
46 H. Y. SU, M. WEN, J. REN, N. WU, J. CHAI, C.Y. ZHANG, HIGH-EFFICIENT PARALLEL CAVLC ENCODER...

High-Efficient Parallel CAVLC Encoders
on Heterogeneous Multicore Architectures

Huayou SU, Mei WEN, Ju REN, Nan WU, Jun CHAI, Chunyuan ZHANG

Dept. of Computer, National University of Defense Technology, Changsha, China

huayousu@163.com, { meiwen; renju; nanwu; chaijun200306; cyzhang}@nudt.edn.cn

Abstract. This article presents two high-efficient parallel
realizations of the context-based adaptive variable length
coding (CAVLC) based on heterogeneous multicore proc-
essors. By optimizing the architecture of the CAVLC
encoder, three kinds of dependences are eliminated or
weaken, including the context-based data dependence, the
memory accessing dependence and the control depend-
ence. The CAVLC pipeline is divided into three stages: two
scans, coding, and lag packing, and be implemented on
two typical heterogeneous multicore architectures. One is
a block-based SIMD parallel CAVLC encoder on multicore
stream processor STORM. The other is a component-ori-
ented SIMT parallel encoder on massively parallel archi-
tecture GPU. Both of them exploited rich data-level paral-
lelism. Experiments results show that compared with the
CPU version, more than 70 times of speedup can be
obtained for STORM and over 50 times for GPU. The
implementation of encoder on STORM can make a real-
time processing for 1080p @30fps and GPU-based version
can satisfy the requirements for 720p real-time encoding.
The throughput of the presented CAVLC encoders is more
than 10 times higher than that of published software
encoders on DSP and multicore platforms.

Keywords
CAVLC, software parallel, heterogeneous multicore,
real-time HD.

1. Introduction
In the H.264/AVC [1] baseline profile, CAVLC [2]

has been widely used to encode the quantized coefficients,
which provides considerable improvement of coding effi-
ciency over the conventional coding of UVLC. However,
the high coding gain increase comes mainly from its high
computational complexity. In addition, strong data depend-
ence, caused by its characteristic of serial processing,
makes it almost impossible to implement a software real-
time HDTV encoder when using current general-purpose
processors.

In the past few years, several performance-oriented
CAVLC encoders have been proposed in terms of hard-

ware acceleration and software optimization. In according
with the requirements of applications and designing goals,
some CAVLC algorithms are proposed based on specific
hardware [3-5]. However, those algorithms are still highly
arithmetic. Most researches are concerned with accelerat-
ing the CAVLC encoder by dedicated hardware [6-10].
Though high efficiency can be gained, dedicated ASIC
designs are inflexible, time-consuming, and expensive. It is
very burdensome to realize real-time HD H.264 encoder by
utilizing hardware. A few software CAVLC encoders are
developed to alleviate the problems described above. In
[11], it presents a DSP-based implementation of CAVLC
tool. Xiao [12] proposed a parallel CAVLC encoder on
fine-grained multicore system. A streaming CAVLC algo-
rithm is described in [13].

Heterogeneous parallel processors have more poten-
tial than general multicore architectures in parallel comput-
ing [22]. Vendors have commoditized many heterogeneous
parallel architectures to accelerate applications, such as the
multicore stream processors (for example, SPI STORM,
Stanford Merrimac, MIT Tile64) and multithread proces-
sors (IBM CELL, NVIDIA GPU, AMD Fusion). Two
parallel patterns are usually used to exploit data-level pa-
rallelism: single instruction multiple data (SIMD) and
single instruction multiple thread (SIMT). Considerable
high performance has been achieved in signal processing
and scientific computation when using multicore stream
processors [14-16]. Currently, GPU has been at the leading
edge of many-core parallel computational platforms in
many research fields. It is mainly due to the high peak
performance, high-speed bandwidth, and efficient pro-
gramming environments, such as NVIDIA CUDA [18].
Many studies focused on accelerating video processing
using GPU, such as GPU-based motion estimation [19],
H.264 decoder based on GPU [20].

Heterogeneous multicore architecture can apply rich
DLP and ILP. However, it is a challenge to develop effi-
cient parallel programs on heterogeneous processors be-
cause of the multilevel memory spaces and the software-
managed on-chip memories. In this paper, two efficient
parallel CAVLC encoders of H.264 are implemented based
on heterogeneous parallel platforms. A block-based SIMD
parallel CAVLC encoder is proposed based on multicore
stream processor STORM, which can achieve real-time
H.264 encoding for 1080p @30fps. For massively parallel

RADIOENGINEERING, VOL. 21, NO.1, APRIL 2012 47

architecture GPU, a component-oriented SIMT parallel
CAVLC is proposed, which satisfies the requirements of
real-time encoding for 720p. In order to eliminate or
weaken the dependences (the context-based data depend-
ence, the memory accessing dependence and the control
dependence), the whole process pipeline is divided into
three stages: two scans, coding, and lag packing. In addi-
tion, the fast on-chip memory is used to reduce off-chip
memory accessing as much as possible for GPU implemen-
tation. The experiments show that the proposed parallel
CAVLC encoder gains 70 times of speedup compared with
the CPU version when using STORM and 50 times of
speedup for using GeForce 260+ GTX. Both of them can
support real-time HDTV encoding.

