreviation to indicate that it is symbol and not
a variable. When FUNGEN is evaluated with following ar-
guments:

(FUNGEN (QUOTE +) 1)

another function is returned as a result. To see what the new
function actually does, it must be used as an argument of
another FUNCALL function. Then the definition of

(FUNCALL (FUNGEN ’+ 1) 2)

results in number 3. The definition of original function was
little modified to show capabilities of CL syntactic abbrevi-
ations.

Due to CL unique SEXPS mechanism it is also possible
to dynamically add new variables in runtime of a program.
When the CL reader encounters a symbol, it reads all char-
acters of the name. Then it “hashes” those characters to find
an index in a table called OBARRAY. If a symbol with the
desired name is found, the reader uses that symbol. If the
OBARRAY table does not contain a symbol with that name,
the reader makes a new symbol and adds it to OBARRAY.
Finding or adding a symbol with certain name is called “in-
terning”. Dynamical adding of a new variables in CL could
be implemented in several ways. The most straightforward
is the use of the function INTERN:

(INTERN STRING &OPTIONAL PACKAGE)

It accepts a string as a name of new variable and returns the
interned symbol whose name is given by the STRING argu-
ment. If there is no such symbol in the OBARRAY table de-
fined by argument PACKAGE, INTERN creates a new one,
adds it to the new OBARRAY, and returns it. If the PACK-
AGE argument is omitted, global OBARRAY is used.

Major advantages of CL have been lightly touched to
clarify the key concept of using CL as simulation program.

It was by no means all that CL can offer. For more complete
description about CL capabilities see the references [5], [6].

5. CLASP
The acronym CLASP is abbreviation of initial letters

of phrase Common LISP as Simulation Program. It should
be noted that CLASP is not conceptually full program. It is
far better to understand it as a sort of CL source code with
a capability of run-time self-redefinition. This source code
definition will be referred to as the program CLASP in this
paper.

6. Device Modeling
To be able to model any electronic device in CLASP,

it is mandatory to formulate its characteristic equations ac-
cording to Kirchhoff’s circuit laws. These equations are con-
struction blocks for design of modified nodal formulation
(MNF) [3] by inspection. To meet capabilities of CLASP,
the original inspection method was extended introducing
new matrices and vectors to circuit system equations. In
CLASP, standard MNF representation is divided into four
matrices, denoted as matrix G, E, Z, and D, two right-hand-
side (RHS) vectors rn, rq and one equation vector eq. All
linear and frequency independent elements of models will
be stored in the matrix G, values that are associated with fre-
quency variable will be stored in both matrix E and Z, where
matrix E serves as unit matrix for introducing new frequency
dependent values, and Z matrix holds their coefficients. In
the case of nonlinear model (independently whether it is fre-
quency dependent or not) its nonlinear characteristic equa-
tions are stored in matrix D and vector eq. D matrix serves,
together with values from linear matrix G, for generation of
Jacobian matrix. It holds derivatives of nonlinear equations
describing device with respect to its position in the matrix.
This is possible due to the CLASP capability of dynamical
variables assignment. The remaining equations describing
model of device are stored in equation vector eq. Right hand
side vectors rn, rq hold source values and source describ-
ing equations respectively. More detailed description of the
system equations will be given in Section 7.

6.1 Resistor
The simple model for ideal resistor in Fig. 1 can be de-

fined in CLASP in two equivalent ways. The constitutive
equations of the resistor device can be arranged by using
impedance or admittance description of device. It is bet-
ter, whenever it is possible, to use admittance description for

Vp Vn

Ip

y

Fig. 1. Resistor graphical symbol.

RADIOENGINEERING, VOL. 20, NO. 4, DECEMBER 2011 883

device model, because it at least partially helps to reduce
sparsity of resulting system.

The node voltage at positive terminal of model is de-
noted as Vp and the negative as Vn. To unify the notation, the
currents at terminals Vp or Vn are considered to be positive;
thus the current passing through resistor from positive termi-
nal to negative terminal is Ip = I and for opposite direction
In =−I. The constitutive equation for positive and negative
current direction is then

Ip = y(Vp−Vn),

In =−y(Vp−Vn)
(1)

where y denotes admittance of the resistor. Ideal resistor is
linear and frequency independent device, all its characteris-
tic values shall be added to values in matrix G. The sub-
matrix block denoting admittance model has the following
form

G =

(Vp Vn

Ip y −y
In −y y

)
.

