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Abstract. Signal to noise ratio (SNR) estimators are 
required for many radio engineering applications. In this 
paper, a SNR estimator based on the first and second order 
moments is derived and examined for constant envelope 
modulations over additive white Gaussian noise (AWGN) 
channel. Firstly, a modification method is proposed to 
reduce the bias of conventional first and second order 
moments based SNR estimator. Then, in order to reduce 
hardware implementation complexity, multi segments of 
cubic polynomial are utilized to approximate the nonlinear 
inverse function of the proposed SNR estimator. The ap-
proximate expression is very precise in the SNR range from 
-10dB to 20 dB as illustrated by numerical simulation 
results. Besides, practical hardware circuit is proposed for 
FPGA implementation. Simulation results show that the 
proposed SNR estimator has the lower normalized bias and 
variance when compared with two other classic estimators. 
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1. Introduction 
Many radio engineering applications require highly 

accurate and low bias estimation of signal to noise ratio 
(SNR) to achieve optimal performance. For example, in 
modem wireless communication networks, the coding and 
modulation methods of the transmitted data stream are 
adapted to match the channel capacity according to the 
SNR of the channel [1]. Besides, the knowledge of SNR is 
very important to the iterative decoding and detection 
techniques which represent the state of the art in wireless 
digital receiver technology [2]. SNR estimation is also 
often a requirement for many other applications such as 
power control, equalization, handoff and dynamic 
allocation of resources [3]. 

Various works cited in the literature are devoted to the 
estimation of SNR using data-aided (DA) or non-data-
aided (NDA) approaches. Special pilot symbols or training 
sequence known to the receiver must be inserted into the 
data stream for the DA estimators, which reduce the system 

throughput. Considering the bandwidth efficiency, the 
NDA estimators may be more favorable choice for many 
applications. Hence, we only study the NDA SNR estima-
tion techniques in this paper. Roughly speaking, the NDA 
estimators can be further divided into two major categories, 
the carrier aided (CA) and non-carrier aided (NCA) 
methods, depending on whether the carrier parameters, 
frequency and init-phase, are prior known or not. For the 
CA method, several estimators have been investigated. In 
[4], the authors introduced an online SNR estimator with 
SNR in the range from 0 to 6 dB which was broadened to  
-5 ~ 12 in [5]. Besides, four simple estimators for QPSK 
modulation were compared in [6]. In order to reduce the 
bias in the low SNR, the authors proposed an iterative 
estimation approach in [7] at the expense of higher com-
plexity. In [8], a simple SNR estimator was proposed for 
QPSK modulation. However, all of the above mentioned 
CA estimators are sensitive to carrier parameter estimation 
errors. In order to avoid the problem, SNR can also be 
estimated based on envelope of the received signals which 
is NCA method. As the signal envelope is independent of 
the carrier frequency and phase, the carrier parameter esti-
mation errors have no influence on the NCA estimators. 
The algorithm utilizing the second and fourth order 
moments of envelope, referred to as M2M4 [9], [10], may 
be the most famous NCA estimator. In [11], the authors 
proposed a highly accurate NCA estimator using the first 
and second order moments, which can be implement by 
a lookup table. The drawback of the algorithm is that the 
bias tends to increase with the SNR due to the finite dimen-
sion of the lookup table. An iterative estimation technique 
was derived in [12], which avoid the finite accurate prob-
lem in [11]. Besides, envelope based SNR estimators were 
extended for APSK and QAM modulation in [13] and [14] 
respectively.  

In this paper, we focus on design NCA SNR estimator 
for M-ary phase shift keying (MPSK) modulation over 
AWGN channel. The proposed estimator achieves highly 
accurate and low bias in a wide SNR range as proved by 
simulation and it is also very suitable for hardware imple-
mentation on field programmable gate array (FPGA).  

The remainder of this paper is organized as follow. 
First of all, we introduce the system model and some basic 
concept in section 2. Then a new SNR estimator is derived 
in section 3. What’s more, we use multi-segments of cubic 
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polynomial to approximate the expression of the new esti-
mator and present a practical hardware circuit in section 4. 
In section 5, the performances of the proposed estimator 
are evaluated and compared with other two classic SNR 
estimators by numerical simulation. Finally, section 6 con-
cludes the paper. 