2. Background

2.1 Overview of CAVLC

Fig. 1. CAVLC encoder process flow.

Fig. 2. The order and position of block of a MB.

CAVLC is employed to encode the quantized residual
data of the 4x4 or 2x2 blocks. Fig. 1 shows the encoding
process of the CAVLC. First, the encoder scans the quan-
tized coefficients in zigzag order block by block and ob-
tains the statistic symbols. Then, five different steps are
employed sequentially to encode the symbols. For each
macroblock (MB), there are altogether 27 blocks needed to
be encoded, including 1 Luma DC block, 16 Luma AC
blocks, 2 Chroma DC blocks (size of 2x2) and 8 Chroma
AC blocks. As shown in Fig. 2 for a 720p frame, more than
40000 blocks need to be processed, the complexity is very
high. The statistic symbols are shown as following:

 Coeff_token: the number of nonzero coefficient and
number of signed trailing

 Trailing_Sign_trail: the sign of trailing ones

 Levels: the remaining nonzero coefficients

 Total_zeros: the total number of zeros before the last
coefficient

 Run_before: the number of run zeros preceding each
nonzero level in reverse zigzag order

2.2 Heterogeneous Multicore Processors

In this paper, we choose two kinds of heterogeneous
multicore processors to implement the CAVLC encoder.
One is the typical stream processor. It usually adopts SIMD
method to develop parallelism, whereby the execution trace
of the instruction can be controlled by programmers. The
other one is the massively parallel processor GPU. It exe-
cutes instructions with SIMT and the routes of instructions
are uncontrolled. In the following, two start-of-the-art
heterogeneous multicore processors (SPI STORM and
NVIDIA GPU) will be described.

STORM-SP16 G220 is a high efficient multicore
stream DSP aiming at signal processing and video coding
[17]. Fig. 3 shows a basic block diagram of STORM. It
contains a system MIPS for scheduling DSP tasks, a DSP
MPIS for data handling and the Data Parallel Unit (DPU)
for compute-intensive. DPU executes the instructions by
SIMD. Each lane executes the same instruction at the same.
It can be seen as a static mechanism. Three levels memo-
ries are introduced in STORM, including the operation
register files (ORF) of each lane, the on-chip local register
files (LRF) and the off-chip DRAM. The program consists
of two parts: stream program and kernels. The stream pro-
gram organizes the data stream and kernels. Kernels proc-
ess data in 16-ways parallel approach.

D
P

U
 D

isp
atch

er

Fig. 3. Architecture of STORM-SP16 G220.

In modern GPU, many parallel processing units called
stream multiprocessor (SM) are integrated together.
Commonly, each SM contains 8 scalable processors (SP).
SM executes the instructions in the way of single instruc-
tion multi threads (SIMT) by multiple SPs. In this paper,

48 H. Y. SU, M. WEN, J. REN, N. WU, J. CHAI, C.Y. ZHANG, HIGH-EFFICIENT PARALLEL CAVLC ENCODER...

an abstract architecture of GPU based on CUDA is pre-
sented in terms of hardware model, programming model,
and memory mode. The CUDA hardware model is a kind
of abstract architecture whose core is the scalable SM
array, as shown in Fig. 4(a). This architecture consists of
SMs and the corresponding memory. In the CUDA frame-
work, computing workloads are encapsulated as kernels.
These kernels, executing on GPU, process different data.
CUDA program accelerates applications in two levels,
including the thread level and the thread-block level.
Threads in a block implement the fine-grained parallelism
by running on SPs concurrently. They can communicate
with each other through shared memory. Relatively, blocks
can achieve coarse-grained parallelism, and threads in
different blocks can’t communicate. Multiple blocks form a
grid and complete a computing workload. The program-
ming model is shown in Fig. 4 (b). Fig. 4 (c) shows the
CUDA memory model, which consists of a variety of
memory devices and corresponding access rules. Each
thread has its own local registers and local memory. Each
thread block can own a shared on-chip memory. Shared
memory provides support for communication between
threads in a block.

Shared memory

Reg

Processor
1

Reg

Processor
2

Reg

Processor
M

Instruction
Unit

Constant
Cache

Texture
Cache

Device memory

Global, constant, texture memory

...

Multiprocessor 1

Multiprocessor 2

Multiprocessor N

...

Device

Texture
Memory

Constant
Memory

Global
Memory

Local
memory

Local
memory

Local
memory

Local
memory

Thread
(0,0)

Thread
(1,0)

Thread
(0,0)

Thread
(1,0)

Shared memory Shared memory

Registers Registers Registers Registers

Block(0,0) Block(1,0)

(Device) Grid

Grid 0

Grid 1.
..

Kernel 1

Kernel n

Kernel 2

...

...