Definition of resistor by impedance model requires to
add a new variable (current I+) to sub-matrix block. Sym-
bol “+” indicates increased the size of matrix G and z is
impedance of resistor.

G =

Vp Vn I+

Ip 0 0 1
In 0 0 −1
I+ 1 −1 −z

.

6.2 Voltage Source
The graphical symbol of voltage source model is shown

in Fig. 2. The voltage nodes are denoted as Vn and Vp, the
voltage value as symbol E and the currents at terminal nodes
as Ip and In.

Vp

Ip

Vn

E

Fig. 2. Voltage source symbol.

In this case the currents Ip and In have to be incorpo-
rated in constitutive equations together with a new variable
I. This increases a size of matrices by adding one row and
one column. Constitutive equations of voltage source have
the following form

Vp−Vn = E,

Ip = I,

In =−I,
(2)

from which matrix G with the source vector rn can be for-
mulated as:

Vp Vn I+

Ip 0 0 1
In 0 0 −1
I+ −1 1 0

=

RHS

0
0
E

.

Increased size of matrix is indicated by index “+”.

6.3 Simple Diode
A simple diode model will be defined in this section.

Generally, the diode is a two-terminal electronic device with
nonlinear current-voltage characteristics. The diode symbol
is shown in Fig. 3.

VnVp

ID

D

Fig. 3. Diode symbol.

The definition of simple diode will be given for its sim-
plicity and clearness by Shockley ideal diode equation. The
fundamental equation of ideal diode current will become

ID = IS

(
eVD/(nVT)−1

)
(3)

where ID is diode current, IS is saturation current, VD =
Vp−Vn is voltage across the diode. The thermal voltage VT
is well known constant defined by the equation VT = kT/q,
where k is the Boltzmann constant (1.38×10−23 J/K), T is
absolute temperature of the P-N junction, and q is elemen-
tary charge (1.602× 10−19 C). The value of VT will be set
to 25.85 mV, saturation current IS = 10−12 A and emission
coefficient n = 1.

In the case, when the diode current is requested as
an output variable, the diode constitutive equations will be-
come:

ID = IS

(
e(Vp−Vn)/(nVT)−1

)
,

Ip = ID,

In =−ID,

(4)

from which the Jacobian matrix can be written directly as:

M|x =

 0 0 1
0 0 −1

λe(Vp−Vn)/(nVT) −λe(Vp−Vn)/(nVT) −1

 (5)

where λ = IS/(nVT), and x = (Vp Vn ID)
t .

Putting all together, diode CLASP matrices can be for-
mulated. As it has been mentioned, to model nonlinear and
frequency independent device the use of matrices G, D and
equations vector eq is needed. The resulting formulation is

884 D. ČERNÝ, J. DOBEŠ, COMMON LISP AS SIMULATION PROGRAM (CLASP) OF ELECTRONIC CIRCUITS

G =

0 0 1
0 0 −1
0 0 −1

 ,

D =

 0 0 0
0 0 0

λe(Vp−Vn)/(nVT) −λe(Vp−Vn)/(nVT) 0

 ,

eq =
(

0 0 IS

(
e(Vp−Vn)/(nVT)−1

))t

(6)

where t denotes transposition of vector.

The implementation of the diode model in CLASP will
be better illustrated for the reader. The function DIODE-
CURRENT expect arguments VP and VN. They are the
names of particular node variables to which anode and cath-
ode of the diode are connected. In the mathematical notation,
VP and VN correspond to Vp and Vn, respectively.

(DEFUN DIODE−CURRENT (VP VN)
’ (LAMBDA ()

(∗ 10e−12
(− (EXP

(/ (− (EVAL VP) (EVAL VN))
26e−3))
1))))

This function returns another function, defined by
LAMBDA operator, which computes current ID through the
diode. The second CLASP source code implements deriva-
tive of the diode current with respect to node voltage.

