
RADIOENGINEERING, VOL. 21, NO. 1, APRIL 2012 143

Measurement and Analysis of Real Imaging Systems
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2Dept. of Radioelectronics, Czech Technical University in Prague, Technická 2, 166 28 Prague, Czech Republic

mojzisf@vscht.cz, svihlikj@vscht.cz, fliegek@fel.cvut.cz, knazovil@vscht.cz, eva.jerhotova@vscht.cz

Abstract. This paper is devoted to statistical analysis of
noise generated in real imaging systems and noise suppres-
sion methods. The introductory part is focused on descrip-
tion of imaging systems, image degradations, and noise types
present in them. The noise analysis section includes determi-
nation of basic noise characteristics, the probability distri-
bution and dependence on the signal. The described methods
are used to compare properties of two digital still cameras:
Nikon D70 and Canon EOS 500D and video camera: JAI
CM-040GE. The section devoted to noise suppression dis-
cusses different methods of wavelet coefficients thresholding
and threshold estimation. The wavelet coefficients are pro-
duced by two forms of the wavelet transform: the discrete
wavelet transform and the dual-tree complex wavelet trans-
form. The described noise suppression methods are applied
to the data sets which were acquired by the analyzed systems
under poor lighting conditions.
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1. Introduction
Imaging systems analysis should be a first step before

digital image processing [1], [4], [12]. It can give usefull
information about used system behavior and can give the an-
swer on the question what processing method shall be ap-
plied.

This article is devoted to statistical analysis of noise
introduced by real imaging systems and brings complex ap-
proach to the imaging equipment analysis.

The second aim of this paper is to search a suitable
denoising method based on the wavelet coeffients threhold-
ing [8], [12] for the image sets acquired by the systems under
analysis during poor lighting conditions. Thorough analysis
of this type of system is important for further application
of denoising algorithm applied on mentioned type of im-
ages. Most common noise present in images is a Gaussian
type [1], [4], [12], and denoising methods are well-known
for this type of noise. In the described type of images also

noise which is non-Gaussian [1], [4] may be present, there-
fore denoising methods based on Gaussian thresholding ap-
plied on this type of images do not provide satisfactory re-
sults. This state is a reason for research of different threshold
methods, which can be much more useful and give better re-
sults for denoising of images, which are contaminated with
non-Gaussian noise.

As mentioned above, the denoising methods based
on wavelet coefficients thresholding are usually defined for
Gaussian noise. These use simple statistics like median,
etc. This paper brings ilustration of different techniques of
thresholding suitable for non-Gaussian noises. Implementa-
tion of these simple methods is based on evaluation of the
second central moments using Maximum Likelihood Esti-
mates (MLE). Thus there are used simply implementable
methods. The threshold for both mentioned types of noise
is optimized on the concrete data and then applied to the
real images. Except of MLE, in literature there may also be
found threshold estimates based on Bayes estimator.

Two different kinds of wavelet transform [4], [8], [10],
[11] are applied for wavelet coefficients evaluation. These
are the Discrete Wavelet Transform [4], [8], [10] (DWT) and
the Dual Tree Complex Wavelet Transform [11] (DTCWT).

The DWT is probably the most popular wavelet trans-
form. It is computed via the subband coding algorithm intro-
duced by Mallat [8], [10], [14], [15]. At each decomposition
level, the analyzed image is decomposed into two types of
coefficients: the details and the approximations, which cor-
respond to the upper half and the lower half of the signal
spectrum, respectively. The approximations are then used as
an input to the next level. The filters used in all decomposi-
tion levels create a filter bank [14], [15].

The DTCWT [11] represents a type of the redundant
wavelet transform. For two-dimensional signals, this trans-
form produces twice as many coefficients as the DWT. These
coefficients are complex and thus composed as a sum of the
real (cR) and imaginary (cI) part, i.e., c = cR + j · cI where
j =
√
−1.

This article is organized as follows. After description
of imaging systems and image distortion in Section 2, ap-
proaches to the noise analysis are described in Section 3.
Section 4 introduces and compares denoising methods us-
ing wavelet coefficients threshodling and finally Section 5
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presents noise analysis results of used imaging systems and
application of thresholding methods to the data acquired by
used cameras.

2. Image Distortions
This section describes image degradations, imaging

systems, and basic types of noise present in them.