DeviceHost

Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(1,1)

Thread
(0,0)

Thread
(0,1)

Thread
(0,2)

Thread
(0,3)

Thread
(1,0)

Thread
(1,1)

Thread
(1,2)

Thread
(1,3)

Thread
(2,0)

Thread
(2,1)

Thread
(2,2)

Thread
(2,3)

Block (1,1)

...

...

...

Block
(2,1)

Block
(0,1)

(a) hardware model (b) programming model (c) memory model
Fig. 4. GPU hardware model, programming model, memory

model based on CUDA.

Fig. 5. Dependences of the CAVLC encoder.

3. Analysis of CAVLC Encoder
In this paper, the x264 [21] is selected as the refer-

ence code. Through profiling the instructions of CAVLC,

we found three major factors that limit the parallelism of
the encoder, including the context-based data dependence,
the memory accessing dependence and the control
dependence.

Context-based data dependence: Data dependence
is caused by the self-adaptive feature of CAVLC. The
value of nC is need for look-up tables when coding the
symbol coeff_token. The value of nC of the current block
is calculated from the total number of non-zero coefficient
of the top block and the left block, as shown in Fig. 5(a).
The value of nC of current block relies on nA and nB,
where nA and nB are the total number of non-zero coeffi-
cient of corresponding blocks. This relationship leads to
the context-based data dependence. Due to the dependence,
the process to current block must wait until its top block
and left block are processed.

Accessing dependence: Accessing dependence is due
to the variable length encoding characteristic of CAVLC.
Since the length of bit-stream of each MB is not constant,
the output of current MB must be behind the prior ones.
The packing of bit-stream is described in Fig. 5(b). The bit-
stream of a frame is packed bit by bit in order of MB. Be-
cause the bit-stream of each MB is not byte aligned, the
first bit of current MB must connect to the last bit of the
former MB. As is shown in Fig. 5(b), the first bit of MB1
connects to the last bit of MB0, and the last two bits com-
bined with the first six bits of MB2 to form an integrated
byte.

Control dependence: Control dependence is resulted
from the inherent feature of CAVLC algorithm. The con-
trol dependence lies in two layers: the frame layer and the
block layer. In the frame layer, the branch is mainly caused
by different frame types and the different components of
a frame. For example, the procedures of I frame and P
frame are different, but the same situation exists among
luma component and chroma component. In addition, the
DC component differs from the AC component. The left
side of Fig. 5(c) describes the branch caused by computing
the value of nC of different component block. In the block
layer, the branch comes from the characteristic of data,
such as whether sign_trail is 1 or -1, and whether levels are
zero or not, etc. The right side of Fig. 5(c) gives the branch
processes of computing the symbol of levels.

4. Block-based SIMD Parallel CAVLC
Encoder on Stream Processor

4.1 Optimization of CAVLC Architecture

In order to execute the parallel CAVLC encoder, the
first step is optimizing the structure of the conventional
CAVLC to overcome the limitations described in section 3.
Considering that CAVLC encoder is the last step of H.264
encoder and there is no feedback, it can be assumed that
the quantized coefficients of the whole frame are obtained

RADIOENGINEERING, VOL. 21, NO.1, APRIL 2012 49

Fig. 6. The proposed CAVLC based on STORM.

before entropy coding. We divided the CAVLC encoder by
term of slice into three stages: two scans, coding and lag
packing. The proposed CAVLC encoder is shown in Fig. 6.

Two scans: Two scans are employed to gain the sta-
tistic symbols: a positive scan and a reverse scan. First,
a positive scan is executed to the quantized coefficients
which are stored in zigzag order then. The results include
the number of non-zero coefficients (total_coeff) of blocks
and the zigzagged coefficients. Second, a reverse scan is
employed to the zigzagged coefficients and the value of nC
is calculated based on the total_coeffs gained in the first
scan. The results consist of other symbols and the values of
nC. Two advantages are won. The first one is avoiding the
redundancy of accessing the quantized coefficients of the
adjacent blocks when computing the value of nC, which
eliminates the context-based data dependence. The second
is reducing the zigzag operations by using clever storage
strategy.

Coding: lookup the tables and coding the symbols of
an MB in raster order. The results contain two parts: the
coded-words and their valid length.

Lag packing: Though the length of bit-stream of
each MB is not constant, it is fixed after the symbols are
encoded completely. According to the valid length of bit-
stream of each MB, the output position can be obtained and
a parallel packing can be performed. Thus it can not only
eliminate the constraint of accessing dependence, but also
improve the performance of bit-stream.

4.2 The Parallel Granularities

The parallel model relies on the parallel granularity.
In the field of video coding, sub-block and MB are two
common granularities. The parallel patterns on STORM
correspond to the two granularities are shown in Fig. 7. For
sub-block parallelism, each lane of the STORM processes
one block of MB. The 16 lanes can accomplish the coding
of an MB. This kind of granularity is fit for the situation of
weaken dependence within an MB. For the parallelism of
MB-level, an independent MB is assigned to a lane, which
is propitious to the case of weaken dependence between
MBs. Fortunately, after optimizing the structure of the
serial CAVLC encoder, the dependences within MB and

between MBs are eliminated or weaken. Therefore, the two
granularities mentioned above are suitable. Considering the
limitations of the ORF of STORM processor, the block-
level parallelism is chosen for implementation in this paper.