2. System Model 
We consider the MPSK modulation over an AWGN 

channel. Assuming perfect timing synchronization has been 
realized, the received symbol-spaced samples at the 
matched filter output can be represented by 

 (2 2 / )nj fnT c M
n nr Ae π θ π ω+ += +  (1) 

where 0,1,2 1n N= − is the time index in the observation 
interval, A is the amplitude of the transmitted signal, 
f and θ are the carrier frequency and init-phase respec-

tively, T is the symbol space, M is the modulation order, 
0,1, 2, 1nc M∈ −（ ）is the modulating data and ωn is 

a complex white Gaussian random variable having zero 
mean and variance 22σ . The SNR of the received samples 
is defined as the ratio of transmitted signal power S to the 
one side noise power spectral density N0, which can be 
given by 
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What we are interested in is the signal envelope which 
is defined as 
 n nu r=  (3) 

where |·| denotes absolute value. It’s obvious that un has no 
relationship with the phase of the received samples. Hence, 
the carrier parameter estimation results have no influence 
on envelope based estimators, and the estimator can be 
used for MPSK modulation with any value of M. As 
pointed out in [15], the envelope un is Ricean distributed 
and the thk order moment of un can be expressed as 

 2 /2
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where E[.] denotes expectation, Γ(.) is the gamma function, 
and 1F1(·;·;·) is the confluent hyper geometric function. It’s 
not difficult to find from (4) that the thk moment of un 
depends only on two unknown parameters 2σ and ρ . 
Hence the value of ρ can be estimated utilizing at least two 
different moments.  

3. Estimation Algorithm 
Our goal is to find a highly accurate and low bias 

SNR estimator with the least hardware cost and without the 
knowledge of carrier parameters. Suppose that k is not 
equal to l, we can get the following equation [11] 
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which depends only on ρ but not on 2σ . As fk,l  is a mono-
tone function in the interval (0, )ρ ∈ +∞ , the envelope 
based estimator that depends on the thk and thl order 
moment can be got by inverting the corresponding fk,l  to 
solve for ρ , which can be expressed as 
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This is a unified expression for all kinds of envelope based 
SNR estimators. 

3.1 Conventional Envelope Based Algorithms 

Although the moment orders can be any two different 
values for equation (6), only the second and fourth order 
moments based estimator (M2M4) has a close form solu-
tion as we know. The M2M4 algorithm can be expressed as  
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In fact, it’s the equivalent to the algorithm proposed in [6].  

For MPSK modulation, the optimum choice for k and 
l are 1k = and 2l = as demonstrated by simulation result 
in [11]. The expression of the first and second moments 
based estimator is given by 

 1
1,2 1,2 1,2( )fρ λ−= ,  (8) 
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where 2
1 2 1 2/M Mλ =， , and Im(·) is Bessel function of the 

first kind with the order m . Although it’s not a close form 
solution for ρ1,2, it can be realized by a lookup table which 
would simple consist of a number of samples of the inverse 
function f-1

1,2(·). As an alternative, the authors proposed an 
iterative estimation algorithm which was also based on the 
first and second moments in [12]. The iterative estimator 
uses a simplified equation to estimate the SNR in the first, 
and then iteratively revises the bias step by step. The detail 
about the iterative process can be found in [12]. As shown 
by simulation result in [12], the performance of the two 
implementation method is similar to each other. Hence we 
refer to both of the two algorithms as M1M2 in simulation. 

In practice, the first, second and fourth order moments 
are estimated by their respective time averages as 
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where N is the observation length. As un is known in the 
receiver, the SNR of the received samples can be estimated 
utilizing above two statistics with equation (7) and (8). 

3.2 New Algorithm 

All of above mentioned algorithms use these statistics 
to replace corresponding parameters directly. However, we 
find that there is bias for the M1M2 estimator especially 
when the observation length is short. Let’s evaluate the 
expectation of 2

1M̂ , which can be expressed as 
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If n is not equal to m, un is independent of um. So we can 
further express (11) as 
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Ignoring the effect of the divider in (10), the expectation of 
the statistic 

1,2λ̂ can be expressed using (11) and (12) as 
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Above equation indicates that 1,2λ̂  is a biased estimation 
of 1,2λ . What’s more, we can reduce the bias by 
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The effect of the proposed modification method with 
N = 32 is illustrated by Fig. 1. We can see that there is an 
obvious gap between 1,2λ̂ and 1,2λ , whereas the modified 
statistic 1,2λ  tightly match to the real value of 1,2λ . The 
corresponding SNR range is from -10 dB to 20 dB. 

Although the modification method given by (15) does 
reduce the estimation bias as proved by simulation results, 
we find that the estimation of ρ utilizing 1,2λ is still biased. 
That’s because the inverse function f-1

1,2(·) is nonlinear 
which induces that an unbiased estimation of 1,2λ can’t 
ensure unbiased estimation of ρ . Motivated by the im-
provement of (15), we hope that residual bias can be fur-
ther reduced if the result of (15) is modified in the same 
way once again. Hence an ad hoc modification method is 
given by 
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Fig. 1. Statistics vs. real value of 1,2λ . 