2.1 Image Degradations
Generally, images acquired by digital cameras contain

noise resulting from digitizing of real patterns. This means
that the quality of the final image is influenced by the type
and quality of the imaging system, especially by the type
of image sensor used in this system. The CCD and CMOS
sensors are the two most commonly used types of sensors
in these systems. In addition to the sensing elements quality,
there are more factors that can influence the resulting image,
e.g. degradation due to atmospheric conditions, degradation
due to relative motion between the object and the camera,
etc.

The degradation process [1], Gonzalez02 can be de-
scribed as a degradation function h(x,y) that together
with additive or multiplicative noise n(x,y) in combination
with an input image f(x,y) produce a degrade image g(x,y).

The inverse process, when we want to obtain estimate
of the original image, is called restoration. The main pur-
pose of image restoration is to obtain function f̂(x,y), which
is an estimate of the original image based on some knowl-
edge, usually estimation, of the degradation function h(x,y)
and noise term n(x,y).

The image degradation model with additive noise [1],
[4] (or signal independent) and model of image degradation
with multiplicative noise [1], [4] (or signal dependent) are
given by the following relations

g(x,y) = h(x,y)∗ f(x,y)+n(x,y), (1)

g(x,y) = h(x,y)∗ f(x,y) ·n(x,y) (2)

where ∗ is the convolution operator.

Performance of image sensors used in imaging systems
is influenced by a different combination of factors. Firstly,
the image can be influenced only by the degradation func-
tion (n(x,y) = 0, Eq. (1), or n(x,y) = 1, Eq. (2)), secondly, it
can be corrupted only by noise (h(x,y) = δ(x,y)), or thirdly,
can be given by combination of both noise and degradation
function as described by (1) and (2).

2.2 Noise in Imaging Systems
Imaging systems consist of many components that

form a rather complex structure. A high-level block diagram
of the imaging system is shown in Fig. 1.
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Fig. 1. Basic block diagram of the imaging system.

Noise reduction constitutes an important problem
in applications such as cellular phone communications, im-
age processing, or medical signal processing. The success of
a noise reduction method depends on its ability to character-
ize and model the noise generation process [4], [12].

Noise in digital signals or images [1], [4], [12], [14]
can be classified into a few major categories which indicate
the physical nature of noise generation. These categories in-
clude the thermal noise present in electric conductors, the
shot noise generated by the electric current flows, the elec-
tromagnetic noise which can interfere with image transmis-
sion and reception over the radio-frequency spectrum, the
processing noise, and the periodic noise.

Noise in digital images can be described as a statistical
quantity. This means that it is a random variable which may
be described by its Probability Density Function (PDF) or
Probability Mass Function (PMF). The most frequent noise
types in digital images, especially in the digital cameras, are
Gaussian, Poisson, and Salt and Pepper.

3. Noise Analysis
The noise analysis part of this paper discusses ba-

sic noise characteristics such as the standard deviation and
the Signal to Noise Ratio (SNR). Additionally, the Opto-
Electronic Conversion Function [5] (OECF) as a relation-
ship between input and output values of the imaging system
is also evaluated. The applied noise analysis methods are
mostly based on the ISO international standards (i.e. ISO
14524 and ISO 15739). The probability distribution of the
noise in whole range of the gray scale was tested using im-
age histogram of the analyzed test chart. For this purpose
statistical distribution tests were applied. We used the Gen-
eralized Laplacian Model (GLM) [13], [16] when the statis-
tical tests for other distributions failed.

3.1 Basic Noise Measurement
In order to characterize noise in the acquired digital im-

ages, we exploit the transmissive chart described by the in-
ternational standard ISO 15739 [6] (see Fig. 2). In this test
chart, patches number 1 to 12 are dedicated to evaluation
of the camera OECF. Patches number 13 to 15 are designed
for measuring noise of different types. Patch 13 is further
divided into three sub-patches with different densities [6].
This patch is dedicated to evaluation of basic noise metrics
defined by ISO 15739, such as the Signal to Noise Ratio
(SNR), the noise standard deviation, and the camera dynamic
range. Standard deviation may also be applied to the OECF
patches [5] in order to determine whether the noise is depen-
dent or independent on the underlying signal.
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 (a) Transmissive test chart given by ISO 15739  (b) Patches placement in the transmissive test chart

Fig. 2. Noise and OECF measurement test chart and patches
placement, (a) Transmissive test chart given by ISO
15739, (b) Patches placement in the transmissive test
chart given by ISO 15739.

