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Abstract. The current-mode quadrature oscillators using 2 
current controlled current differencing transconductance 
amplifiers (CCCDTAs) and 2 grounded capacitors are 
presented. The proposed oscillators can provide 2 sinusoi-
dal output currents with 90º phase difference. The oscilla-
tion condition and oscillation frequency can be electroni-
cally/independently controlled by adjusting the bias 
current of the CCCDTA. High output impedances of the 
configuration enable the circuit to drive the external load 
without additional current buffers. The use of only 
grounded capacitors is ideal for integration. The PSpice 
simulation results are depicted. The given results agree 
well with the theoretical anticipation. 
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1. Introduction 
In the field of electric and electronic engineering, 

oscillators play an important role and have been widely 
applied in various aspects such as communications sys-
tems, instrumentation, measurement and signal processing, 
etc. The concept of oscillator design has been mainly on 
the requirement of multiple sinusoids which are 90◦ phase 
shifted, called quadrature signal, for easy implementation 
with other circuits for example in the design of SSB 
modulator [1], etc. From the past, there have been attempts 
to synthesis the sine wave oscillator in both forms of cur-
rent and voltage mode. In the last decade, there has been 
a necessity to reduce voltage consumption in the circuit to 
support the wireless devices that run on compact batteries. 
Such requirement calls for the development of current-
mode circuit designs due to their potential advantages such 
as inherently wide bandwidth, higher slew-rate, greater 
linearity, wider dynamic range, simple circuitry and low 
power consumption [2-5]. 

In 2003, a new active building block, namely current 
differencing transconductance amplifier (CDTA) [6] is 

presented as an alternative to the current-mode circuit. 
CDTA seems to be a versatile component in the realization 
of analog signal processing circuits; especially analogue 
frequency filters [7-8]. However the parasitic resistances at 
the input ports cannot be electronically adjusted. So in 
some circuits design, there is a requirement for additional 
resistors to be associated with or multiple CDTA merged 
together which is not suitable to create an integrator circuit. 
Later, the modified version of CDTA wherein the parasitic 
resistances at current input ports can be electronically con-
trolled by bias current has been proposed. This CDTA is 
called current controlled current differencing transconduc-
tance amplifier (CCCDTA) [9]. 

From literature survey, it is found that several imple-
mentations of oscillator employing CDTAs or CCCDTAs 
have been reported [10-22]. Unfortunately, these reported 
circuits suffer from one or more of following weaknesses: 
use more than two CDTAs or CCCDTAs and excessive use 
of the passive elements which is not convenient to further 
fabricate in IC, some reported circuits use multiple-output 
CDTA or CCCDTA. Consequently, the circuits become 
more complicated. The proposed quadrature oscillators 
(QO) using CDTA, CCCDTA and OTA are compared with 
previously published QOs of [10-36] and the results are 
shown in Tab. 1. 

The aim of this paper is to introduce the high output 
impedance current-mode quadrature oscillators, based on 
CCCDTAs. The oscillation condition and oscillation 
frequency can be independently adjusted by electronic 
method. The circuit constructions consist of 2 CCCDTAs 
and 2 grounded capacitors. The PSPICE simulation results 
are also shown, which are in correspondence with the 
theoretical analysis. 

2. Theory and Principle 

2.1 Basic Concept of CCCDTA 

The principle of the CCCDTA was published in 2006 
by  W. Jaikla  and  S. Siripruchyanun [9]. It  was  modified 
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Ref Active element Number of 
active element 