Finally, the new algorithms can be expressed as  

 1
1 1 2 1,2

ˆ ( )new fρ λ−= ， ,   (17) 

 1 '
2 1 2 1,2

ˆ ( )new fρ λ−= ，  (18) 

which are referred to as Modify1 and Modify2 respectively 
in the following discussion. 

4. Hardware Implementation 
We are interested in implementing the SNR estimator 

on the FPGA. As the main difficulty for hardware imple-
mentation is how to realize the inverse function f 

-1
1,2(·), we 

focus on the realization methods of the inverse function. 
Although there is no precise close form solution for the 
inverse function, it can be realized by lookup table, itera-
tive processing or curve fitting methods. The lookup table 
technique may be the simplest method, but the table will 
become too big to be implemented on the FPGA when 
wide range of SNR and high accuracy are required. The 
iterative processing technique is also not suitable for hard-
ware implementation, since it requires many nonlinear 
computations which will use too much hardware resources. 
Hence, we choose the curve fitting technique.  

The basic idea of curve fitting is using polynomials to 
approximate a nonlinear curve. In [4], a second order poly-
nomial is used to approximate the inverse function of a CA 
SNR estimator in the SNR range from 0 to 6 dB. The SNR 
range is broadened to -5~12dB utilizing a fifth order poly-
nomial in [5]. After thorough research, we find that the 
second order polynomial can’t approximate the curve with 
high precise over a large range of SNR and the fifth order 
polynomial requires too much hardware resources, 
although the second order polynomial and fifth order 
polynomial can also be used for the NCA SNR estimator. 
A superior method is using multi-segments of cubic (third 
order) polynomial. In order to reduce the bits used for 
representing the polynomial parameters, we rewrite 
equation (8) in the decibel domain as   
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10 1 210log ( (10 )) ( )dB

dB dBf gλρ λ−= =，   (19) 

where 1,210 log10( )dBλ λ= and 1,210log10( )dBρ ρ= . Besides, 

the expression of (9) in the decibel domain can be given by 

 /10
10 1,210 log (10 )dB

dB f ρλ = .  (20) 

As (20) is close form, we can calculate dBλ if dBρ is know. 
This mapping is one to one and (19) is the inverse of (20), 
so we can get a group of data about (19). Using the 
MATLAB function ‘POLYFIT’ to fit these data, we can 
achieve the approximate expression of (19) by multi-
segments of cubic polynomial as 

 ' 3 2 3( ) / 2dB s dB s dB s dB sa b c dρ λ λ λ= + + +  (21) 

where s is the index of segment. The value of s  is decided 
by 

 

1 -1.0120

2 -1.0120 -0.8531

3 - 0.8531 -0.1966

4 - 0.1966 -0.0665

5 - 0.0665 -0.0215

dB

dB

dB

dB

dB

s

λ
λ
λ
λ
λ

         

        

        

        

        

≤
 < ≤= < ≤
 < ≤
 < ≤

  (22) 

and the polynomial parameters for different segment and 
corresponding SNR range are giving in Tab. 1.  
 

s as bs cs ds SNR range (dB) 
1 1440135 4409935 4501934 1532113 -10<SNR≤ -5 

2 4779 12488 11038 3295 -5<SNR≤ 0 

3 190 324 285 125 0<SNR≤ 10 

4 9714 4787 1033 170 10<SNR≤ 15 

5 272967 44429 3117 209 15<SNR≤ 20 

Tab. 1. Polynomial parameters for different segments. 

The strobe of λdB is optimized based on many trails. 
We can find from Tab. 1 that 9 bits are enough to represent 
the parameters if we are only interested in the SNR range 
0~10 dB. 15 bits will be required if the range is broadened 
to -5~15 dB. 21 bits will be required when the range of 
SNR is from -10 dB to 20 dB. The curve fitting effect can 
be seen from Fig. 2. It is obvious that the two curves match 
to each other perfectly. 
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Fig. 2. Curve fitting effect. 
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Fig. 3. Hardware circuit of the inverse function in the decibel 
domain. 

The hardware circuit of the inverse function in decibel 
domain for FPGA implementation is given in Fig. 3. The 
logarithm conversion can be implemented by a low com-
plexity technique named Coordinate Rotation Digital Com-
puter (CORDIC) [16]. The polynomial parameters of all 
segments are stored in a small table and selected by the 
input statistic according to (22). It should be point out that 

the input of the circuit can be 1,2λ̂ , 1,2λ or '
1,2λ  which refer to 

different algorithms. 

