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Abstract. Because of the well-known relationship between 
obesity and high incidence of diseases, fat related research 
using mice models is being widely investigated in preclini-
cal experiments. In the present study, we developed a tech-
nique to automatically measure mice abdominal adipose 
volume and determine the depot locations using Magnetic 
Resonance Imaging (MRI). Our technique includes an in-
novative method to detect fat tissues from MR images 
which not only utilizes the T1 weighted intensity informa-
tion, but also takes advantage of the transverse relaxation 
time(T2) calculated from the multiple echo data. The tech-
nique contains both a fat optimized MRI imaging acquisi-
tion protocol that works well at 7T and a newly designed 
post processing methodology that can automatically ac-
complish the fat extraction and depot recognition without 
user intervention in the segmentation procedure. The post 
processing methodology has been integrated into easy-to-
use software that we have made available via free down-
load. The method was validated by comparing automated 
results with two independent manual analyses in 26 mice 
exhibiting different fat ratios from the obesity research 
project. The comparison confirms a close agreement 
between the results in total adipose tissue size and voxel-
by-voxel overlaps.  
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1. Introduction 
The increased incidence of obesity and well-docu-

mented co-morbidities, have lead to the recognition that 
obesity is a public health epidemic [1], [2]. Researchers 
studying adipose tissue and the associated disease proc-
esses are actively pursuing preclinical studies using mouse 
models [3], [4]. In obesity research, the assessment of 
change in adipose tissue is an important measure of meta-
bolic dysfunction that is often repeatedly performed during 
longitudinal experiments. 

Small Animal MRI is a powerful tool for in vivo fat 
measurement and can provide quantitative information 

about fat volume as well as depot locations [5]. However, 
for quantitative analysis MR images require extensive 
manual measures, especially for large 3D datasets involv-
ing temporal assessment. Fat measurement can be aided by 
automated and semi-automated techniques relieving the 
researcher the tedious operational burdens and reducing the 
operator-dependent bias and errors. 

Performing automatic measurements requires that two 
issues be addressed.  

First, the fat tissues must be segmented from the 
background and other tissues in the acquired MRI images. 
Because fat is relative bright in T1 weighted images, this 
issue is often addressed by applying the threshold to the 
intensities [5-7]. Thresholding works for uniform images, 
but for high field MR images, the variance of intensities 
caused by instrument is often too large to be ignored. One 
solution to deal with the variance is to set the threshold 
locally [6] or adaptively [7]. Solutions using fuzzy logic 
methods have also been applied. In these cases, each pixel 
is assigned a fuzzy membership to indicate the probability 
that the pixel is fat. Then the fat is extracted by minimizing 
the membership function instead of being based solely on 
a threshold [8], [9]. More mathematically complex models 
have been created to compensate for the inhomogeneities in 
the intensity images [10], [11]. But methods based only on 
intensity are in general limited because other tissues or 
objects in the background exhibit similar intensities and are 
thus indistinguishable. As a result, image acquisition tech-
niques have been proposed to provide better discrimination. 
The water-saturation technique [12-14] performs well on 
the human fat evaluation. However, these have not been 
implemented for small animals at high field strengths (7T 
and above) due to magnetic field inhomogeneities at high 
field that can lead to artifacts and due to the increased diffi-
cultly of implementing strictly analogous acquisition 
techniques. 

The second important issue in fat analysis is to assign 
the fat depot type to associated anatomical location includ-
ing subcutaneous fat and visceral fat. Fat location has been 
shown to be an important factor in obesity-associated mor-
bidity [15], [16]. A common method useful for the fat 
depot recognition is region growing [5], [6], which starts 
from seed points planted in each different fat depots and 
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sorts nearby pixels with similar intensities. To separate the 
visceral and subcutaneous fat, curve deformation methods 
[8], [9], [17] have also been adopted. These methods de-
form a curve inwards from skin contour to locate a muscle 
layer. Because the muscle layer lies between the subcutane-
ous and visceral fat, the different fat depots are separated 
by default. However, in our hands, we find that these 
methods do not work well for the thin mice with less fat 
usually in the early stage of increasing adiposity. Because 
in the skinny mice, the sparse and separated adipose depots 
complicate the automatic placement of seeds for region 
growing methods, and the muscle layer is not obvious to 
locate the deformed curves.  