Non-interactive 
control for CO 

and FO 

Grounded 
C only 

Number of 
R+C 

Electronic 
tune of CO 

and FO 

Current-
mode QO 

output 

[10] CDTA 3 Yes Yes 0+3 Yes Yes 

[11] CDTA 3 Yes Yes 0+3 Yes Yes 

[12] CDTA 2 Yes No 4+2 No Yes 

[13] CDTA 2 Yes Yes 1+2 No Yes 

[14] CDTA 2 Yes No 4+2 No Yes 

[15] CDTA 3 Yes Yes 0+2 Yes Yes 

[16] CDTA 4 Yes Yes 0+2 Yes Yes 

[17] CDTA 3 Yes Yes 0+2 Yes Yes 

[18] CDTA 1 Yes No 2+2 No No 

[19] CDTA 1 No No 1+2 No Yes 

[20] MO-CCCDTA 1 Yes Yes 0+2 Yes No 

[21] CCCDTA 2 Yes Yes 0+2 Yes No 

[22] MO-CCCDTA 1 Yes Yes 0+2 Yes Yes 

[23] MO-CCCDTA 1 Yes No 2+2 Yes No 

3 (Fig. 5a) Yes Yes 0+2 Yes No 

4 (Fig. 5b) Yes Yes 0+2 Yes No 

[24] OTA 

6 (Fig. 6) Yes Yes 0+2 Yes No 

[25] OTA 3 Yes Yes 0+2 Yes No 

[26] OTA 4 Yes Ye 1 (RN)+2 Yes No 

[27] CCII, OTA 4 Yes No 0+2 Yes No 

[28] OTA 2 Yes Yes 1+2 Yes No 

2 (Fig. 2a) Yes No 0+3 Yes No 

3 (Fig. 2b) Yes Yes 0+2 Yes No 

4 (Fig. 2c-d) Yes Yes 0+2 Yes No 

[29] OTA 

4 (Fig. 2e) Yes No 0+4 Yes No 

3 (Fig. 1f) Yes Yes 0+2 Yes No 

4 (Fig. 1g-h) Yes Yes 0+2 Yes No 

5 (Fig. 1d-e, i) Yes Yes 0+2 Yes No 

[30] OTA 

6 (Fig. 1a-c) Yes Yes 0+2 Yes No 

[31] OTA 2 Yes No 1+2 Yes No 

[32] OTA 2 Yes Yes 1+2 Yes No 

[33] OTA 3 Yes Yes 0+2 Yes Yes 

2 (Fig. 3, 10) Yes No 1+2 Yes No [34] OTA 

2 (Fig. 8) Yes No 3+2 Yes No 

[35] OTA 3 Yes Yes 0+2 Yes No 

[36] OTA 2 No No 0+2 Yes No 

Proposed QOs CCCDTA 2 Yes Yes 0+2 Yes Yes 

CO: condition of oscillation 

FO: frequency of oscillation 

RN: Nonlinear resistor 

Tab. 1.  Comparison between various QOs using CDTA and CCCDTA. 
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from the first generation CDTA [6]. The schematic symbol 
and the ideal behavioral model of the CCCDTA are shown 
in Fig. 1(a) and (b). It has finite input resistances: Rp and 
Rn at the p and n input ports, respectively. These intrinsic 
resistances are equal and can be controlled by the bias 
current IB1. The difference of the ip and in input currents 
flows from port z. The voltage vz on z terminal is trans-
ferred into current using transconductance gm, which flows 
into output terminal x. The gm is tuned by IB2. In general, 
CCCDTA can contain an arbitrary number of x terminals, 
providing currents Ix of both directions. The characteristics 
of the ideal CCCDTA are represented by the following 
hybrid matrix: 

 

0 0 0

0 0 0

1 1 0 0

0 0 0

p p p

n n n

z x

x m z

V R I

V R I

I V

I g V

     
     
     =
     −
     ±     

  (1) 

If the CCCDTA is realized using BJT technology, Rp, Rn 
and gm can be respectively written as 

 
12

T
p n

B

V
R R

I
= = , (2) 

and 

 2

2
B

m
T

I
g

V
= . (3) 

VT is the thermal voltage. IB1 and IB2 are the bias current 
used to control the parasitic resistances and transconduc-
tance, respectively.  