(DEFUN DIODE−CURRENT−DVP (VP VN)
’ (LAMBDA ()

(∗ (EXP
(/ (− (EVAL VP) (EVAL VN))

26e−3))
(/ 10e−12 26e−3))))

This generates functionals that are stored in the matrix D
and in the vector eq. When they are invoked, they evaluate
themselves according to actual state of variables VP and VN.
These values should be known in time of simulation, because
finding the solution of nonlinear system requires the use of
an iteration method such as the Newton-Raphson method.
The values VP and VN will be usually given by random pre-
diction or as a result of previous iteration of an algorithm.

7. Simulation and Analysis in CLASP
Programs for the electronic circuits simulation usually

come with variety of simulation processes and analyses, i.e.
operating point (OP), sensitivity analysis, transient analysis
and many others. In this paper main focus will be pointed
to the linear and nonlinear direct current (DC) analysis, and
DC sweep analysis.

7.1 Linear DC Analysis
CLASP divides DC analysis to linear DC and nonlin-

ear DC analysis. When a circuit includes only linear devices,
the simulation enters matrices G, and E together with right-
hand-side (RHS) vectors rn and rq. The remaining matrices
and vectors are during linear DC analysis equal to zero.

Matrix E has two functions. Normally it holds unity
values of frequency dependent devices as capacitors and in-
ductors. But during DC analysis matrix E is added together
with matrix G. This operation removes frequency dependent
devices. It replaces inductors with shortcuts and disconnects
all capacitors. The advantage is that the voltage nodes and
their variables, even if they are in disconnected part of cir-
cuit, stay in the equations. The resulting linear system is
defined as

(G+E)x = rq(s)+ rn (7)

where vector x denotes unknown variables as node voltages,
currents through devices, electric charges etc. RHS vectors
rn and rq(s) are source vectors, they hold voltage source val-
ues and voltage source equations respectively. For instance
in a use of time stepping voltage source, the characteristic
time dependent equation of voltage source will be added to
vector rq(s). Vector s is vector of circuit system parameters
which shall be known at any time of simulation. The solu-
tion of linear system (7) is best computed with respect to ac-
curacy of results by some factorization method. In network
application LU factorization algorithm [7] is often used.

Implementation of LU factorization in CLASP is a not
straight-forward thing. The environment provides a rich hi-
erarchy of numbers, that is integrated with the rest of the
language. Together with the standard number representation
(integers, floats, double-floats, etc.) it also offers exact arith-
metic such as implicitly created bignums, rational and com-
plex numbers. For instance, a common property of mathe-
matical numbers x/10 + y/10 = (x + y) /10, which does not
hold for floating point numbers [8]:

(+ 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1)

and results in mathematically incorrect value 0.70000005
(single float). It can be solved in CLASP converting float-
ing point numbers to rational numbers:

(+ 1 /10 1 /10 1 /10 1 /10 1 /10 1 /10 1 / 1 0)

At this time the example results in mathematically cor-
rect value 7/10. In CLASP all numbers are always automat-
ically converted to appropriate format. Therefore it does not
matter whether mathematical operation includes integers to-
gether with double floats and rational numbers. The result
will be correctly evaluated with an output precision deter-
mined by the lowest precision in computation.

However, a series of tests has proven that the rich
and accurate hierarchy of numbers in CLASP slows down
efficiency of evaluation in high performance commutating
tasks.

RADIOENGINEERING, VOL. 20, NO. 4, DECEMBER 2011 885

Even with very optimal code, CLASP can not compete
efficiency and memory management of languages such as
FORTRAN or C. Therefore, the decision was adopted to dis-
tribute this computationally intensive tasks through CLASP
foreign array interface to GNU Scientific Library (GSL).

The GSL is a numerical library written in C and C++
language. It is free software under the GNU General Pub-
lic License and provides a wide range of mathematical rou-
tines such as random number generators, special functions
and least-squares fitting. Also it supports Basic Linear Alge-
bra Subprograms (BLAS) and Linear Algebra Package (LA-
PACK) routines.