Although the fat measurements using imaging tech-
nique has been established in humans [6], [18] at lower 
field strengths, fat measurement in mice models using MRI 
has not been adequately addressed. To improve image 
acquisition, we utilize information from the transverse 
relaxation time (T2) determined from multi echo data. In 
our method, the fat extraction is accomplished by adopting 
a fuzzy c mean clustering algorithm in the T1 weighted 
image and then selecting clusters into fat regions aided by 
the additional T2 information. To complement this image 
acquisition related information, we developed a depot 
recognition method which utilizes a knowledge-based 
framework for image post acquisition image processing. 
This methodology takes advantages of the a priori anatomi-
cal knowledge and automatically segments each depot into 
visceral fat or subcutaneous fat using fuzzy inference 
schemes. 

 
Fig. 1. The workflow of automatic technique. 

Herein, we describe a technique for automatic mice 
abdominal fat measurement using MRI, which includes 
both an image acquisition protocol and a post processing 
methodology (Fig. 1). The post processing algorithms of 
the technique were implemented in user-friendly software 
'FatExtractor' (tool and documents are freely available at 
the http://code.google.com/p/fat-extractor), which generally 
includes following functions: (1) automatic estimation and 
measurement of the fat tissues. (2) automatic separation 
and measurement of visceral and subcutaneous fat depots. 
(3) batch processing for volume dataset. (4) parameters 
customization for different applications. We developed a 
novel quantitative framework in this study and hope it to be 
helpful to adipose research groups.  

2. Materials and Methods 

2.1 Imaging Protocol  

Mice were scanned on the small animal MRI scanner 
(70/16 Bruker PharmaScan, Germany). The field strength 
is 7.05 Tesla and the maximal gradient strength is 
400 mTesla/m. Mice were placed prone in a semi cylindri-
cal holder inserting into a coil with inner 3.8cm volume 
coil diameter. To capture the images in a defined repro-
ducible region of abdomen, the scan started at the top of the 
left kidney and ends at the end of right kidney. In previous 
research [19], the abdominal region has been defined from 
L1 to L5 according to the spine in the CT images. While in 
the MR modality, bone is not as easily differentiated as it is 
in the CT modality. Thus, in this study, we utilized the 
kidneys as the anatomical landmarks to define our abdomi-
nal volume of interest.  

To provide adequate signal to noise and coverage, 
about 15 slices were collected in the abdominal region with 
1mm slice thickness. Based on our experience, multi echo 
spin sequences at 7T offer an optimal combination of 
resolution, acquisition time, robustness, and reproducibility 
in what tends to be a technically challenging environment 
in MRI terms. A Bruker multiple-slice-multiple-echo 
(MSME) sequence (TR = 5300 ms, TE = 12~120 ms, 10 
echoes) was adopted. These acquisition parameters were 
optimized empirically to provide good contrast and the 
shortest practical TR. The TR, which affects T1 contrast as 
well as total signal, and the effective T2, which is directly 
affected by the number of slices, were empirically deter-
mined to provide optimal contrast at the shortest reasonable 
scan time while maintaining a useful field of view. The 
exact optimization procedure was quite involved and is 
beyond the scope of the current manuscript. The field of 
view was 3*3cm and matrix size was 256*256, in-plane 
resolution 117 μm. All experiments were conducted under 
the principles of CHLA IUCAC.  

2.2 Post Processing Procedures 

To accomplish the automatic adipose measurement, 
two tasks were performed: fat extraction and depot recogni-
tion. Prior to the fat extraction, a bilateral filter [20] was 
applied to the image data to increase the effective signal to 
noise ratio (SNR) without significantly degrading the qual-
ity of the images. 

2.2.1 Fat Extraction  

The basic methodology is illustrated in Fig. 2. First, a 
T2 parametric image is calculated from the multiple echo 
images. Then, a cluster algorithm is applied to the intensity 
information in the first echo image allowing the classifica-
tion of all pixels into different clusters. Finally, the clusters 
with average T2 values similar to those of the fat tissues 
are defined and extracted as fat tissue. 
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(a) Cluster Image  

The initial choice to use of the first echo image 
proved to be expeditious because of its relatively high SNR 
compared to later echo images. In the first step, instead 
an explicit threshold, the fuzzy c means (FCM) clustering 
approach [21] was adopted to classify all pixels into groups 
and produce a cluster image.  

The cluster number is an important parameter in 
clustering approaches. In the previous research [5], [8], [9], 
the cluster number was usually defined to be three, corre-
sponding to background, fat and muscles. Nevertheless, in 
the real anatomy, more organs and tissues are included in 
the MR image. Three clusters cannot well describe the 
discrepancies between different tissues. Increasing the 
cluster number was necessary to more accurately describe 
the full data. The fat tissue may display in multiple clusters 
and it becomes difficult to correctly select the appropriate 
cluster using intensity-only images. In our method, the 
clusters are recognized by their T2 values, which allowed 
us to increase the number of clusters. In the FatExtractor, 
five is set as the default based on our experience.  