2.2 General Structure of Quadrature 
Oscillator 

The oscillator is designed by cascading the gain 
controllable lossy integrator and the inverting lossless 
integrator as systematically shown in Fig. 2. From block 
diagram in Fig. 2, the characteristic equation is written as 

 ( )2 1 0s ab sb k k+ − + = . (4) 

1BI

p

n x+

x−
CCCDTA

pi

ni xi
xi

2BI

z

zi

pi

ni

pR

nR
n

p x−
x+

pi

m zg V

m zg V

ni−
z  

(a)      (b) 

Fig. 1. CCCDTA (a) Symbol, (b) Equivalent circuit. 
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Fig. 2. Implementation block diagram for the quadrature 

oscillator. 

From (4), the oscillation condition (OC) and oscillation 
frequency (ωosc) can be written as 
 1 k= , (5) 
and 

 
osc

k

ab
ω = . (6) 

Considering (5) and (6), the oscillation condition can 
be controlled by the gain k, while the oscillation frequency 
can be changed by the natural frequency a, b or the gain k. 

2.3 Proposed Current-Mode Quadrature 
Oscillators 

The proposed quadrature oscillators are based on cas-
cading of gain controllable lossy integrator and the invert-
ing lossless integrator as shown in the last section. From 
block diagram in Fig. 2, the realization of proposed oscil-
lators is achieved in Fig. 3(a) to (c). It is seen that the pro-
posed circuits are resistorless and using only 2 grounded 
capacitors. Therefore, they are suitable IC implementation. 
Routine analysis, the characteristic equation of circuits in 
Fig. 3(a) and (b) is written as 

 2 1 2 1 1 1 1 11

2 2

1 0
2 2 2

n m n m n

m m

C C R g R g RC
s s

g g
 + − + = 
 

. (7) 

while the characteristic equation of the circuit in Fig. (c) is 
shown as following: 

 1 2 12 1 1 1 12

2 2

1 0
2 2

p m n m n

m m

C C R g R g RC
s s

g g
 + − + = 
 

.  (8) 

According to (5), the oscillation condition of all proposed 
oscillators is as follows: 

 OC: 1 11
2

m ng R
= . (9) 

According to (6), the oscillation frequency of proposed 
oscillators in Fig. 3(a) and (b) are as follows: 

 1 2

1 2

m m
osc

g g

C C
ω = . (10) 

while the oscillation frequency of circuit in Fig. 3(c) is 
written as 

 1 2

1 22
m m

osc

g g

C C
ω = . (11) 

p
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(a) 
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(c) 

Fig. 3. Proposed quadrature oscillators. 

Equation (11) is invalid if Rp and Rn are mismatch. Taking 
into account the mismatch of Rp and Rn, the oscillation 
frequency of the circuit in Fig 3(c) is written as  

 1 2 1

1 2 1

m m n
osc

p

g g R

C C R
ω = . (12) 

Substituting the parasitic resistances and transconductance 
as shown in (2) and (3) into (9) to (11), the oscillation 
condition for all oscillators becomes 

 OC: 1 28 B BI I= ,  (13) 

and the oscillation frequency of quadrature oscillator in 
Figs 3(a) and (b) is written as 

 2 4

1 2

1

2
B B

osc
T

I I

V C C
ω = . (14) 

The oscillation frequency of circuit in Fig. 3(c) becomes 

 2 4

1 2

1

2 2
B B

osc
T

I I

V C C
ω = . (15) 

From (13) to (15), it can be seen that the oscillation condi-
tion can be adjusted electronically/independently from the 
oscillation frequency by varying IB1 while the oscillation 
frequency can be electronically adjusted by IB4. From 
circuits in Fig. 3, the relationship between the explicit-cur-
rent-outputs can be found as 

 2 2

1 2

( )

( )
O m

O

I s g

I s sC
= − . (16) 

For sinusoidal steady state, equation(15) becomes 

 902 2

1 2

( )

( )
O osc m

O osc osc

I g
e

I C

ω
ω ω

= . (17) 

It is evident from (17) that all the explicit-current-outputs 
are phase-shifted by 90° from each other and thus the os-
cillators can be used as quadrature oscillator. 