7.2 Nonlinear DC Analysis
When circuit includes some nonlinear models of de-

vices as for example diodes, the solution of network equa-
tions cannot be obtained directly and equations shall be lin-
earized before. One of the basic methods for solving of non-
linear equations implemented in CLASP is Newton-Raphson
(NR) method [9]. Brief description of its implementation in
CLASP program follows. Lets start with definition of a sys-
tem f of n nonlinear equations

f(x) = 0, (8)

substituting CLASP matrix system, it changes to form:

(G+E)x+ eq(x)− rq(s)− rn = 0. (9)

To derive NR algorithm let’s denote the solution of
the system as vector x∗ and vector x as any different solu-
tion. Applying Taylor expansion and neglecting higher terms
in expansion, the system can be formulated in a linearized
form, which will result, by the use of CLASP matrices, in
the following notation:

f(x∗)≈ (G+E)x+ eq(x)− rq(s)− rn +M(4x) (10)

where4x = (x∗−x) and

M|x =

∂D1,1
∂x1

∂D1,2
∂x2

. . .
∂D1,n
∂xn

∂D2,1
∂x1

∂D2,2
∂x2

. . .
∂D2,n
∂xn

...
...

. . .
...

∂Dn,1
∂x1

∂Dn,2
∂x2

. . .
∂Dn,n
∂xn

+G+E (11)

is the Jacobian matrix compiled of matrix G and E, and eval-
uated expressions from matrix D. As follows from (8) both
sides of (10) shall be zero. Evidently, when (10) is set equal
to zero and solved, the result will not be the vector x∗ (be-
cause the higher-order terms in Taylor expansion have been
neglected) but some new value for x. Using superscripts to
indicate iteration sequence, the equation gets this form

(G+E)xk + eq(xk)− rq(s)− rn +M(xk+1−xk) = 0. (12)

The solution for next iteration xk+1 is usually ob-
tained by LU factorization, it is convenient to rewrite (12)
to form:

M(4xk) =−eq(xk)− (G+E)xk + rq(s)+ rn (13)

where 4xk = xk+1− xk and the value for next iteration can
be easily obtained from

xk+1 = xk +4xk. (14)

The NR iterative algorithm always starts with initial es-
timation of variable vector. The algorithm continues with
generating new values until the solution meets the stopping
criterion: ∥∥∥f(xk)

∥∥∥−∥∥∥f(xk+1)
∥∥∥≤ ε (15)

when the iteration ends and solution of nonlinear system is
returned. Otherwise it continues until the maximum number
of iteration loops is exceeded. Value of the parameter ε from
(15) is absolute error and depends on machine precision. It
is usually set to the value of the order less then 10−7 in sin-
gle floating point precision and to 10−15 in double precision.
The relative error stopping criteria can be used as well.

7.3 DC Sweep
The DC Sweep analysis performs a series of operat-

ing point analyses, modifying the selected parameter in pre-
defined steps, given by a function. Special voltage source
was defined for the purposes of the DC Sweep simulation.
Its value depends on a predefined function. The example
of CLASP implementation of time dependent voltage source
with sinusoidal voltage output follows:

(EF ”E1” 1 0
’ (LAMBDA ()

(∗ (SIN ∗TIME ∗))))

In CLASP, a starred symbol denotes global variable. In
this case it is the time variable. The value of the variable
TIME is increased after every evaluation during the DC
Sweep simulation. DC Sweep simulation can sweep over
any other global variable as for example temperature.

8. Circuit Description
The circuit to be analyzed is described as a set of

CLASP functions. The circuit topology, element values and
type of simulation are defined by these functions. Notation
of circuit description is partly inspired by original SPICE
notation.