5. Numerical Simulation 

The ‘best’ SNR estimator is the one that is unbiased 
(or exhibits the smallest bias) and has the smallest variance 
[3]. Hence, we evaluate the normalized bias (NB) and nor-
malized mean square error (NMSE) of the proposed 
estimator by numerical simulation. The bias and mean 
square error normalized to the true SNR are computed from 
L trials respectively as 
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where ˆ
lρ is the estimation of ρ at the thl trial. 
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Fig. 4.  Normalized biases of several SNR estimators. 



980 CHAO GONG, BANGNING ZHANG, AIJUN LIU, DAOXING GUO, A HIGHLY ACCURATE AND LOW BIAS SNR ESTIMATOR… 

-10 -5 0 5 10 15 20
-10

-5

0

5

10

15

20

25

SNR (dB)

M
ea

n 
of

 S
N

R
 e

st
im

at
io

n 
(d

B
)

 

 

Perferct Estimation

M2M4

M1M2
Modify1

Modify2

 
Fig. 5. Mean values of several SNR estimators. 

For comparison, simulation results are also provided 
for the conventional M2M4 and M1M2 algorithms. 

10000L =  trials are made and observation length for each 
trial is 32N =  in simulation. The received samples are 
QPSK modulated. The normalized frequency and init-
phase are set to be 0.01fT =  and 0.2θ =  respectively 
without loss of generality.  

Fig. 4 shows the normalized bias of the estimators as 
function of SNR over the range from -10 dB to 20 dB. We 
can see that the proposed SNR estimator, Modify2, per-
forms best over the whole range of SNR. The bias of 
Modify1 is lower than the M2M4 and M1M2, but is higher 
than the Modify2. Although someone may think that the 

bias can be further reduced if the statistic '
1,2λ modified one 

more time, we find it’s not true by simulation. Proof of the 
result with theoretical analyses may be a further work 
which is intractable and not presented here. The perform-
ance gain of the Modify2 increases with the decrease of 
SNR. That’s because the influence of the additive modify 
factor (1 – 2N)/(N – 1)2 in (16) is more obvious for small 
values of SNR.  
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Fig. 6. NMSE of several SNR estimators vs. SNR. 
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Fig. 7. NMSE of several SNR estimators vs. observation 

length. 

In order to further examine the bias property of the 
estimators, the mean of the estimated SNR for each estima-
tor is plotted versus the true SNR in Fig. 5. We find that the 
mean of estimation value of the Modify2 with only 32 
available data can be very close to the true SNR value even 
when the SNR is as low as -2 dB. So the Modify2 algo-
rithm can be used for short burst communication, such as 
slow frequency hop transmission. 

For comparison, Fig. 6 and 7 show the normalized 
noise variances of the four SNR estimators versus SNR and 
observation length respectively. The SNR is set to be 8 dB 
in simulation for Fig. 7. Thanks to the modification 
technique, the variance of the proposed SNR estimator is 
lowest among all of the four estimators in both of the two 
figures. We can also see that the performance of M1M2 is 
better than the M2M4. The same conclusion is also made in 
[12]. Although more comparisons with other SNR estima-
tion algorithms are not presented here, we can expect that 
the new estimator is superior to most of them since the 
M1M2 algorithm has been proved to perform best among 
many algorithms in [12].  

6. Conclusion 
A highly accurate and low bias SNR estimator is pro-

posed for MPSK modulation in this paper. Based on the 
expectation of the statistics with finite observation length, 
a modification algorithm is derived to reduce the bias of 
traditional M1M2 estimator. The inverse function repre-
senting the M1M2 estimator is approximated by multi 
segments of cubic polynomial with high precision in the 
range of SNR from -10 dB to 20 dB. We also investigate 
the FPGA implementation method and propose practical 
hardware circuit for the estimator. The performances of the 
SNR estimator are evaluated by simulation and compared 
with other two estimators. It’s shown that the proposed 
estimator performs best among all of the examined estima-
tors. Besides, the new estimator doesn’t require the 
knowledge of transmitted data and carrier parameters. So 
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the SNR estimator is not sensitive to carrier parameter 
estimation errors. The demodulation delay can be reduced 
as the SNR can be estimated at the same time when carrier 
parameters are being estimated. What’s more, it can be 
adopted by MPSK modulation with any order. The 
proposed estimator can be widely used in many fields, such 
as adaptive transmission, turbo decoding, power control 
and so on. 
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