Fig.7. Parallel granularities and the corresponding parallel

models on STORM.

4.3 Implementation

As mentioned in section 2, maximum 27 blocks (4x4
block or 2x2 block) need to be coded for an MB. In this
paper, the 27 blocks are allocated into 16 Lanes of the
STORM processor shown in Fig. 8. For simplifying the
programming, two blocks are allocated to a Lane. Owing to
only 27 blocks within an MB while the target processor
contains 16 Lanes, some Lanes process useless data. As is
shown, one block is valid in Lane0, which is the Luma DC
block. From Lane1 to Lane8, two luma AC blocks are
processed. Lane9 deals with the two Chroma DC blocks.
The Chroma AC blocks are assigned to Lanes from 10 to
13. Lane14 and Lane15 are invalid. For STORM, the paral-
lel degree is always 16, five kernels are designed to per-
form the CAVLC coding process. The kernels are organ-
ized as Fig. 9, which is one kind of producer-consumer

50 H. Y. SU, M. WEN, J. REN, N. WU, J. CHAI, C.Y. ZHANG, HIGH-EFFICIENT PARALLEL CAVLC ENCODER...

relation. Limited by the capacity of the LRF, the kernels
process one row of MBs in each time. The output stream of
the last kernel is used as the input stream for the next ker-
nel, which can reduce the accessing to off-chip memory.

Fig.8. The allocation of data of CAVLC encoder.

Fig 9. The organization of the kernels and streams.

5. Component-oriented SIMT Parallel
CAVLC Encoder on GPU
GPU can offer more powerful computational capacity

and bigger memory spaces. Large amounts of parallelism
and efficient hiding delay strategy are critical for high
efficient performance on such architecture. In order to
execute the parallel CAVLC encoder on GPU, an innova-
tive CAVLC is proposed based in Fig. 10, which is called
component-oriented CAVLC. As shown in Fig. 10, each
stage of CAVLC pipeline is divided in term of frame. For
the sake of minimizing the performance loss of the target
parallel CAVLC encoder owing to branch operations,

a component-oriented coding is used instead of the MB-
oriented approach. It processes the coefficients frame by
frame in order of Luma DC, Luma AC, Chroma DC,
Chroma AC, instead of processing the four component
coefficients MB by MB. For example, until all the coeffi-
cients of Luma DC of a frame are executed, the component
of Luam AC can be encoded, and so on. The unnecessary
branches can be effectively reduced through this way.
After optimizing the architecture, the algorithm is designed
based on block for each component of CAVLC and can
develop high parallelism. The performance of CUDA pro-
gram relies on the parallel level, the organization of data
(memory model) and the characteristic of the data to be
encoded. Therefore, we choose the optimal parallel con-
figuration according to the characteristic of data and use
shared memory to reduce the accessing to global memory
as much as possible. In the discussion of this section,
1080p (1920x1080) video frame is chosen as the input.

Fig.10. The component-oriented CAVLC encoder.

5.1 Scanning the Quantized Coefficients

A. The first scanning

The first scanning aims at the quantized coefficients
and calculates the number of non-zero coefficient of each
block (TotalCoeffs). It is a forward scan. In this stage, each
thread was assigned to deal with a 4x4 block. Considering
that a 4x4 block contains 16 coefficients, we configure the
thread block with 128 threads. 16 sequential threads take
charge of an MB together and 8 MBs are encoded by
a thread block. In order to increase the number of thread
blocks within a grid, components of Luma and Chroma are
performed in the same kernel. For the sake of avoiding
branch within a warp, threads in a warp deal with one kind
of component only. The implementation process is shown
in Fig. 11. The interval between the start accessing position
of adjacent threads is 32B (16 coefficients) when visiting
their corresponding residual data of blocks. So if each
thread reads its data from global memory to registers
directly, it can’t meet the requirement of combined-access.
Rather, 128 times of accessing are needed to read the 256
coefficients of different blocks for the threads of a half-
warp. Each accessing, in turn, will transform 64B data, but
the effective data are 4B. In order to optimize this issue,

RADIOENGINEERING, VOL. 21, NO.1, APRIL 2012 51

the shared memory is used as a buffer. First, the data
needed by a half-warp of threads is loaded to the shared
memory from the global memory by utilizing the mecha-
nism of combined-access supported by global memory.
Then, each thread visits the corresponding data through
different banks supported by shared memory. Through this
way, the throughput can be improved significantly and the
pressure of the register can be relaxed. All data trans-
formed from global memory are valid and 512B data can
be obtained by 16 times of combined-access. In addition,
after scanning the quantized coefficients, zigzag storage
strategy is introduced to write back these coefficients.