(

Device function︷︸︸︷
R ”R1”︸︷︷︸

Name string

Positive node︷︸︸︷
1 0︸︷︷︸

Negative node

Resistance value︷ ︸︸ ︷
100e3)

This makes a resistor device with name “R1” and con-
nected to nodes 1 and 0 (ground). The resistance value of
the resistor will be 100 kΩ. Implementation of scale factors
(µ, m, k, G, M. . .), with respect to capabilities of CLASP,
proved to be redundant. Example of definition of complete
resistor circuit from Fig. 4 follows

886 D. ČERNÝ, J. DOBEŠ, COMMON LISP AS SIMULATION PROGRAM (CLASP) OF ELECTRONIC CIRCUITS

(EF ”E1” 1 0
’ (LAMBDA ()

(∗ (SIN ∗TIME ∗))))
(R ”R1” 1 2 500)
(R ”R2” 2 0 500)
(D ”D1” 2 0)
(DC)

The previous CLASP code defines the voltage source
device with name E1 at nodes 1 and 0 (ground). Last pa-
rameter is a definition of voltage source function. Whenever
global variable *TIME* changes the value of voltage source
changes as well. It also defines several devices as resistors
and diode. Last line of the circuit notation invokes DC anal-
ysis of the circuit.

9. Simulation Results

9.1 Benchmark of LU Solver
Performance of CLASP capability of solving linear

equations was demonstrated by implementation of two
solvers. The first implemented algorithm into CLASP for
LU factorization was a modified Crout algorithm. The origi-
nal algorithm was modified for optimized solution of sparse
matrices. The main part of CLASP code implementation can
be found in the Appendix. This solver will be referred to as
CLASP LU. The second solver incorporated into the CLASP
was taken from the GNU GSL library. It is based on Gaus-
sian Elimination with partial pivoting described in [?]. Due
the fact that GNU GSL library is written in C, it works as
an external library. Therefore, the GNU GSL functions for
LU factorization shall be called by CLASP foreign interface
mechanism.

For automatized testing of huge sparse matrices a func-
tion was created for automatic generation of circuit with ran-
dom device values. All tests were run on a computer with
two Intel Core 2 Duo, with CPU frequency 2.26 GHz and
3.9 GB RAM. Operating system was Ubuntu with Linux
Kernel 2.6.38-10-generic-pae.

SOLVER MATRIX SIZE TOT. TIME BYTES

GSL LU

1,024 0.413 33,232,832
9,216 0.446 36,950,800

102,400 0.918 66,508,816
921,600 4.144260 299,094,240

CLASP LU
1,024 0.293466 1,295,888
9,216 12.373999 29,603,072

102,400 1,083.0775 1,040,184,336

Tab. 1. Comparison of different LU solvers.

The results are shown in Tab. 1. The column MATRIX
SIZE includes number of the elements in circuit matrix. The
column TOT. TIME stands for total computing time of the
LU factorization in seconds. The last column BYTES shows
memory usage during the simulation. It should be noted that

maximum size of the matrix was limited to 102,400 in the
first CLASP LU solver due to estimated time of the solution
being out of reasonable range.

9.2 Simulation of Nonlinear Device
A simple nonlinear circuit is shown in Fig. 4. This cir-

cuit was used as an example of simulation with nonlinear
devices in CLASP. It is consists of the voltage source V1,
two resistors R1 and R2, and diode D1. The simple diode
model is used in this simulation defined by Shockley equa-
tion. Diode model definition by Shockley equation had been
defined in previous section. The resulting I-V characteristic
of simulation of the diode circuit is shown in Fig. 5.

R1

DS1R2V1

Fig. 4. Simple diode circuit.

The circuit was evaluated in 50 different points corre-
sponding with the value of voltage source from 0 to 5 V. The
resistance values of both resistors were set to 500 Ω. NR did
not encounter any nonconvergence during evaluation. The
starting values of NR algorithm were randomly generated in
every point of the voltage source sweep. NR iterative algo-
rithm took on average 69.7 iteration loops.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 0.1 0.2 0.3 0.4 0.5 0.6

C
ur

re
nt

ID
1

(A
)

Voltage V3 (V)

Simulation of simple defined diode.

Fig. 5. I-V diode characteristics.