(b) T2 parametric image  

The T2 value is independent of intensity and reflects 
the inherent character of each tissue. Thus, the information 
from the T2 parametric image can help us to discriminate 
between clusters with similar intensities. An example is 
given in Fig. 3, demonstrating that the T2 parametric image 
shows more obvious discrimination between fat and nonfat 
than in the first echo image alone, thus providing the addi-
tional information useful in distinguishing the fat from the 
non-fat. 

 
Fig. 2. Extraction of the fat tissues. 

To calculate the T2 parametric image, the mono-
exponential physical model is utilized, which has been 
adopted previously [22], [23], [24]. 

 ( ) ( )0 2 0 2, exp /i iS S T S Te T= −  (1) 

where Si is the intensity in the ith echo, Tei is the Te time in 
the ith echo and S0 is the pseudo-proton density. The model 
presents a decay curve and the T2 value can be calculated 
by fitting the multiple echo data to the curve. 

 
Fig. 3. An example of the difference between first echo image 

and a T2 parametric image. 

In our method, the least square algorithm is used for 
curve fitting and the Marquardt-Levenberg algorithm [25] 
is selected for the optimization. To decrease the affection 
of noise, the baseline subtraction [26], [27] is applied and 
the fitting points with their intensities under the baseline 
are discarded. Therefore, only the reliable T2 value are 
calculated and those pixels with less than a given number 
of points less than a threshold (set as 5 in our 10 echoes 
protocol) are kept empty (set to 0) in the T2 parametric 
image. 

(c) Fat extraction with T2 reference  

The fat regions are extracted in the cluster image by 
comparing the clusters' similarities in T2 values. Using the 
T2 parametric images, the average T2 values are calculated 
for each cluster. A similarity threshold Ts is defined as 
following.  

 
2cluster 2fat 2fat/Ts T T T= − . (2) 

Here the T2cluster is the average T2 value in each cluster 
from non-empty pixels and T2fat is the T2 value of fat.   

Because the T2 value is related to the magnetic field 
strength, the T2fat is suggested to be defined by drawing 
a ROI in the known fat region using the exact same 
imaging protocol and instrument.  

The similarity threshold in (2) defines a T2 range. The 
clusters with T2 value in the defined range are considered 
as fat tissues. Because the T2 values of fat and non-fat 
tissues are generally distinguishable, the threshold can be 
set according to the each application. In our system at 7T 
Ts = 15% works well. To allow for difference in experi-
mental designs, the T2fat  and Ts are adjustable in the soft-
ware tool.  
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2.2.2 Fat Depot Recognition 

The basic procedures for the recognition method are 
illustrated in Fig. 4. Before the knowledge is applied, 
a morphological operation is performed to decompose the 
fat tissues. Then the unconnected parts are labeled and 
a knowledge-based method is applied to recognize each 
object into visceral or subcutaneous fat. 

In the decomposition step, a morphological open 
operation [28] is employed on the fat image, which sepa-
rates the neighboring tissues that have incidental contact. 
This open operation step has the property of excluding 
small areas associated with the incidental contact. Rather 
than discarding these regions, we save them as small inde-
pendent regions that are later evaluated for depot recogni-
tion.  

After decomposition, unconnected fat tissue are la-
beled as individual regions in the label image as shown in 
Fig. 4. To sort these individual regions into their likely 
respective fat depots, we employ the anatomical features, 
which are described by 4 parameters. To allow for uncer-
tainty caused by anatomical variance, the parameters are 
expressed by fuzzy logic [31] which is assigned a confi-
dence score using a membership function between 0 and 1.  

(a) Parameters 

Parameter 1: Orientation 

Previous research indicates that the abdominal fat in 
mice tends to accumulate in a bilateral pattern [30]. Taking 
advantage of this a priori information, we implemented 
an orientation parameter dividing the body into bilateral re-
gions and dorsal/ventral regions (Fig. 5a). The orientation 

parameter for each individual region in a polar system with 
its origin located at the geometrical centroid of the body 
area is as the mean of the maximum and minimum angles 
(Fig. 5b).  