3. Non-ideal Cases 
For a complete analysis of the circuit, it is necessary 

to take into account the following CCCDTA non-ideality: 

3.1 Current Tracking Errors 

 
z p p n nI i iα α= −  (18) 

where αp and αn are the current transfer gains from p and n 
to z terminals, respectively. All these gains slightly differ 
from their ideal values of unity by current tracking errors 
of n and p input ports (εn and εp) as αn ≈ 1 – εn and  
αp ≈ 1 – εp. Considering the current transfer gains, the 
modified characteristic equation of Figs. 3(a), (b) and (c) 
can be respectively expressed as 

( ) ( ) ( )
1 1 1 1 1 12 1 2 1 2

1 2 2 2 2 1 1

1 0
1 1 1

p m n p m nn

n n m n m n n

g R g RC C R C
s s

g g

α α
α α α α α

 
+ − + =  + + + 

,(19) 

  
( ) ( ) ( )

2 1 2 1 1 1 1 12

1 2 2 2 2 1 1

1 0
1 1 1

n m n m n

n n m n m n n

C C R g R g RC
s s

g gα α α α α
 

+ − + =  + + + 
, (20) 

and 

         
( ) ( )

1 2 1 1 1 1 1 1 12 2

2 2 2 1 1

1 0
1 1

p p m n p m n

n m m n n

C C R g R g RC
s s

g g

α α
α α α

 
+ − + =  + + 

. (21) 

For non-ideal case, the oscillation condition and oscillation 
frequency of the proposed oscillators are as follows: 

Circuit 3(a): 

 OC: 
( )

1 1 1

1

1
1
p m n

n

g Rα
α

=
+

, (22) 

and 

 2 1 2

1 2

n m m
osc

g g

C C

αω = . (23) 

Circuit 3(b): 

 OC: 
( )

1 1

1

1
1

m n

n

g R

α
=

+
, (24) 

and 

 2 1 2

1 2

n m m
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g g

C C

αω = . (25) 

Circuit 3(c): 

 OC: 
( )

1 1 1

1

1
1
p m n

n

g Rα
α

=
+

, (26) 

and 

 
( )

1 2 1 2

1 1 21
n n m m

osc
n

g g

C C

α αω
α

=
+

. (27) 

It is found that parameters; αp and αn will affect both 
oscillation condition and oscillation frequency. These 
errors affect the sensitivity to temperature and the high 
frequency response of the proposed circuit. Thus, the 
CCCDTA should be carefully designed to minimize these 
errors. 
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3.2 Parasitic Resistances and Capacitances 

The parasitic resistances and capacitances appear 
between the high-impedance z and x terminals of the 
CCCDTA and ground. The parasitic resistance and ca-
pacitances are absorbed into the external capacitance C1 
and C2 as they appear in shunt with them. In this case, if 
Rp,n << Rx, Rz, the oscillation frequency for the proposed 
circuit in Fig. 3(a)-(b) are as follows: 

Circuit 3(a): 

 
( )( )

1 2

1 1 2 2

m m
osc

z z

g g

C C C C
ω =

+ +
. (28) 

Circuit 3(b): 

 
( ) ( )

1 2

1 1 1 2 2 2

m m
osc

z x x z

g g

C C C C C C
ω =

+ + + +
. (29) 

Circuit 3(c): 

 
( ) ( )

1 2

1 1 2 2 2

m m
osc

x x z

g g

C C C C C
ω =

+ + +
. (30) 

To alleviate the effects of the parasitic capacitances and 
resistances the operating frequency ωosc should be chosen 
such that 

Circuit 3(a): 

 
( ) ( )1 1 1 2 2 2

1 1
max ,osc

z z z zC C R C C R
ω

 
>  + +  

. (31) 

Circuit 3(b): 

 ( )

( )

1 1 1 2 1 1 2

2 2 2

1
,

/ / / /
max

1
z x x z x x

osc

z z

C C C C R R R

C C R

ω

 
 + + + >
 
 + 

. (32) 

Circuit 3(c): 