Signal to noise ratio

ISO 15739 [6] defines three types of SNR characteris-
tics based on the noise type: the total signal to noise ratio
(SNRtotal) related to the total noise, the fixed pattern signal
to noise ratio (SNRfp) related to fixed pattern noise, and the
temporal signal to noise ratio (SNRtemp) related to the tem-
poral noise. The SNR can generally be written as

SNRtype =
Lsat ·0.18 · IG

σtype
(3)

where SNRtype is related to the corresponding standard de-
viation (σtype), i.e. the total (σtotal), the fixed pattern (σfp),
or the temporal (σtemp) standard deviation. Lsat denotes the
maximum output level of the system, e.g. Lsat = 255 for an
8-bit system. IG represents an incremental gain which is de-
fined as the rate of change in the output level (i.e the digital
code value) divided by the rate of change in the input level
(luminance or exposure) as a function of the input level [5],
[6] and is given by

IG =
OL(r j)−OL(ri)
2 ·Lsat(r j− ri)

+
OL(rk)−OL(r j)
2 ·Lsat(rk− r j)

(4)

where OL(r j) is the digital output signal for patch 13b with
the reflectance r j = 0.18, OL(ri) is the digital output signal
for patch 13a with ri < 0.18, and OL(rk) is the digital output
signal for patch 13c with rk > 0.18.

The reflectance is determined from the patch density
Di. It is also assumed that patch j has a reflectance of 0.18
assuming a 140 % maximum level, this corresponds to a den-
sity 0.9 (patch 13b) with respect to the lightest patch. Re-
flectance is given by

r = 10−Di . (5)

Fixed pattern noise

The fixed pattern noise [6] is determined by the anal-
ysis of the average image which is computed from the ac-
quired data set. The digital code value of a pixel in the aver-
age image is given by

g(x,y) =
1
n

n

∑
j=1

g j(x,y) = gfp(x,y)+
1
n

n

∑
j=1

gtemp, j(x,y) (6)

where g j(x,y) is the digital code value of a pixel in the cor-
responding position (x,y) in the j-th image and gtemp, j(x,y)
is the temporal part of the j-th image. The variance of the
average image is defined as

σ
2
ave = σ

2
fp +

1
n2

n

∑
j=1

σ
2
temp, j = σ

2
fp +

1
n

σ
2
temp (7)

where n is number of acquired images, σfp is the standard
deviation of fixed pattern noise and σtemp, j is the standard
deviation of the temporally varying part of the j-th image.

Temporal noise

The temporal noise [6] is determined by analyzing the
difference of an image from the average image. The code
values of the difference image are defined as

∆g j(x,y) =

[
1
n

n

∑
j=1

gtemp, j(x,y)

]
−gtemp j(x,y). (8)

Then, the overall variance of the code values for the differ-
ence image is given by

σ
2
diff =

1
n

n

∑
j=1

σ
2
diff, j =

n−1
n2

n

∑
j=1

σ
2
temp, j =

n−1
n

σ
2
temp (9)

where σ2
diff, j is the variance of the code values for the j-

th difference image, σ2
temp, j is the variance of the tempo-

rally varying part of the j-th image, and σ2
temp is the mean

of the variances of the temporal noise. The standard devia-
tion of the temporal noise is given by

σtemp =
√

n
n−1

σ2
diff. (10)

By using (7) and (10), the standard deviation of the fixed
pattern noise is then derived as

σfp =

√
σ2

ave−
1

n−1
σ2

diff. (11)

Total noise

The total noise standard deviation for the j-th image is
given as the square root of the sum of the variances of the
temporal noise of the j-th image and the the fixed pattern
noise

σtotal, j =
√

σ2
temp, j +σ2

fp. (12)

The overall total noise standard deviation of a measured sys-
tem is evaluated as the average of all σtotal, j.

Noise type estimation

The noise PDF may be estimated using the Pearson
Chi-square test [9], the Kolmogorov-Smirnov test [9], or
both, depending on used theoretical distribution. In this pa-
per, we use the Generalized Laplacian Model (GLM) which
allows to model different types of the probability density
function and can also be used for noise type estimation. The
GLM is defined as

p(x;s, p) =
e−|

x
s |

p

Z(s, p)
(13)
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where s is the bandwidth parameter of the PDF, p∈ 〈0.1;2.5〉
is the shape parameter, and the function Z(s, p) is given as

Z(s, p) = 2
s
p

Γ

(
1
p

)
. (14)

where Γ(x) presents the gamma function.