Orientation = (maximum angle + minimum angle)/2 

Parameter 2: Minimum distance 

We define a feature of location, for each pixel inside 
the body area which represents its distance to the nearest 
body contour. As Fig. 5a shows, a distance map is dis-
played for the inside body area with the intensity corre-
sponding to the distance. For example, the bright pixel near 
the centroid denotes a long distance to the body contour. 
The exact steps to obtain distance map are described in 
Appendix A. 

The minimum distance parameter describes how close 
the outer edge of the fat region is to the body surface and is 
defined as the minimum value of the distance map in 
an individual region. This parameter is important for distin-
guishing the subcutaneous from visceral fat.  

Parameter 3: Maximum distance 

Similar with minimum distance, maximum distance is 
used to express the location feature that describes how far 
the fat tissues are away from the body surface. It is defined 
as the maximum value of the distance map in an individual 
region. Both minimum distance and maximum distance 
have three membership functions defining a confidence 
score for small, medium and large distance (Fig. 5c). Tak-
ing into consideration the observed regional variances [30], 
the range defined as small in the bilateral region is wider 
than the dorsal/ventral region. 

 
Fig. 4. The procedures of depot recognition. 

Parameter 4: Elongatedness 

Elongatedness describes the shape of the object. De-
rived from empirical observations, in the band-like region 
near the body surface, the subcutaneous fat segments are 
usually slender along the surface and this a priori shape 
information is exploited in the location feature. An elongat-
edness parameter is defined to be the ratio of the length to 
thickness (Fig. 5b): 

Elongatedness=length/thickness 

where (length = maximum angle - minimum angle) and 
(thickness = maximum distance - minimum distance). 

(b) Fuzzy inference 

Utilizing the defined parameters, the depot can be re-
cognized by classical If-Then rules and a min-max fuzzy 
inference scheme. Tissues are assigned to either the bilat-
eral region or dorsal/ventral region according to their orien-
tations. Then three rules are employed to distinguish the 
depots: 
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Rule 1: If the maximum distance is small, then it is 
subcutaneous fat.  

Rule 2: If the minimum distance OR the maximum 
distance is large, then it is visceral fat. 

Rule 3: If the minimum distance is small AND the 
maximum distance is medium AND the shape is elongated, 
then it is subcutaneous fat. 

With the defined rules, the min-max fuzzy inference 
scheme will automatically calculate the weights for each 
rule and assign the depot type in term of the weighted 
centroid [29].   

 
Fig. 5. The description of the parameters. (a) The distance 

map and regional divisions. (b) Parameter indications 
based on anatomical knowledge. (c) Example of fuzzy 
logical representation of the knowledge contained in 
the bilateral regions. 

3. Experiments and Results 
To demonstrate and validate our technique, we 

present the results of methodology analyzed in an actual 
obesity experiment performed in 26 wild type C57BL/6 
mice.   

In the adipose experiment, mice were separated into 4 
groups differentiated by feeding strategies. Mice received 
regular chow or a high fat diet respectively. In the regular 
chow group, mice were placed into 3 litters with different 
sibling numbers that provided different nutritional condi-
tions due to competition or lack of competition. The details 
of animal experiments are listed in Tab. 1 including large 
litter (LL), normal litter (NL), small litters (SL) and high 
fat (HF) groups. The feeding strategies produce different 
amount of adipose tissue, which gave us the opportunity to 
test the performance of our methodology on mice with 
different adipose ratios. 

In order to validate the performance, the proposed 
automatic analysis method was compared with manual 

results from the animal in the described obesity experi-
ments. The proposed automatic processing method imple-
mented in Matlab 7.6 (MathWorks, Natick, MA, USA) 
environment. The manual results were segmented by the 
experienced technicians from Small Animal Imaging Re-
search Center (SAIRC) of CHLA-USC. In each mouse, a 
typical slice in the abdominal region near the caudal end of 
the lower kidney is selected for manual segmentation and 
compared with automatic results, where both SAT and 
VAT are included. 
 

Group 
Mouse num 

(Male, Female) 
Feed Little Sibling num 

LL M=6 F=1 Chow LL 12 
NL M=4 F=1 Chow NL 7 
SL M=7 F=2 Chow SL 3 
HF M=2 F=3 High Fat LL,NL,SL 5 

Tab. 1. Animal experiments. 

In order to take inter-operator variations into account, 
two independent technicians performed the manual seg-
mentations using a customized software tool developed in 
Matlab. In the software, two basic functions were provided 
including threshold and ROI. The technicians first select 
the fat regions by adjusting a threshold. Then multiple 
manual ROI operations were performed to add or delete the 
fat regions based on the users’ experience. The total seg-
mented fat is TAT. To segment the subcutaneous and vis-
ceral fat, operators carefully delineate a contour between 
these two types of depots. Finally, the fat inside the contour 
is considered as VAT and the rest of the fat is SAT.  