 
( ) ( )1 1 2 1 2 2 2 2

1 1
max ,

/ /osc
x x x x z zC C C R R C C R

ω
 

>  + + +  
. (33) 

3.3 Nonlinearity 

Nonlinearity of active devices affects the amplitude 
stabilization and cause both oscillation condition and  

oscillation frequency analyzed in (9)-(11) become aborted 
as well as THD becomes higher. A number of former 
researches have been conducted to solve this problem e.g., 
amplitude control by nonlinear resistors [24], [26], by 
AGC [24], by using inherent linearity of OTA [25], and by 
using a photoresistor which is a part of the 3WK16341 
optron [37]. Hereby, the AGC will be added into proposed 
circuits. From block diagram in Fig. 2, it can be developed 
to Fig. 4 while AGC can be created by employing 
CCCDTA with a simple diode-resistor network [23] as 
shown in Fig. 5. From the block diagram in Fig. 4, the 
characteristic equation can be written as follows: 

 ( )2 1 0AGC AGCs ab sb kk kk+ − + = . (34) 

From (34), the oscillation condition (OC) and oscillation 
frequency (ωosc) can be expressed as 
 1 AGCkk= , (35) 

and 

 AGC
osc

kk

ab
ω = . (36) 

Although adding AGC to the circuit results in more com-
plexity, the problem of amplitude stabilization can be fi-
nally solved and THD value becomes lower. 

 1
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−

1

k

sa +
1OI 2OI
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Fig. 4. Proposed circuit with AGC. 
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Fig. 5. CCCDTA-based AGC circuit. 

Q1 Q4

z

Q15

Q6

VEE

Q16

Q11

Q5

Q31

Q14

Q27

n

Q36

Q19

Q37

IB1

p

Q32

Q33
Q12

Q26
Q9

Q28

Q8

Q17

Q21

x

IB2

Q35

Q18

Q38

Q30

x

Q34

Q7
Q25

Q3

Q13

Q20
VCC

Q10

Q2

Q24

Q29

 
Fig. 6. Internal construction of CCCDTA. 



RADIOENGINEERING, VOL. 20, NO. 4, DECEMBER 2011 895 

4. Simulation Results 
For example, only the proposed quadrature oscillator 

in Fig. 3(b) has been simulated in PSpice using the BJT 
implementation of the CCCDTA as shown in Fig. 6. The 
PNP and NPN transistors employed in the proposed circuit 
were simulated by using the parameters of the PR200N and 
NR200N bipolar transistors of ALA400 transistor array 
from AT&T [38]. The circuit was biased with ±2.5V sup-
ply voltages, C1= C2 = 0.4 nF, IB1 = 25 μA, IB2 = 210 μA, 
IB3 = 100 μA and IB4 = 180 μA. This yields oscillation fre-
quency of 1.23 MHz, where the calculated value of this 
parameter from (13) yields 1.49 MHz (deviated by 
17.44%). The power consumption of the circuit is 
9.25 mW. Fig. 7 shows simulated quadrature output wave-
forms. Fig. 8 shows the simulated output spectrum, where 
the total harmonic distortion (THD) is about 1.59%. The 
electronic tuning of the oscillation frequency with the bias 
current IB4 for different capacitor values is shown in Fig. 9.  
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Fig. 7. Current outputs of the proposed quadrature oscillator 

in Fig. 3(b). 
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Fig. 8. Spectrum of signal in Fig.7 
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Fig. 9. Simulated oscillation frequency versus IB4 for different 

capacitances C. 

5. Conclusion 
The new electronically tunable current-mode quadra-

ture oscillators based on CCCDTAs have been presented. 
The features of the proposed circuits are that: oscillation 
frequency and oscillation condition can be electroni-
cally/independently tuned; the proposed oscillators consists 
of merely 2 CCCCTAs and 2 grounded capacitors, non-
interactive control of both the condition of oscillation and 
frequency of oscillation and availability of two quadrature 
explicit-current-outputs from high-output impedance 
terminals. PSpice simulation results agree well with the 
theoretical anticipation. 
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