
436 T. FRYZA, J. SVOBODOVA, F. ADAMEC, R. MARSALEK, J. PROKOPEC, OVERVIEW OF PARALLEL PLATFORMS . . .

Overview of Parallel Platforms for Common
High Performance Computing

Tomas FRYZA, Jitka SVOBODOVA, Filip ADAMEC, Roman MARSALEK, Jan PROKOPEC

Dept. of Radio Electronics, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic

{fryza,marsaler,prokopec}@feec.vutbr.cz, {xsvobo61,xadame24}@stud.feec.vutbr.cz

Abstract. The paper deals with various parallel platforms
used for high performance computing in the signal process-
ing domain. More precisely, the methods exploiting the mul-
ticore central processing units such as message passing in-
terface and OpenMP are taken into account. The properties
of the programming methods are experimentally proved in
the application of a fast Fourier transform and a discrete
cosine transform and they are compared with the possibili-
ties of MATLAB’s built-in functions and Texas Instruments
digital signal processors with very long instruction word ar-
chitectures. New FFT and DCT implementations were pro-
posed and tested. The implementation phase was compared
with CPU based computing methods and with possibilities
of the Texas Instruments digital signal processing library
on C6747 floating-point DSPs. The optimal combination
of computing methods in the signal processing domain and
new, fast routines’ implementation is proposed as well.

Keywords
Digital signal processing, fast Fourier transforms, dis-
crete cosine transforms, parallel programming, high
performance computing, message passing interface,
OpenMP, MATLAB, digital signal processors, opti-
mization.

1. Introduction
Nowadays, the high performance computing tools are

used for extremely time consuming tasks in signal pro-
cessing domain, optimization solvers, data mining, etc.
These systems consist of multi-core central processing
units (CPUs), graphical processing units (GPUs), field-
programmable gate arrays (FPGAs), or digital signal pro-
cessors (DSPs). Even laptops are commonly equipped
with dual-core processors. Ordinarily, those processing
units are merged together, so heterogeneous computing sys-
tems are established. A promising method for high per-
formance computing is using units or systems with an ex-
treme degree of parallelism. Such systems are GPUs (both
CUDA and OpenCL programming), multicore DSPs (e.g.

TMS320C66x series from Texas Instruments), or even het-
erogeneous systems. Nevertheless, this paper mainly con-
centrates on CPU-based methods. The GPUs approach will
be examined and compared in the future.

From the software point of view, the computing or sim-
ulation environments can comprise a large scale of process-
ing algorithms from many researchers’ domains. Despite
the fact that processor manufactures can still preserve the
Moore’s law [1], and the computing performance is steadily
increasing, the way of effective programming persistently
has an irreplaceable position in many research areas.

There are several approaches for effective parallel pro-
gramming. The most used approach for distributed paral-
lel computing for multicore CPUs is message passing inter-
face (MPI). MPI specifies the communication between sepa-
rate processes, and it was designed for high performance on
both massively parallel machines and on workstation clus-
ters. The present-day version of the standard is MPI-2.2 ap-
proved by the MPI Forum in September, 2009. The MPI-3.0
version is available in a draft version. The MPI library con-
tains functions written in C and Fortran languages and it is
described in detail in literature, such as [2], [3], or [4].

A different approach represents OpenMP with shared
memory space, where all the cores can access the whole
memory space. OpenMP is an application programming in-
terface for multi-platform parallel programming in C/C++

and Fortran. The actual version of the standard is OpenMP
3.1 from July 2011. The specification and detailed tutorials
could be found in [5], [6], or [7].

There are several projects implementing main algo-
rithms for digital signal processing. This paper deals with
the possibility of effectively implementing of fast Fourier
transform and discrete cosine transform. Libraries for fast
computing the discrete Fourier transform, which commonly
includes real and/or complex, multidimensional, and parallel
transforms can be found in [8], [9], etc.

The paper presents the multiplatform approaches for
optimal parallel computing in signal processing domain and
it is divided into four main parts. In Section 2, a brief intro-
duction to parallel and distributed computing in MATLAB
is outlined. Section 3 outlines the basic structure and appli-
cation of MPI inter-core communication. Section 4 presents

RADIOENGINEERING, VOL. 21, NO. 1, APRIL 2012 437

the chosen algorithms for parallel implementation in both
CPU and DSP processors. The considered experiments with
implementation of digital signal processing algorithms and
achieved results are described in Section 5 and Section 6,
followed by short a conclusion.