9.3 Full-way Rectifier
A little more complex situation is shown in Fig. 6. It

is a simple full-way rectifier consisting of four diodes D1-
D4, sinusoidal voltage source V1, and resistor R1. The ab-
sence of reverse break-down voltage definition slows down
the convergence of NR algorithm in some cases. Therefore,
the definition of Shockley diode equation was expanded by
setting the reverse current to zero. The definition of the sim-
ple diode in CLASP will now have the form:

(COND
((< (− (EVAL VP) (EVAL VN)) 0) 0)

RADIOENGINEERING, VOL. 20, NO. 4, DECEMBER 2011 887

(T
(∗ 10e−12

(− (EXP
(/ (− (EVAL VP) (EVAL VN))

26e−3)) 1))))

When the voltage over diode from anode to cathode is
positive then normal Shockley equation is used. Whenever
the voltage is negative, then the current through the diode is
set to zero. The result from the simulation of full-way recti-
fier is shown in Fig. 7.

D1

D2

D3

D4

R1

V1
U=f(x)

Fig. 6. Full-way rectifier circuit.

-8

-6

-4

-2

0

2

4

6

8

0 2 4 6 8 10 12 14 16

Vo
lta

ge
(V

)

Time (s)

Simulation of full-way rectifier

V1
VR1

Fig. 7. I/O Voltage of full-way rectifier. The time axis represents
DC sweep independent variable.

10. Conclusion
CLASP proved to be a very effective tool in circuit

simulation and electronic device modeling. Particular de-
vice model is made by rewriting its mathematical description
of circuit equations to CLASP code only. Once the device
is incorporated into CLASP, it can be used in any defined
simulation. The core idea which allows this approach lies
in CLASP capability of dynamical variable creation and as-
signment. It is important to pick out the fact that not only
variables can be dynamically defined, but also functions and
even entire program source code can redefine itself in run-
time. This is important advantage of CLASP.

The capabilities of CLASP were demonstrated by two
simple circuits Fig. 4 and Fig. 6, the resulting graphs Fig. 5
and Fig. 7 from their simulations serve as an ilustration of
the simplicity and variability of CLASP. The new approach
to principle of the program organization allowed to eliminate
the redundancy in device modeling and helped to reduce re-
quirements on programming skills of the user. The simplic-
ity of doing electronic simulation in CLASP is also proved

by the fact that several pages of this paper were enough to
present practically entire implementation of the simulator.

In this paper, comparison between CLASP implemen-
tation of LU solver and GNU GSL library functions were
also presented. The benchmark simulation (Tab. 1) clearly
shows that far better results were achieved by the use of the
GNU GSL library. This implies that it is a far better approach
to assign the difficult tasks, requiring high performance com-
putation, to another computation system. The use of GNU
GSL library was only one option at this moment. The main
disadvantage of GNU GSL library was absence of any LU
factorization solver for sparse matrices. Further develop-
ment of CLASP should solve this problem.

Acknowledgements
This work was supported by the Grant Agency of

the Czech Technical University in Prague, grant No.
SGS10/286/OHK3/3T/13, and by the Grant Agency of the
Czech Republic, grant No P102/10/1665.

References

[1] NAGEL, L. W., ROHRER, R. A. Computer analysis of nonlinear cir-
cuits, excluding radiation (CANCER). IEEE Journal of Solid-State
Circuits, 1971, vol. 6, no. 4, p. 166 - 182.

[2] NAGEL, L. W. SPICE2: A Computer Program to Simulate Semi-
conductor Circuits. PhD thesis. Berkeley (CA, USA): University of
California, 1975.

[3] HO, C.-W., RUEHLI, A. E., BRENNAN, P. A. The modified nodal
approach to network analysis. IEEE Transactions on Circuits and
Systems, 1975, vol. 22, no. 6, p. 504 - 509.

[4] PEDERSON, D. A historical review of circuit simulation. IEEE
Transactions and Circuits and Systems, 1984, vol. 31, no. 1, p. 103 -
111.

[5] MCCARTHY, J. LISP 1.5 Programmer’s Manual. Cambridge (MA,
USA): MIT Press, 1965.

[6] SEIBEL, P. Practical Common Lisp. New York: Apress, 2005.

[7] HIGHAM, N. Accuracy and Stability of Numerical Algorithms. So-
ciety for Industrial Mathematics, 2002.