As shown in [7], [16], the GLM parameters s and p
may be estimated using the method of moments. Using this
method, the second and the fourth cental moments are de-
fined as

µ2(s, p) =
s2Γ

(
3
p

)
Γ

(
1
p

) , (15)

µ4(s, p) =
s4Γ

(
5
p

)
Γ

(
1
p

) . (16)

By introducing the kurtosis [7], [16], the solution of the
above set of equations can be simplified into

κ̂ =
µ4(s, p)
µ2

2(s, p)
=

Γ

(
5
p

)
Γ

(
1
p

)
Γ2
(

3
p

) . (17)

By exploiting this equation, the kurtosis is evaluated for all
values of p ∈ 〈0.1;2.5〉 with a chosen ∆p. The value of κ̂

which falls closest to the kurtosis evaluated for the measured
data X produces the best estimate of the parameter p. For the
normal distribution p is close to value of 2. The bandwidth
parameter s is then computed from (15)

s =

√√√√√µ2

Γ

(
1
p

)
Γ

(
3
p

) . (18)

3.2 OECF Determination
The OECF is introduced in ISO 14524 [5] and is de-

fined as a relationship between the logarithm of input levels
(luminance) and corresponding digital output levels for all
OECF patches in the test chart. This information is required
for the developements and testing of digital cameras and may
be helpful in the digital image processing.

Preferred method for measuring the chart luminance is
to use a telescopic photometer. If the transmissive test chart
is used, then the luminance Li is evaluated as

Li = 10−DiL, (19)

where L (cd·m−2) is luminance of the diffuse illuminator on
which the test chart is placed. For OECF determination from
acquired images, it is necessary to calculate the mean digital
output value for each patch. The OECF is then determined
either as input log10 luminance for all test chart patches and
the corresponding digital code values, or as log2 of the digi-
tal code values for each color channel.

4. Wavelet Domain Denoising
Methods
The noise reduction part of this paper is dedicated

to denoising methods and their applications. All the de-
scribed and applied methods are based on wavelet coeffi-
cients thresholding. These coefficients are obtained by ex-
ploiting two different forms of the wavelet transform: DWT
and DTCWT. In case of the DWT, we use the MAD-based
(Median Absolute Deviation) threshold estimate [8], [10] or
the GLM-based threshold estimate [7], [16] when the noise
is not normally distributed. In case of the DTCWT, we use
the threshold estimate based on the Rayleigh distribution [4].

4.1 Wavelet Coefficient Thresholding
Denoising methods in the wavelet domain are based on

thresholding [8], [12] of the wavelet coefficients obtained by
the DWT or the DTCWT of the original image. The thresh-
olding algorithms [8], [12] are applied to high-frequency co-
efficients (the details). The denoised image is then obtained
by the inverse wavelet transform [4], [8], [10], [11].

The threshold value is usually estimated from the high-
frequency content of the given signal. Then we are able to
apply the thresholding functions (algorithms), such as hard
and soft, which are given by the following equations

yhard(i) =
{

x(i) for |x(i)|> γ,
0 for |x(i)| ≤ γ,

(20)

ysoft(i) =
{

sign(x(i))(|x(i)|− γ) for |x(i)|> γ,
0 for |x(i)| ≤ γ

(21)

where x(i) are input signal values and γ is the threshold.

In case of the DTCWT, we threshold only magnitudes
of the complex coefficients and keep the phase ∠x(i) un-
changed [11]. The thresholded coefficients are then given as

ythr(i) = |x(i)|e j∠x(i) (22)

where the magnitude |x(i)| was thresholded either by
Eq. (20) or (21).

The experimental results of different thresholding
methods are compared using the Root Mean Square Error
(RMSE) measure.

4.2 Threshold Estimation
Threshold estimation algorithms are based on evalua-

tion of the noise standard deviation σ̂. This relationship can
be generally written as

γgeneral = σ̂ξ. (23)

The constant ξ may be evaluated experimentally as

ξ̂ = arg min
ξ

RMSE
(
f̂(x,y),g(x,y)

)
(24)
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where f̂(x,y) represents the best estimate of the restored
image and g(x,y) is the average image. Alternatively, the
constant ξ may be derived by optimization. A well known
method is the universal threshold [2]

γUNIV = σ̂
√

2lnn (25)

where n is the analyzed signal length, σ̂ is the estimate of the
standard deviation of the additive Gaussian noise. Another
method used for threshold value estimation is the SURE al-
gorithm [3] (Stein’s Unbiased Estimate of Risk) defined as

γSURE = σ̂

√
2ln
(

n
lnn
ln2

)
. (26)

The standard deviation of the additive noise can be estimated
by exploiting the MAD

σ̂MAD =
median{|cD|}

0.6745
(27)

or the Maximum Likelihood in the Wavelet Domain
(MLWD) algorithm

σ̂MLWD =

√
1
n

n

∑
i=1

(cD,i− cD)2 (28)

where cD is a vector of the wavelet coefficients presenting
the high frequency components of the analyzed signal, cD is
its mean, and cD,i are the individual coefficients. It is impor-
tant to mention that the MLWD estimate is not so robust as
the MAD estimate.