B. The second scanning

The calculation of the value of nC needs the TotalCo-
eff coefficients of its adjacent left block (nA) and that of
the top block (nB). In order to make better use of the local
data, we divide a frame into several regions of 4MBx2MB.
One thread block executes the values of nC of blocks in the
same region, as is shown in Fig. 12. The program first
loads all data needed to the shared memory, then each
thread visits nA and nB, where one TotalCoeff coefficient
can be used as either nA or nB, as is shown in the small
black grid of Fig. 12. During this scanning, other symbols
(Trailing_Sign_trail, Levels, TotalZeros, RunBefores) are
counted. It is a reverse scan to the zigzaged coefficients
generated in the first scanning.

Global
memory

T127T1T0 T2 . . .

...

...

...

...

...

...

...

...

1024
coeffs

. . .

. . .

Thread
Block 0

. . .

. . .

...

...

...

...

...

kernel

T127T1T0 T2 . . . Block 1

T127T1T0 T2 . . . Block
1529

128
Total_coeffs

. . .

Total_Coeffs
&coefficients

Total_Coeffs
&coefficients

ZigZag
coefficients

. . .

. . .

Global
memory

. . .

Shared
memory

Shared
memory

. . .

...

...
. . .

...

...

...

Fig. 11. The parallel execution of calculation of TotalCoeffs.

Fig. 12. Calculation of nC and other symbols.

5.2 Coding the Symbols

The process of coding symbols is almost the same for
different components of a frame except for different look-

up tables. Below we just explain the implementation of
parallel coding for component Luma AC by CUDA. Since
the process of coding is block-based, what’s needed is to
encode the symbols according the value of nC. The confi-
guration is similar to that of calculating the value of nC. In
addition, the look-up tables are firstly loaded to the shared
memory to speed up the lookup operation. Because the bit-
streams are kept until all symbols are encoded, temporary
memories are required for each block to store the corre-
sponding bit-streams. In our implementation, maximal of
26 short-words is used for keeping the symbols of a block.
Therefore, 26 words are necessary for each block to store
the bit-stream of each symbol and its corresponding valid
length. Among those memory units, some of them are not
used. Fig. 13 shows the organization of a thread block for
encoding the symbols. In the grids of Coded-words, the
gray area represents the valid bit-stream, while the white
region is the redundant space for each block.

Fig.13. Organization of a thread block when coding symbols.

5.3 Parallel Packing

We first analyze the necessity of parallel packing.
Tab. 1 shows some major performance parameters of
CAVLC encoder based on GPU for an I frame in the situa-
tions of serial packing and parallel packing when using
1080p and 720p as test sequence. As can be seen from the
table, the execution time of parallel method is significantly
less than that of the serial method. But more crucially, the
data transferred between CPU and GPU when adopting
serial output is far larger than the amount of parallel one.
The reason is that only the valid data of Coded-words is
transferred with parallel packing, while the white region of
Coded-words and the memory of length are copied back to
CPU with serial output. Though other tools of H.264
encoder can achieve a very significant improvement, it is
impossible to satisfy the requirement of real-time HDTV if
parallel packing is not adopted. In this article, two steps are
employed to complete the parallel packing. The first step
executes the combination of bit-stream of a MB and the
computation of the out position, the shift bits and shift
mode of the bit-stream for each MB. The second step per-
forms parallel packing based on the parameters obtained in
the first step.

A. Calculation the out position for each MB

In order to implement parallel output, some
parameters are needed as follows.

52 H. Y. SU, M. WEN, J. REN, N. WU, J. CHAI, C.Y. ZHANG, HIGH-EFFICIENT PARALLEL CAVLC ENCODER...

Blue_sky (1080p) In_to_tree (720p)
Parameters

Serial Parallel Speedup Serial Parallel Speedup
Execution time (ms) 29.8 2.53 11.78 15.6 1.35 11.56
Transform time (ms) 23.4 0.39 60 10.1 0.28 36.1
Total (ms) 52.2 2.92 17.87 25.7 1.63 15.77
Transform data size (KB) 23300.7 94.7 246 10279.8 51.4 200

Tab. 1. Performance parameters of CAVLC encoder for I frame.

1) The number of integral byte of bit-stream for each MB

(n)
2) The number of the remaining bits less than one byte of

each MB (m, m < 8)
3) The shift mode and shift bits for each MB

The first step is packing the bit-stream of different
blocks of an MB to form an integrated one. A thread proc-
esses an MB and computes the length (n*8+m) of the bit-
stream. According to the length, the start position of output
for each MB can be obtained. The iteration method is
adopted to speed up the calculation as shown in Fig. 14. In
each iteration, the number of valid threads is half of the
total and the interval between valid threads becomes closer,
which can keep the warps from diverging gradually. Fur-
thermore, the results from the last iteration are reused in
the next iteration.

Fig. 14. Calculation of start position for each MB.