[8] GOLDBERG, D. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 1991, vol. 23,
no. 1, p. 5 - 48.

[9] SÜLI, E., MAYERS, D. An Introduction to Numerical Analysis.
Cambridge (UK): Cambridge University Press, 2003.

About Authors. . .

David ČERNÝ was born in Prague, Czech Republic, in
1985. He received his M.Sc. degree in 2009 from the Faculty
of Electrical Engineering of the Czech Technical University
in Prague. Since September 2009 he has been a PhD student
at the Department of Radioelectronics at Czech Technical

888 D. ČERNÝ, J. DOBEŠ, COMMON LISP AS SIMULATION PROGRAM (CLASP) OF ELECTRONIC CIRCUITS

University in Prague. His research interests include simu-
lation of high frequency circuits and physical modeling of
electrical devices.

Josef DOBEŠ received the Ph.D. degree in microelectro-
nics from the Czech Technical University in Prague in 1986.
From 1986 to 1992, he was a researcher of the TESLA Re-
search Institute, where he performed analyses on algorithms
for CMOS Technology Simulators. Currently, he works at

the Department of Radio Electronics of the Czech Techni-
cal University in Prague. His research interests include the
physical modeling of radio electronic circuit elements, espe-
cially RF and microwave transistors and transmission lines,
creating or improving special algorithms for the circuit ana-
lysis and optimization, such as time- and frequency-domain
sensitivity, poles-zeros or steady-state analyses, and creating
a comprehensive CAD tool for the analysis and optimization
of RF and microwave circuits.

Appendix

Here is CLASP implementation of the sparse LU solver (CLASP LU). It is a novel modification of the Crout algorithm for
solving sparse LU factorization, which has not been published and is capable of solving the problem with arbitrary precision.

; ; E v a l u a t i o n o f e q u a t i o n Ax = b
(DEFUN SOLVE−SOLVE−SPARSE−TABLE ()

(LET ((TABLE−SIZE (SIZE−OF−FEATURE−DATABASE)))
(LU−FACTORIZE TABLE−SIZE)
(FORWARD−LU−SUBSTITUTION TABLE−SIZE)
(BACKWARD−LU−SUBSTITUION TABLE−SIZE)))

; ; Forward s u b s t i t u t i o n
(DEFUN FORWARD−LU−SUBSTITUION (TABLE−SIZE)

(LOOP FOR LINE FROM 1 TO TABLE−SIZE DO
(FORWARD−FACTOR−LIST−VALUES LINE

(REMOVE LINE (GET−ALL−LINE−INDEXES LINE) : TEST #’<=))))

; ; Forward f a c t o r i z e d i v i s i o n
(DEFUN DIVIDE−FORWARD−FACTOR−ONE−VALUE (LINE VALUE)

(SET−RHS−VALUE LINE
(/ VALUE (GET−ONE−VALUE LINE LINE))))

; ; Forward f a c t o r i z a t i o n
(DEFUN FORWARD−FACTOR−LIST−VALUES (LINE INDEXES)

(DIVIDE−FORWARD−FACTOR−ONE−VALUE LINE
(+ (GET−RHS−VALUE LINE)

(LOOP FOR INDEX IN INDEXES SUM
(∗ (GET−ONE−VALUE LINE INDEX) (GET−RHS−VALUE INDEX) −1)))))

; ; Backward s u b s t i t u t i o n
(DEFUN BACKWARD−LU−SUBSTITUION (TABLE−SIZE)

(LOOP FOR LINE FROM TABLE−SIZE DOWNTO 1 DO
(BACKWARD−FACTOR−LIST−VALUES LINE

(REMOVE LINE (GET−ALL−LINE−INDEXES LINE) : TEST #’>=))))

; ; Backward f a c t o r i z a t i o n
(DEFUN BACKWARD−FACTOR−LIST−VALUES (LINE INDEXES)

(SET−RHS−VALUE LINE
(+ (GET−RHS−VALUE LINE)

(LOOP FOR INDEX IN INDEXES SUM
(∗ (GET−ONE−VALUE LINE INDEX) (GET−RHS−VALUE INDEX) −1)))))