Using automatic technique, the reconstructed 3D 
result of the extraction of abdominal fat depots from the 4 
groups is demonstrated in Fig. 6.  

 
Fig. 6.  Reconstructed results from 4 groups with different fat 

ratios. 

For the time issue, the average processing time for 
each slice cost more than 5 minutes by manual operations, 
while for automatic processing, it is about 10 seconds. 

The first comparison is for the segmented adipose 
size, which were performed in TAT, VAT and SAT respec-
tively for all mice. A linear regression with 95% confi-
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dence (P < 0.001) was calculated for each comparison. For 
the first manual result, the R2 for TAT is 0.953 with the 
regression function y = 1.088x + 0.4407; R2 for VAT is 
0.9627 with the regression function y = 1.058x + 1.769; R2 
for SAT is 0.8221 with the regression function 
y = 1.042x+ 0.8719. For the second manual result, the R2 
for TAT is 0.912 with the regression function 
y = 1.009x + 6.583; R2 for VAT is 0.9154 with the regres-
sion function y = 0.9889x + 6.924; R2 for SAT is 0.8986 
with the regression function y = 1.037x + 0.3821. The 
agreement in the R2 value denotes the linear relationship 
between the automatic and manual results, and the concor-
dance in the slope of the function provides confidence that 
the relationship will hold true in a variety of conditions. 
The agreement between the automatic results and manual 
results is comparable to the difference between correlation 
coefficients of the two manual results, which for TAT: 
R2=0.9514, VAT: R2=0.9195 and SAT: R2=0.8767. 

A second comparison was performed to evaluate the 
voxel-by-voxel overlap of the segmented TAT, SAT and 
VAT respectively. To qualify these spatial similarities, we 
adopted the dice coefficient which is customarily used to 
compare the segmentation results in medical imaging.  

As equation (3) shows, the Dice Coefficient (DC) 
describes the average ratio of the intersection between the 
results (R1) and results (R2). For example, a complete 
overlap of the segment results will make the DC to be 1. 

 21
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+
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We calculated the DC in the 26 mice for TAT, VAT and 
SAT respectively. The average value between automatic 
result and two manual results are for TAT: DC = 0.8839, 
for VAT: DC = 0.8795 and for SAT: DC = 0.873. The 
detailed statistic DC value (mean value ± standard devia-
tion) for each result is displayed in Tab. 2. 
 

DC TAT VAT SAT 
A vs. M1 0.9087±0.0438 0.8999±0.0467 0.8783±0.0546 
A vs. M2 0.8591±0.0558 0.840±0.0634 0.8677±0.0435 

M1 Vs.M2 0.8846±0.052 0.8717±0.0598 0.8847±0.0491 

Tab. 2. Dice Coefficient (DC) of automatic (A), first manual 
result (M1) and second manual result (M2). 

4. Discussion 
This study presents an automatic technique for 

abdominal fat measurement in mice models, which has 
been reported to be closely correlated to the total amount of 
body fat in small animal [19] and directly related to many 
diseases [2], [16].  

Different from existing MRI fat assessment methods 
[5-9], we have created a new way to detect the fat not only 
based on image intensities, but also taking into considera-
tion the transverse relaxation time using a multiple spin 
echo sequences. The T2 combination method increases the 
ability to distinguish the pixels with similar intensities into 
fat and non-fat. In contrast to other segmentation based 

clustering techniques [5], [8], [9], our method is relatively 
insensitive to the predefined cluster number which allows 
for more clusters and more accurate segmentation.  

Another difference between early techniques and ours 
lies in the procedures for depot recognition. Instead of a 
region growing or curve deformation, a knowledge-based 
framework has been adopted in our fat depot analysis that 
is better suited for analyzing mice with varying fat ratios. 
We used the fuzzy sets to express the anatomical knowl-
edge and make inference by rules to distinguish the sub-
cutaneous fat from visceral fat. Such a framework is 
intuitive and flexible allowing researchers to apply it to 
other problems. 

We designed and implemented our method for images 
acquired at 7T MRI, but it can be applied to other magnetic 
field strengths. Because the T2 value is related to the basic 
magnetic field intensities, users must set the predefined fat 
T2 value according to their applications. Thus, the parame-
ters are customizable in the FatExtractor. 