The above described methods of σ estimation are based
on the fact that the noise distribution is normal. A more gen-
eral method of threshold determination can be derived from
the GLM model. If we define the standard deviation as the
square root of the variance and if the variance is replaced by
the estimate of the second central moment µ2 of the GLM,
then the threshold value estimate γ may be derived as

γ = ξ
√

µ2(s, p) = ξ

√√√√√ s2Γ

(
3
p

)
Γ

(
1
p

) . (29)

In case of the complex coefficients produced by the
DTCWT we preserve the original phase and threshold only
magnitudes, (22). This leads to the conclusion, that the prob-
ability distribution function of the wavelet coefficients mag-
nitude is asymmetric. When we assume that the real and
imaginary parts are normally distributed, the magnitude is
then Rayleigh distributed [11]

p(x,σ) =
x

σ2 e
−x2

2σ2 (30)

where x ≥ 0 and σ > 0. The threshold value is then defined
as

γ = ξ
√

µ2(σ) = ξ

√
2σ2Γ(2) (31)

and its parameter σ may be estimated by the maximum like-
lihood method [7], [11]

σ̂ =

√
1
2I

I

∑
i=1
|N(i)|2 (32)

where N are the complex wavelet coefficients of noise.

Depending on the approach of σ̂ evaluation we speak
either about a global threshold, for which σ̂ is estimated only
at the first level of wavelet decomposition, e.g. MAD esti-
mate, and the same threshold value is applied to all detail
coefficients subbands, or a local threshold, for which the
threshold value is determined separately for each subband,
e.g., GLM estimate.

5. Results
In this section there are presented results of approaches

described in the previous sections that were applied to the
data aquired by uses cameras. Tab. 1 shows basic properties
of the three analyzed imaging systems.

camera Nikon D70 Canon EOS 500D JAI CM-040GE
description SLR camera SLR camera video camera
sensor type CCD CMOS CCD
sensor resolution 6.1 mil. of px. 15.1 mil. of px. 0.45 mil. of px.
ISO sensitivity 200 - 1600 100 - 6400 undefined
used compression none none none

Tab. 1. Basic properties of analyzed imaging systems.

5.1 Noise Analysis Results
Figs. 3, 4, and 5 present examples of the evaluated

OECF values of the analyzed imaging systems for a chosen
ISO sensitivity.
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Fig. 3. Nikon D70 OECF, ISO-200, log2 of digital output level
vs. input log10 luminance.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

3

4

5

6

7

input log
10

 luminance

lo
g 2 o

f d
ig

ita
l o

ut
pu

t l
ev

el

 OECF Canon EOS 500D sensitivity ISO−200,
  log

2
 of digital output level vs. input log

10
 luminance

 

 
R channel
G channel
B channel

Fig. 4. Canon EOS 500D OECF, ISO-200, log2 of digital output
level vs. input log10 luminance.
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It can be observed that the OECF curves of all the an-
alyzed systems are non-linear. The evaluated noise standard
deviations of Nikon D70 and Canon EOS 500D for all ISO
sensitivities are presented in Fig. 6. The values of σtotal for
JAI CM-040GE is 2.88. Fig. 7 contains SNRtotal of both dig-
ital still cameras. The value of SNRtotal of the CM-040GE
camera is 33.98. Figs. 8, 9 and 10 show trends of σtotal in the
OECF patches. Based on the result of the noise analysis for
the OECF patches it can be said that the noise is weakly sig-
nal dependent.

Figs. 11 and 12 present histograms for the OECF
patches of all the analyzed systems for the chosen ISO sen-
sitivity. These histograms were used for estimating the
noise probability distribution. The normal, Poisson, Erlang,
Rayleigh, and exponential distributions were tested.
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Fig. 5. CM-040GE OECF, log2 of digital output level vs. input
log10 luminance.
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Fig. 12. Canon EOS 500D, histogram of OECF patches, ISO-
800.
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Fig. 13. JAI CM-040GE, histogram of OECF patches.