B. Parallel Writing bit-stream of MBs

In this step, each thread disposes the writing back of
bit-stream for an MB. If the remaining bits are less than
a byte then the missing bits is fetched from the next MB. In
our implementation, a composed byte is generated by shift-
ing the previous bit-stream towards left and the next bit-
stream towards right. The bit-shifted is 8-m for left-shift
and m for right-shift. Fig. 15 shows the progressing of
parallel output. In the first writing, thread T0 writes the
first byte of the bit-stream of MB0. Thread T1 writes the
composed byte of the last two bits of the first byte and the
first six bits of the second byte of the bit-stream of MB1.
The data which thread T0 writes in the last time is a com-
posite byte of the last two bits of MB0 and the first six bits
of MB1. Though the lengths of the bit-streams of MB are
varied, it will result in branch within a warp. The high

parallelism and less data transformed can improve the
speed of packing.

Fig. 15. Parallel packing.

6. Experimental Results
To evaluate the performance of the proposed parallel

CAVLC encoders, the following development environ-
ments are used: AMD Athlon 5200+ X2 Dual Core
2.7 GHz with 2GB memory, stream processor STORM
G220 (700 MHz), NVIDIA GeForce 260+GTX(1.29 GHz)
with 889MB DRAM. Since our target is real-time HDTV,
1080p (Blue_sky) and 720p (Into_tree) are selected as test
sequences.

The performance differs from different configuration
of parameters. Varied encoding patterns and values of
parameter QP will impact the performance of CAVLC
encoder significantly. That’s why we first test the perform-
ance of the proposed parallel CAVLC encoders under
different values of QP. The results are shown as Fig. 16.
The bigger the value of QP is, the faster the speed of
CAVLC encoder is. Analysis to the reference program tells
us that the execution time of CAVLC occupies about 15%
of the total time. According the percentage of CAVLC
encoder occupied in the whole H.264 encoder, real-time
coding of HDTV 1080p can be satisfied when using
STORM and real-time coding requirements of 720p can be
met on GPU. In fact, the actual situation is even better.
After mapping other tools (motion estimate, intra coding,
de-block filter) of H.264 encoder onto the target architec-
tures, the coding speed of the H.264 encoder based
STORM can achieve real-time processing requirements of
30fps for 1080p video format and the performance of the

RADIOENGINEERING, VOL. 21, NO.1, APRIL 2012 53

H.264 encoder on GPU can accommodate the real-time
encoding of 720p @30fps. More detailed information can
be gained from Tab. 2. The high performance mainly
comes from the following three aspects. First, when all
computation-intensive components of H.264/AVC encoder
are performed with parallel methods, the number of data
transferred between systems (for STORM, they are system
MIPS and DSP MIPS; for GPU, they refer CPU and GPU)
is the smallest. Second, TLP can be employed to hide the
delay caused by data transfers. Three, motion estimation is
the most time-consuming tools in H.264/AVC, which is
proportionally around 70% but it achieves the best paral-
lelism. From the graph, it can be seen that the throughput
of the encoder based on STORM is much higher than that
of the proposed encoder based on GPU, which comes from
the different of the two architectures. Accessing of data is
almost on-chip memory access in STORM. The access
cycle is about 5 to 10 cycles. While in GPU, almost all of
the data are firstly stored in global memory which is a kind
of off-chip memory. Its visit’s time reaches 400 to 600
cycles, about 100 times slower than accessing in STORM.
Except that the time of data transfers between CPU and
GPU is an important factor that limits the performance of
the GPU-based applications.

Then, we evaluate the performance of the proposed
CAVLC encoder and compare the results with those of
using CPU version. The detailed information is shown in
Tab. 3. The time of the column others includes transform-
ing time and startup costs of kernels. As can be seen from
the table, compared with execution time when using CPU
only, the parallel CAVLC can achieve 72.27x speedup

when using STORM and 48.4x speedup with the assistance
of GPU. Fig. 17 depicts the percentage of execution time
for each major model of the proposed encoder when using
1080p video format. It can be seen from the figure, in the
STORM implementation version, the time speeding on
packing bit-stream occupies about 45%. That is because
almost all the operations of packing bit-stream are bits
operations, while the STORM are designed aiming at inte-
ger operation. In the GPU-based CAVLC encoder, the
execution time of various parts of our implementation is
very even, ranging from 20% to 30%, as shown in Fig.
17(b). That is to say our system shows good balance. In
order to avoid the problem of bottleneck in zigzag scan in
[12], we use clever storage strategy and the total time of
the order scan occupies about 15.5%, as can be seen in Fig.
17(b). The percentage of packing bit-stream (pack-
ing_blocks and packing_MB) is about 30%, which is far
less than 66% published in [13]. A proportion of time of
the proposed CAVLC for different component is shown in
Fig. 17(c). From the figure, the time speeding on Luma AC
is over 50%.

The compare between the proposed CAVLC encoders
and other published software ones can be seen in Tab. 4. It
can be seen from the table, compared with the CAVLC
encoder on DSP, 17.18 and 11.17 times of speedup can be
gained for the CAVLC based on STORM and the one
based on GPU. Compared to AsAP [12], the speedups are
9.68 and 6.29 times. The performance of the proposed
block-based CAVLC encoder on STORM is close to that
of the MB-based parallel CAVLC encoder described in
[13].