In the current method, orientation was considered as 
one of the feature parameters. To calibrate the orientation, 
all the mice must be placed prone in the holder in the ex-
periments (small rotation is not significant but larger ones 
are). In the next version of the software, we will allow the 
user to adjust the knowledge for customized applications. 
For example, change the scale of maximum and minimum 
distances to be applied in puppies. The advantage of using 
a knowledge-based framework is that it can be extended in 
the future to include new anatomical structures including 
different definition of the fat depots. For example, isolation 
of organs can be added to compose a semantic network 
[32] for further refinement of the definitions of the fat 
depots.  

In our subsequent interactions with fat research 
groups, we have noted a desire for processing that can 
automatically match each fat tissue to adjacent organs. For 
this purpose, the atlas-based technique [34] is a good 
choice. With a mouse atlas, each organ in the abdominal 
region can be registered and how abdominal fat tissues 
relate to these organs may be determined. However, creat-
ing a technique for aligning an atlas to mice with less pre-
dictable adipose tissue will require a challenging and exact-
ing methodology to be created and tested. We may also 
implement a fat-water separation technique applicable at 
7T. Groups working in the field will likely produce se-
quences that allow the efficient separation of fat signals in 
MRI. 

In conclusion, we have developed a quantitative 
framework for abdominal fat measurement in a mouse 
model using MRI. We have presented the imaging protocol 
and technical detail of the post-processing methodology in 
this paper. Software implementing our framework is 
downloadable from the project website. The parameters are 
well defined yet adjustable and tunable to new applications. 
By decreasing the amount of manual operation needed, we 
hope this technique can reduce the threshold for obesity 
researchers to use MRI in their research. 
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Appendix A: Distance Map 
To obtain the distance map, couples of steps are car-

ried out. As Fig. 7 shows, the first step is to get the mouse 
body mask. The threshold method is utilized to segment the 
body region from the background. Because the background 
is obviously dark in the T1 weight image, the threshold is 
not very sensitive. In our experiments, background thresh-
old Tbkg= 10%~15% works well for our data, which means 
the clusters with their average intensity less than Tbkg of the 
maximum intensity are considered as background. After 
thresholding, a morphological hole filling [28] is performed 
to fill the small holes inside the body area. The body mask 
shows to be a connected region in the binary image.  

In body mask image, the surface contour corresponds 
to the boundary of the mask. In the binary image, the 
Moore-Neighbor boundary-tracing algorithm [28] is used 
to produce the surface contour.  

To calculate the Euclidean distance from each pixel to 
the nearest surface contour, the Euclidean transform [34] is 
performed and the distance map is obtained. 

 
Fig. 7. Steps to calculate the distance map. 

References 
[1] MANN, G. V. The influence of obesity in health. N Engl J Med, 

1974, vol. 291, p.178–185. 

[2] LARSSON, B., SVÄRDSUDD, K., WELIN, L., WILHELMSEN, 
L., BJÖRNTORP, P., TLIBBLIN, G. Abdominal adipose tissue 
distribution, obesity and risk of cardiovascular disease and death: 
13 y follow up of participants in the study of men born in 1913. Br 
Med J Clin Res, 1984, vol. 288, p.1401-1404. 

[3] BECHAH, Y., PADDOCK, C. D., CAPO, C., MEGE, J. L., 
RAOULT, D. Adipose tissue serves as a reservoir for recrudescent 
Rickettsia prowazekii infection in a mouse model. PLoS One , 
2010, vol. 5, no. 1, e. 8547. 

[4] CHURCH, C., LEE, S., BAGG, E. A., MCTAGGART, J. S., 
DEACON, R., GERKEN, T., LEE, A., MOIR, L., MECINOVIĆ, 
J., QUWAILID, M. M., SCHOFIELD, C. J., ASHCROFT, F. M., 
COX, R. D. A mouse model for the metabolic effects of the human 
fat mass and obesity associated FTO gene. PLoS Genet, 2009, vol. 
5, no. 8, e. 1000599. 

[5] RANEFALL, P., BIDAR, A. W., HOCKINGS, P. D. Automatric 
segmentation of intra-abdominal and subcutaneous adipose tissue 
in 3D whole Mouse MRI. J Magn Reson Imaging, 2009, vol. 30, 
no. 3, p. 554-560. 

[6] SIEGEL, M. J., HILDEBOLT, C. F., BAE, K. T., CHENG, H., 
WHITE, N. H. Total and intraabdominal fat distribution in 
preadolescents and adolescents: Measurement with MR imaging. 
Radiology, 2007, vol. 242, no. 3, p. 846-856. 