The Kolmogorov-Smirnov and the χ2 test of goodness
of fit rejected the null hypothesis for all the tested distribu-
tions at the significance level α = 0.05. Hence the shape
parameter p of the GLM model was used for noise type esti-
mation as shown in Figs. 14, 15, and 16. Since p is different
from value of 2 in a majority of patches (the OECF patches
in particular), the noise cannot be considered normally dis-
tributed.
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Fig. 14. Nikon D70, GLM shape parameter in OECF patches.
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Fig. 15. Canon EOS 500D, GLM shape parameter in OECF
patches.
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Fig. 16. JAI CM-040GE, GLM shape parameter in OECF
patches.

5.2 Denoising Methods Application
The denoising methods were applied to the acquired

sets (of 8 images for each camera) with the same ISO sensi-
tivity settings as we used for the noise analysis. The average
image for each set was computed and RMSE j of the j-th im-
age was evaluated. The overall RMSE is given as the mean
of all RMSE j and represents the given data set and we com-
pare its value before and after denoising.

Local threshold estimate based on the MAD and the
GLM approaches in combination with hard and soft thresh-
olding were used for denoising in the wavelet domain (both
applying the DWT and the DTCWT).

Nikon D70

For visual evaluation of the denoising results, a cut of
a selected image acquired by Nikon D70 with ISO 1600,
and the average image of the corresponding data set are dis-
played in Fig. 17 and 18.

 Nikon D70 − cut of selected image number 4 ISO−1600

Fig. 17. Nikon D70 ISO-1600 - cut of selected image number 4.

 Nikon D70 − cut of average image  ISO−1600

Fig. 18. Nikon D70 ISO-1600 - cut of average image.
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Tab. 2 contains values of the noisy RMSE for the used
ISO sensitivities and Fig. 19 presents trend of the RMSE
measure in the original data set and the resulting RMSE af-
ter denoising for each applied ISO sensitivity. Detailed re-
sults can be seen in Tabs. 3 and 4 which comprise the RMSE
values after thresholding the DWT and the DTCWT coeffi-
cients, respectively.

ISO 200 400 800 1600
RMSE 2.4232 2.1722 3.6727 3.6307

Tab. 2. Nikon D70 - noisy RMSE values for given ISO.
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Fig. 19. Nikon D70 - noisy RMSE and RMSE after wavelet co-
efficients thresholding vs. ISO sensitivity.

ISO
MAD σ estimate GLM σ estimate

γ dec. threshold dec. threshold
level hard soft level hard soft

200
UNIV 3 2.2763 2.1541 3 2.2855 2.1820
SURE 3 2.2742 2.1601 3 2.2874 2.1822
EXPM 3 2.2813 2.1496 3 2.2854 2.1778

400
UNIV 3 1.8616 1.8605 3 1.8946 1.8595
SURE 3 1.8596 1.8479 3 1.9032 1.8719
EXPM 4 1.8651 1.8272 3 1.8916 1.8470

800
UNIV 4 3.2066 3.1454 3 3.2602 3.2248
SURE 4 3.2002 3.1755 3 3.2709 3.2357
EXPM 4 3.2248 3.1145 3 3.2546 3.2136

1600
UNIV 4 2.7440 2.5636 3 2.7911 2.7424
SURE 4 2.7132 2.6003 3 2.7910 2.7734
EXPM 4 2.8016 2.5264 3 2.8058 2.6854

Tab. 3. Nikon D70 - RMSE after thresholding of wavelet coeffi-
cients obtained by DWT.

ISO dec. threshold
level hard soft

200 3 2.2189 2.1059
400 4 1.7018 1.6584
800 4 2.9625 2.9177
1600 4 2.2119 2.1742

Tab. 4. Nikon D70 - RMSE after thresholding of complex
wavelet coefficients obtained by DTCWT.

It is obvious that the difference between the RMSE
gained by the DTCWT and the DWT increases with the in-
creasing ISO sensitivity. The RMSE results also suggest that
the DTCWT gives better results than the DWT, especially
for higher ISO sensitivities. This is also visible on the cuts
of the restored images in Figs. 20 and 21 as the DTCWT
surpasses the DWT in preserving image edges.

 Nikon D70 − cut of selected image number 4 ISO−1600,
 DWT coef. thr., 3 rd dec. level., soft thr., γ

EXPM
, MAD σ est.

Fig. 20. Nikon D70 ISO-1600 - cut of thresholded image no. 4
denoised using DWT, 3rd dec. level, soft thr., γEXPM,
σ̂MAD.