Fig. 16. Performance of CAVLC encoder under varied QP.

Execution time per frame (ms)
Test sequences Encoder

ME Intra coding CAVLC Filter Others

Speed
(fps)

STORM 9.17 1.20 3.44 0.98 2.07 59.3 In_to_tree
(720p) GTX 260+ 15.4 3.21 5.29 3.54 4.42 31.4

STORM 17.49 3.36 6.06 1.65 4.44 30.3 Blue_sky
(1080p) GTX 260+ 25.52 6.01 9.14 6.61 8.39 18.0

Tab. 2. Performance of the H.264 encoder based on heterogeneous platforms.

54 H. Y. SU, M. WEN, J. REN, N. WU, J. CHAI, C.Y. ZHANG, HIGH-EFFICIENT PARALLEL CAVLC ENCODER...

Execution time per frame (ms) Test
sequences

Platforms
Scan Coding Packing Others Total

Speedup
Ratio

CPU only NA NA NA NA 201 1
STORM 1.03 0.66 1.48 0.29 3.44 58

In_to_tree
(720p)

GTX 260+ 1.47 1.10 1.35 1.37 5.29 38
CPU only NA NA NA NA 438 1
STORM 1.81 1.15 2.72 0.38 6.06 72

Blue_sky
(1080p)

GTX 260+ 2.82 1.86 2.61 1.76 9.05 48

Tab. 3. Percentage and speedup of various parts of the proposed CAVLC encoder.

Fig. 17. The proportion of different parts of the proposed CAVLC encoders.

Platforms Processor type Frequency Test sequence Execution time per frame

DSP TI C642 [11] 8-way VLIW 600MHz 720p QP = 24 59.1ms

Multi-core AsAP [12] 15 cores MIMD 1.07GHz 720p QP = 20 33.3ms
Stream processor STORM [13] 16 lane SIMD 700MHz 1080p QP = 30 5.1ms
Stream processor our work 16 lane SIMD 700MHz 720p QP = 30 3.44ms
GPU our work 216 cores SIMT 1.29GHz 720p QP = 30 5.29ms

Tab. 4. Performance of CAVLC encoder on different platforms.

7. Conclusion
In this article, a high-performance SIMD parallel

CAVLC encoder based on multicore stream processor
STORM and an efficient SIMT parallel one based on GPU
are presented. In order to make full use of the power
computational resources of processors, we first optimize
the architecture of the conventional CAVLC encoder. For
STORM processor, a segmentation of functional model is
introduced in term of slice, which eliminates or weakens
the dependences of the serial CAVLC encoder. Aiming at
the GPU architecture, a component-oriented CAVLC is
proposed. In summary, three strategies are introduced as
following:
 Two scans: to eliminate the context-based data

dependence.
 Component-oriented coding: to weaken the control

dependence
 Lag packing: to solve the problem of parallel

packing.

Experiments results show that the proposed parallel
CAVLC encoders can achieve significant performance.
Compared with the CPU version, more than 70 times of
speedup can be obtained for STORM and over 50 times for
GPU. The implementation of STORM can make a real-

time processing for 1080p @30fps and GPU-based version
can satisfy the requirements for 720p real-time encoding.
The throughput of the presented CAVLC encoder is more
than 10 times higher than that of published software encod-
ers on DSP and multicore platforms. From the results, we
also found that the differences between CAVLC encoder
corresponding to the two heterogeneous multicore plat-
forms are mostly due to the organization of the different
memory spaces.

Acknowledgements

The authors gratefully acknowledge supports from
National Nature Science Foundation of China under NSFC
No. 61033008, 60703073 and 61103080, Research Fund
for the Doctoral Program of Higher Education of China
under SRFDP No. 20104307110002.

References

[1] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG:
Draft ITU-T recommendation and final draft international

RADIOENGINEERING, VOL. 21, NO.1, APRIL 2012 55

standard of joint video specification (ITU-T Rec. H.264/ISO/IEC
14 496-10 AVC). JVT-G050 (2003).

[2] BJØNTEGAARD, G., LILLEVOLD, K. Context-adaptive VLC
(CAVLC) coding of coefficients. Doc.JVT-028, JVT of ISO
MPEG&ITU VCEG. 3rd Meeting, Fairfax (Virginia, USA), May.
2002.

[3] HEO, J., KIM, S. H., HO, Y. S. New CAVLC encoding algorithm
for lossless intra coding in H.264/AVC. In Proceedings of Picture
Coding Symposium 2009. Chicago (USA), May 2009, p. 77-80.

[4] DONG, Z. D., HAI, D. Q. Improvement of CAVLC code LUT
algorithm in H.264 encoder. Television Technique, 2004, vol. 1,
p. 26-27.

[5] ZHANG, D., ZHANG, M., ZHANG, J., ZHENG W. A new kind
of Adaptive Variable Length Coding algorithm. Zhe Jiang
University Transaction, 2006, vol. 40, no. 5, p. 783-786.