[7] CHAE, Y., JEONG, M. G., KIM, D. Three dimensional volume 
measurement of mice abdominal fat in magnetic resonance images. 
e-Health Networking, Application and Services, 2007, p. 252–255. 

[8] POSITANO, V., GASTALDELLI, A., SIRONI, A. M., SAN-
TARELLI, M. F., LOMBARDI, M., LANDINI, L. An accurate 
and robust method for unsupervised assessment of abdominal fat 
by MRI. J Magn Reson Imaging, 2004, vol. 20, no. 4, p. 684-689. 

[9] POSITANO, V., CHRISTIANSEN, T., SANTARELLI, M. F., 
RINGGAARD, S., LANDINI, L., GASTALDELLI, A. Accurate 
segmentation of subcutaneous and intermuscular adipose tissue 
from MR images of thigh. J Magn Reson Imaging, 2009, vol. 29, 
p. 677-684. 

[10] HOU, Z. A review on mr image intensity inhomogeneity 
correction.  Int. J. Biomed. Imag, 2006, p.1-11. 

[11] VOVK, U., PERNUŠ, F., LIKAR, B. A review of methods for 
correction of intensity inhomogeneity in MRI. IEEE Trans Med 
Imaging. 2007, vol. 26, p. 405–21. 

[12] DIXON, W. T. Simple proton spectroscopic imaging. Radiology, 
1984, vol. 153, p. 189-194. 

[13] REEDER, S. B., PINEDA, A. R., WEN, Z., SHIMAKAWA, A., 
YU, H., BRITTAIN, J. H., GOLD, G. E., BEAULIEU, C. H., 
PELC, N. J. Iterative decomposition of water and fat with echo 
asymmetry and Least-Squares Estimation (IDEAL): Application 
with fast spin-echo imaging. Magnetic Resonance in Medicine, 
2005, vol. 54, p. 636–644. 

[14] PENG, Q., MCCOLL, R. W., WANG, J., CHIA, J. M., 
WEATHERALL, P. T. Water-saturated three-dimensional 
balanced steady-state free precession for fast abdominal fat 
quantification. J Magn Reson Imaging, 2005, vol. 21, p. 263–271. 

[15] MANSON, J. E., COLDITZ, G. A., STAMPFER, M. J., 
WILLETT, W. C., ROSNER, B., MONSON, R. R., SPEIZER, F. 
E., HENNEKENS, C. H. A prospective study of obesity and risk 
of coronary heart disease in women. N Engl J Med, 1990, vol. 322, 
p. 882–889. 

[16] LESLIE, W. D., LUDWIG, S. M., MORIN, S. Abdominal fat from 
spine dual-energy X-ray absorptiometry and risk for subsequent 
diabetes. J Clin Endocrinol Metab, 2010, vol. 95, no. 7, p. 3272-
3276. 

[17] ZHAO, B., COLVILLE, J., KALAIGIAN, J., CURRAN, S., 
JIANG, L., KIJEWSKI, P., SCHWARTZ, L. H. Automated 
quantification of body fat distribution on volumetric computed 
tomography. J Comput Assist Tomogr, 2006, vol. 30, no. 5, p. 777 
to 783. 

[18] OHSHIMA, S., YAMAMOTO, S., YAMAJI, T., SUZUKI, M., 
MUTOH, M., IWASAKI, M., SASAZUKI, S., KOTERA, K., 
TSUGANE, S., MURAMATSU, Y. MORIYAMA, N. Develop-
ment of an automated 3D segmentation program for volume quan-
tification of body fat distribution using CT. Nippon Hoshasen 
Gijutsu Gakkai Zasshi, 2008, vol. 64, no. 9, p. 1177-1181. 

[19] LUU, Y. K., LUBLINSKY, S., OZCIVICI, E., CAPILLA, E., 
PESSIN, J. E., RUBIN, C. T., JUDEX, S. In vivo quantification of 



RADIOENGINEERING, VOL. 20, NO. 4, DECEMBER 2011 995 

subcutaneous and visceral adiposity by micro-computed tomogra-
phy in a small animal model. Med Eng Phys, 2009, vol. 31, no. 1, 
p. 34-41. 

[20] TOMASI, C., MANDUCHI, R. Bilateral filtering for gray and 
color images. Proc. Int. Conf. Computer Vision, 1998, p. 839-846. 

[21] DUNN, J. C. A fuzzy relative of the ISODATA process and its use 
in detecting compact well-separated clusters. Journal of 
Cybernetics, 1973, vol. 3, p. 32-57. 