; ; Main LU f a c t o r i z a t i o n f u n c t i o n
(DEFUN LU−FACTORIZE (TABLE−SIZE)
(LOOP FOR MAIN−INDICIE−POS FROM 1 TO (− TABLE−SIZE 1) DO

(LET ((MAIN−LINE−INDEXES
(REMOVE MAIN−INDICIE−POS

(GET−ALL−LINE−INDEXES MAIN−INDICIE−POS) : TEST #’>=))
(INDICIE−VALUE

(GET−ONE−VALUE MAIN−INDICIE−POS MAIN−INDICIE−POS)))

RADIOENGINEERING, VOL. 20, NO. 4, DECEMBER 2011 889

(DIVIDE−LU−FACTOR−LIST−VALUES
MAIN−INDICIE−POS
MAIN−LINE−INDEXES
INDICIE−VALUE)

(LOOP FOR AUX−INDICIE−POS FROM (+ MAIN−INDICIE−POS 1)
TO TABLE−SIZE
DO

(IF (GET−ONE−VALUE AUX−INDICIE−POS MAIN−INDICIE−POS)
(LET ((AUX−LINE−INDEXES

(REMOVE MAIN−INDICIE−POS
(GET−ALL−LINE−INDEXES AUX−INDICIE−POS) : TEST #’>=))

(INDICIE−VALUE
(GET−ONE−VALUE AUX−INDICIE−POS MAIN−INDICIE−POS)))

(MINUS−LU−FACTOR−LIST−VALUES
MAIN−INDICIE−POS AUX−INDICIE−POS
(INTERSECTION MAIN−LINE−INDEXES AUX−LINE−INDEXES)

INDICIE−VALUE)
(MINUS−ZERO−LU−FACTOR−LIST−VALUES

MAIN−INDICIE−POS AUX−INDICIE−POS
(SET−DIFFERENCE MAIN−LINE−INDEXES AUX−LINE−INDEXES)
INDICIE−VALUE))))))

T)

; ; LU s u b s t r a c t i o n f u n c t i o n s
(DEFUN MINUS−LU−FACTOR−LIST−VALUES (MAIN−LINE RES−LINE INDEXES VALUE)

(MAPCAR # ’ (LAMBDA (X)
(MINUS−LU−FACTOR−ONE−VALUE MAIN−LINE RES−LINE X VALUE)) INDEXES))

(DEFUN MINUS−LU−FACTOR−ONE−VALUE (MAIN−LINE RES−LINE INDEX VALUE)
(SET−ONE−VALUE RES−LINE INDEX

(− (GET−ONE−VALUE RES−LINE INDEX) (∗ VALUE (GET−ONE−VALUE MAIN−LINE INDEX)))))

; ; LU s u b s t r a c t i o n from z e r o e l e m e n t f u n c t i o n s
(DEFUN MINUS−ZERO−LU−FACTOR−LIST−VALUES (MAIN−LINE RES−LINE INDEXES VALUE)

(MAPCAR # ’ (LAMBDA (X)
(MINUS−ZERO−LU−FACTOR−ONE−VALUE MAIN−LINE RES−LINE X VALUE)) INDEXES))

(DEFUN MINUS−ZERO−LU−FACTOR−ONE−VALUE (MAIN−LINE RES−LINE INDEX VALUE)
(SET−NEW−ONE−VALUE RES−LINE INDEX

(∗ VALUE (GET−ONE−VALUE MAIN−LINE INDEX) −1)))

; ; LU d i v i s i o n f u n c t i o n s
(DEFUN DIVIDE−LU−FACTOR−LIST−VALUES (RES−LINE INDEXES VALUE)

(MAPCAR # ’ (LAMBDA (X)
(DIVIDE−LU−FACTOR−ONE−VALUE RES−LINE X VALUE)) INDEXES))

(DEFUN DIVIDE−LU−FACTOR−ONE−VALUE (RES−LINE INDEX VALUE)
(SET−ONE−VALUE RES−LINE INDEX

(/ (GET−ONE−VALUE RES−LINE INDEX) VALUE)))