 Nikon D70 − cut of selected image number 4 ISO−1600,
 DTCWT coef. thr., 4 th dec. level., soft thr., γ

EXPM

Fig. 21. Nikon D70 ISO-1600 - cut of thresholded image no. 4
denoised using DTCWT, 4th dec. level, soft thr., γEXPM.

Canon EOS 500D

Figs. 22 and 23 present respectively a cut of a selected
image and a cut of the average image for the data set acquired
by Canon EOS 500D.

 Canon EOS 500D − cut of selected image number 4 ISO−6400

Fig. 22. Canon EOS 500D ISO-6400 - cut of image no. 4.

 Canon EOS 500D − cut of average image  ISO−6400

Fig. 23. Canon EOS 500D ISO-6400 - cut of average image.
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Tab. 5 contains the noisy RMSE values for the used
ISO sensitivities. Fig. 24 contains the RMSE characteris-
tic of processed data before and after wavelet coefficients
thresholding for each ISO sensitivity value. Also for this
camera, the difference between the RMSE resulting from the
DTCWT coefficients thresholding and the DWT coefficients
thresholding gradually increases. Tabs. 6 and 7 display the
detailed denoising results.

ISO 100 200 400 800 1600 3200 6400
RMSE 0.6739 0.8815 1.1277 1.4801 1.9136 2.7026 4.1593

Tab. 5. Canon EOS 500D - noisy RMSE values for given ISO
sensitivity.

Fig. 25 and 26 depict crops of the resulting denoised images
and again the result obtained using the DTCWT is visually
better.
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Fig. 24. Canon EOS 500D - noisy RMSE and RMSE after
wavelet coefficients thresholding vs. ISO sensitivity.

ISO
MAD σ estimate GLM σ estimate

γ dec. threshold dec. threshold
level hard soft level hard soft

100
UNIV 3 0.5584 0.5597 3 0.5619 0.6095
SURE 4 0.5338 0.5692 3 0.5687 0.5928
EXPM 4 0.5445 0.5470 3 0.5722 0.5961

200
UNIV 4 0.6973 0.7625 4 0.7265 0.8180
SURE 4 0.6977 0.7683 3 0.7350 0.7813
EXPM 4 0.7037 0.7359 3 0.7196 0.7689

400
UNIV 4 0.8863 0.9543 4 0.9099 1.0335
SURE 4 0.8845 0.9619 3 0.9202 0.9819
EXPM 4 0.8988 0.9186 3 0.9034 0.9627

800
UNIV 4 1.1703 1.1832 3 1.1925 1.2392
SURE 4 1.1623 1.2051 3 1.2008 1.2443
EXPM 4 1.1936 1.1537 3 1.1906 1.2322

1600
UNIV 3 1.4148 1.4336 3 1.4287 1.5185
SURE 4 1.4002 1.4638 3 1.4402 1.5250
EXPM 3 1.4548 1.3925 4 1.4299 1.4888

3200
UNIV 4 1.9042 1.8268 3 1.9213 1.9701
SURE 4 1.8720 1.8525 3 1.9364 2.0058
EXPM 3 1.9797 1.7925 4 1.9231 1.9178

6400
UNIV 4 2.8479 2.6121 4 2.8224 2.7014
SURE 4 2.7909 2.6275 4 2.8297 2.7164
EXPM 4 2.9762 2.5821 4 2.8422 2.6770

Tab. 6. Canon EOS 500D - RMSE after thresholding of DWT
coefficients.

ISO dec. threshold
level hard soft

100 4 0.4597 0.4587
200 4 0.5889 0.5855
400 4 0.7211 0.7139
800 4 0.9941 0.9756

1600 4 1.0922 1.0905
3200 4 1.4140 1.4126
6400 4 2.0962 2.0717

Tab. 7. Canon EOS 500D - RMSE after thresholding of
DTCWT coefficients.

 Canon EOS 500D − cut of selected image number 4 ISO−6400,
 DWT coef. thr., 3 rd dec. level., soft thr., γ

EXPM
, MAD σ est.

Fig. 25. Canon EOS 500D ISO-6400 - cut of thresholded im-
age no. 4 denoised using DWT, 3rd dec. level, soft thr.,
γEXPM, MAD σ estimate.

 Canon EOS 500D − cut of selected image number 4 ISO−6400,
 DTCWT coef. thr., 4 th dec. level., soft thr., γ

EXPM

Fig. 26. Canon EOS 500D ISO-6400 - cut of thresholded image
no. 4 denoised using DTCWT, 4th dec. level, soft thr.,
γEXPM.