[22] LIU, J., NIEMINEN, A., KOENIG, J. L. Calculation of T1, T2 and 
proton spin density in nuclear magnetic resonance imaging. 
Journal of Magnetic Resonance, 1998, vol. 85, p. 95-110.  

[23] BONNY, J. M., ZANCA, M., BOIRE, J. Y., VEYRE, A. T2 maxi-
mum likelihood estimation from multiple spin-echo magnitude im-
ages. Magnetic Resonance in Medicine, 1996, vol. 36, p. 287-293. 

[24] SIJBERS, J., DEN DEKKER, A. J., VERHOYE, M., RAMAN, E., 
VAN DYCK, D. Optimal estimation of T2 maps from magnitude 
MR images. Proc. SPIE Med. Imag., 1998, vol. 3338, p. 384. 

[25] MARQUARDT, D.W. An algorithm for Least-Squares estimation 
of nonlinear parameters. Journal of the Society for Industrial and 
Applied Mathematics, 1963, vol. 11, p. 431-441. 

[26] HENKELMANM, R. M. Measurement of signal intensities in the 
presence of noise in MR images. Med. Phys, 1985, vol. 12, p. 232 
to 233. 

[27] YOUSEM, D. M., IHMEIDA, I., QUENCER, R., ATLAS, S. W. 
Paradoxically decreased signal intensity on post contrast short-TR 
MR images. AJNR, 1991, vol. 12, p. 875-880. 

[28] GONZALEZ, R. C., WOODS, R. E. Digital Image Processing. 2nd 
edition. Boston, MA: Addison-Wesley Longman Publishing, 1992. 

[29] ZADEH, L. A. Fuzzy sets. Inform Contr, 1965, vol. 8, p. 338-353. 

[30] CALDERAN, L., MARZOLA, P., NICOLATO, E., FABENE, P. 
F., MILANESE, C., BERNARDI, P., GIORDANO, A., CINTI, S., 
SBARBATI, A. In vivo phenotyping of ob/ob mouse by magnetic 
resonance imaging and H-Magnetic resonance spectroscopy. 
Obesity, 2006, vol. 14, p. 405–414. 

[31] COX, E. The Fuzzy Systems Handbook: a Practitioner's Guide to 
Building, Using and Maintaining Fuzzy Systems. Academic Press, 
1994. 

[32] MINSKY, M. A framework for representing knowledge. In 
P.H.Winston(Ed), The Psychology of Computer Vision. New York: 
McGraw-Hill,1975. 

[33] COLLINS, D. L., ZIJDENBOS, A. P., BAARÉ, WIM F. C., 
EVANS, A. C. Animal+Insect: Improved cortical structure 

segmentation. Lecture Notes in Computer Science, 1999, vol. 
1613, p. 210-223. 

[34] CALVIN, M., QI, R. S., RAGHAVAN, V. A Linear time 
algorithm for computing exact Euclidean distance transforms of 
binary images in arbitrary dimensions. IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 2003, vol. 25, no. 2, p. 
265-270. 

About Authors  
Yang TANG received his B.E. and Ph.D. degrees in Com-
puter Science from Nanjing University of Technology and 
Science in 2001 and 2006 respectively. From 2008, he 
joined the Children's Hospital Los Angeles, affiliated with 
the Keck School of Medicine, University of Southern Cali-
fornia as a research fellow. His research interests include 
medical application via computer image and graphic tech-
niques.   

Richard SIMERLY received his A.B. from UC Berkeley 
in 1976 and Ph.D. from UCLA in 1984. His research topics 
include the axon targeting in limbic and hypothalamic 
neural pathways, leptin receptor signaling in developing 
hypothalamic circuitry and development of sexually dimor-
phic forebrain regions. He is professor of pediatrics at the 
Keck School of Medicine, University of Southern Califor-
nia, deputy director of the Saban Research Institute, 
Children's Hospital Los Angeles, and director of its deve-
lopmental neuroscience program.  

Rex A. MOATS was born in Montana, USA. He received 
his B.S. and Ph.D. degrees from Montana State University 
in 1984 and 1990 respectively. After that, he joined the 
Department of Chemistry, California Institute of Technol-
ogy as a research fellow. His research interesting includes 
imaging agent development and quantitative methods of 
image acquisition and analysis. He now is the assistant 
professor at the Keck School of Medicine, University of 
Southern California and the director of Small Animal 
Imaging Research Center, Children's Hospital Los Angeles.

 