[6] XU, M. H., LI, K., XUAN, X. G., FAN, Y. L. Optimization of
CAVLC algorithm and its FPGA implementation. In International
Conference on Electronic Packaging Technology & High Density
Packaging2008. Shanghai (China), 2008, p. 1-4.

[7] CHIEN, C., LU, K., SHIH, Y., GUO, J. A high performance
CAVLC encoder design for MPEG-4 AVC/H.264 video coding
applications. In Proceedings of ISCAS 2006. Island of Kos
(Greece), 2006, p. 3838-3841.

[8] HAN, C. S., LEE, J. H. Area efficient and high throughput
CAVLC encoder for 1920×1080@30p H.264/AVC. In
Proceedings of International Conference on Consumer Electronics
2009, p. 1-2.

[9] YI, Y., SONG, B. C. High-speed CAVLC encoder for 1080p 60-
Hz H.264 codec. Signal Processing Letters, 2008, vol. 15, p. 891-
894.

[10] TSAI, T. H., CHANG, S. P., FANG, T. L. Highly efficient
CAVLC encoder for MPEG-4 AVC/H.264. Circuits, Devices &
Systems, 2009, vol. 3, no. 3, p. 116-124.

[11] DAMAK, T. H., WERDA, I., SAMET, A. DSP CAVLC imple-
mentation and optimization for H.264-AVC baseline encoder. In
Proceedings of International Conference on Electronics, Circuits
and Systems, 2008, p. 45-48.

[12] XIAO, Z., BAAS, B. A high-performance parallel CAVLC
encoder on a fine-grained many-core system. In Proceedings of
International Conference on Computer Design, 2008, p. 248-254.

[13] REN, J. HE, Y., WU, W., WEN, M., WU, N., ZHANG, C. Y.
Software parallel CAVLC encoder based on stream processing. In
IEEE/ACM/IFIP 7th Workshop on Embedded Systems for Real-
Time Multimedia, 2009, p. 126-133.

[14] KHAILANY, B., DALLY, W. J., RIXNER, S. Imagine: signal and
imagine processing with streams. Hotchips 2000, Stanford, CA.

[15] THIES, W. StreamIt: A language for streaming applications. In
Proceedings of International Conference on Compiler
Construction, 2002. Grenoble (France), 2002.

[16] DALLY, W. J., HANRAHAN, P., EREZ, M., KNIGHT, T. J.
Merrimac: supercomputing with streams. In SC2003. Phoenix
(USA), 2003, 8 p.

[17] Stream Processors Inc. SPI software Documentation. Available at:
http://www.streamprocessors.com, 2008.

[18] NVIDIA, NVIDIA CUDA Compute Unified Device Architecure-
Programming Guide Version 1.1, 2007.

[19] HO, C.-W. Motion estimation for H.264/AVC using programm-
able graphics hardware. In Proceedings of International Confer-
ence on Multimedia and Expo ICME2006. Toronto (Canada),
2006, p. 2049-2052.

[20] SHEN, G., GAO, G. P., LI, S., SHUM, H. Y., ZHANG, Y. Q.
Accelerate video decoding with generic GPU. IEEE Transactions
on Circuits and Systems for Video Technology, 2005, vol. 15,
p. 685-693.

[21] Reference software X264-060805, Available at:
http://www.videolan.org/developers/x264.html.

[22] HILL, M. D., MARTY, M. R. Amdahl’s law in the multicore era.
Computer, 2008, vol. 41, no. 7, p. 33-38.

About Authors ...
Huayou SU was born in 1985 in Guilin, P. R. China. He
received his M.Sc. from the National University of Defense
Technology (NUDT) in 2008. His research interests
include multimedia computing, parallel programming and
computer architecture. Now he is a Ph.D. student at the
same faculty. He focuses on parallel programming models
aiming at multimedia applications with his classmates.

Mei WEN is an associate professor in the National Labora-
tory for Parallel and Distributed Processing of NUDT,
China. Her research interests include computer architecture
and parallel processing. Wen has a BS, a MS, and a PhD in
computer science and technology from the National
University of Defense Technology.

Ju REN received the M.Sc. and Ph.D. degree in the Com-
puter School of NUDT, in 2006 and 2010, respectively.
His research interests include multimedia processing and
parallel computing.

Nan WU received the M.Sc. and Ph.D. degree in the Com-
puter School of NUDT, in 2005 and 2008, respectively.
His research interests include computer architecture and
parallel processing.

Jun CHAI was born in 1985 in Chongqing, P. R. China.
He received his M.Sc. from NUDT in 2007. Now he is
a Ph.D. student at the same faculty. He focuses on parallel
programming especially for scientific computing.

Chunyuan ZHANG graduated in 1985 from NUDT and
became a teacher in the Dept. of Computer where he re-
ceived his further degrees (M.Sc. 1990, Ph.D. 1996). Now
he is the head of education department of CS School of
NUDT. A scholar who holds particular subvention of State
Department of China. His current research is focused on
computer architecture, operating system supports for
heterogeneous platform and multimedia processing. He is
an author or co-author of about 60 research articles pub-
lished in international journals or conference proceedings.