JAI CM-040GE

Figs. 27 and 28 show respectively a cut of a selected
image and and a cut of the average image for the data set
acquired by the JAI CM-040GE camera.

 JAI CM−040GE − cut of selected image number 4

Fig. 27. JAI CM-040GE - cut of image no. 4.

 JAI CM−040GE − cut of average image

Fig. 28. JAI CM-040GE - cut of average image.
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 JAI CM−040GE − cut of selected image number 4,
 DWT coef. thr., 3 rd dec. level., hard thr., γ

SURE
, MAD σ est.

Fig. 29. JAI CM-040GE - cut of thresholded image no. 4 de-
noised using DTCWT, 3rd dec. level, hard thr., γSURE,
MAD σ estimate.

 JAI CM−040GE − cut of selected image number 4,
 DTCWT coef. thr., 4 th dec. level., soft thr., γ

SURE

Fig. 30. JAI CM-040GE - cut of thresholded image no. 4 de-
noised using DTCWT, 4th dec. level, soft thr., γEXPM.

 JAI CM−040GE − selected image number 4,
 DWT coef. thr., 3 rd dec. level., hard thr., γ

SURE
, MAD σ est.

Fig. 31. JAI CM-040GE - thresholded image no. 4 denoised us-
ing DWT, 3rd dec. level, hard thr., γSURE, MAD σ esti-
mate.  JAI CM−040GE − selected image number 4,

 DTCWT coef. thr., 4 th dec. level., soft thr., γ
SURE

Fig. 32. JAI CM-040GE - thresholded image no. 4 denoised us-
ing DTCWT, 4th dec. level, soft thr., γEXPM.

Tabs. 8 and 9 contain the RMSE results. The noisy
RMSE value for this camera was 2.9837.

MAD σ estimate GLM σ estimate
γ dec. threshold dec. threshold

level hard soft level hard soft
UNIV 3 1.5447 1.7028 2 1.6760 2.0352
SURE 3 1.5339 7.7652 2 1.7370 2.1083
EXPM 3 1.5509 1.6908 2 1.6650 2.0206

Tab. 8. JAI CM-040GE - RMSE after thresholding of DWT co-
efficients.

dec. threshold
level hard soft

4 1.0896 1.2304

Tab. 9. JAI CM-040GE - RMSE after thresholding of DTCWT
coefficients.

Also for the JAI CM-040GE system, the restored im-
ages present considerable potential of the DTCWT in com-
bination with the threshold estimate given by (31) and (32).
When we look at edges in Figs. 29 and 31 we can again see
that they are largely blurred. Figs. 30 and 32 present the
same image and its crop restored after thresholding of the
complex wavelet coefficients produced by the DTCWT.

6. Conclusion
This paper analyzes three imaging systems: Nikon

D70, Canon EOS 500D, and JAI CM-040GE. The OECF
curves of these systems reveal nonlinear behavior which rep-
resents a rather limiting factor in noise rejection. Another
limitation is given by the fact that the noise present in the im-
ages acquired in poor lighting conditions is not normally dis-
tributed and it is also slightly signal dependent in the whole
grayscale range for all the ISO sensitivities.

We also describe and apply wavelet-based denoising
methods. The methods are compared by evaluating of the
RMSE improvement and visual assessment. We may con-
clude that thresholding of the complex wavelet coefficients
obtained from the DTCWT produces better results than
thresholding the real coefficients produced by the DWT. The
reason might be a more convenient way of signal interpre-
tation in the complex coefficients whose magnitude is shift-
invariant. Additionally, the DWT-based method was a little
handicapped since the noise in the analyzed systems was not
normally distributed, however, we used the MAD method
(designed for the normal distribution) for the noise standard
deviation estimation.

Wavelet coefficients were adjusted using hard and soft
thresholding algoritms. The difference between them are
not significant as well as the differences between local and
global thresholding. Threshold estimates in case of the DWT
were based on MAD and GLM estimates. Rayleigh distri-
bution was applied while using the DTCWT. The estimates
based on the Rayleigh distribution gave the best results for
all processed images in comparions to MAD and GLM ap-
proaches.
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analysis of MAIA system and possible noise suppresion. Radioengi-
neering, 2011, vol. 20, no. 1, p. 110 - 117.

[17] TUKEY, J. W. Exploratory Data Analysis. Boston (MA, USA): Ad-
dison Wesley, 1977.

[18] PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., FLAN-
NERY, B. P. Numerical Recipes: The Art of Scientific Computing.
3rd ed. Cambridge (UK): Cambrigde University Press, 2007.

About Authors. . .
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