2. Parallel Computing in MATLAB
MATLAB’s Parallel Computing Toolbox provides run-

ning the script in up to n threads on a local computer or run-
ning it on a cluster machine using a MATLAB Distributed
Computing Server. The main task is called Job and it is di-
vided into Tasks, which are assigned to the individual work-
ers by a scheduler. The default scheduler for MATLAB Dis-
tributed Computing Server, MathWorks Job Manager, sup-
ports the Platform LSF, Microsoft Compute Cluster Server
and Altair PBS Pro. Other schedulers can be integrated by
user; see Fig. 1.

Fig. 1. Architecture of parallel and distributed computing in
MATLAB [10].

The application has to be divided into independent
tasks which are then processed simultaneously. The parfor
loop corresponds to the for loop, but there are some differ-
ences. When using the parfor loop, the matlabpool has to be
open and closed after the parfor loop usage as shown below.

i f matlabpool (' s i z e ') == 0
matlabpool (' open ' , 8)

end
. . .
matlabpool c l o s e

In this expression, the number of threads is specified. If
some file is processed or a function is called within the parfor
loop, it has to be expressed here as ’FileDependencies’.

The main difference between the for and parfor loop is
the use of sliced variables. These variables ’slice’ the cur-
rent submatrix from the original matrix and use them for the
computation in individual workers. In this case, the sliced
variable is in the cell ’data type’. Then the results are re-
leased from the workers after the parfor loop:

% a l l s u b m a t r i c e s
parfor i=1: l e n g t h (Y)

% s l i c e d v a r i a b l e s p r e p a r a t i o n
Y_fft1=cell (s i z e (Y)) ;

% e v e r y row i n c u r r e n t s u b m a t r i x
f o r j=1:N
Y_fft1 { i } (j , :) = f f t (Y { i } (j , :)) ;

end % f f t o f c u r r e n t row

% e v e r y column i n c u r r e n t s u b m a t r i x
f o r j=1:N
Y_fft2 { i } (: , j)= f f t (Y_fft1 { i } (: , j)) ;

end % f f t o f c u r r e n t column
end

% r e l e a s i n g d a t a from worke r s
Y_fft=Y_fft2 ;

The most convenient way to solve this particular task
is by using the MATLAB functions as much as possible, be-
cause they are optimized to run fast and to use the proper
amount of memory.

3. Message Passing Interface
The message passing interface is an application pro-

gramming interface (API) for communication between sep-
arate processes, representing the most widely used approach
for distributed parallel computing. The MPI standard defines
interfaces to C and Fortran programming languages and al-
though the interface is large (contains over 120 procedures),
it stays concise. That is why, very often only six proce-
dures are needed to establish, control, and finalize interpro-
cess communications. Each process is identified by a rank
which is assigned during the runtime. Therefore, processes
can perform different tasks and handle different data based
on their rank. The process with the lowest rank is called
master, all others processes are called slaves.

A parallel program is launched as a set of indepen-
dent, identical processes, where the same program code
and instructions can reside in different computing nodes, or
even in different computers. Concurrently, all variables and
data structures are local to the process and processes can
exchange data by sending and receiving messages. There
are two main modes of communication between processes:
sending and receiving messages between two processes, or
sending and receiving messages between several processes
simultaneously.

The main structure of any MPI application is listed in
the following example. It can be seen, that only three rou-
tines from the MPI interface are used: one for initialization
of a parallel section, the second is for process rank detec-
tion, and the third stands for finalization of a parallel sec-
tion. Within both the master and slave sections, a common
sequential routine for fast Fourier transform is executed. The
benefit of this source code structure is to process different
(and independent) input data at dissimilar nodes.

438 T. FRYZA, J. SVOBODOVA, F. ADAMEC, R. MARSALEK, J. PROKOPEC, OVERVIEW OF PARALLEL PLATFORMS . . .

i n c l u d e <mpi . h>

i n t main (i n t argc , char *argv [])
{

i n t rank ;

/ / b e g i n n i n g o f p a r a l l e l i s m
MPI_Init (&argc , &argv) ;

/ / a s s i g n e d rank t o each p r o c e s s
MPI_Comm_rank (MPI_COMM_WORLD , &rank) ;

i f (rank == 0) { / / t h i s i s m a s t e r ' s code
. . . / / send d i f f e r e n t d a t a t o s l a v e s
fft (. . .) ; / / FFT r o u t i n e
. . . / / r e c e i v e c o e f f s . from s l a v e s

}

e l s e { / / s l a v e s ' code
. . . / / r e c e i v e d a t a from m a s t e r
fft (. . .) ; / / FFT r o u t i n e
. . . / / send c o e f f s t o m a s t e r

}

/ / end of p a r a l l e l i s m
MPI_Finalize () ;
re turn (0) ;

}

4. Evaluated Algorithms
In this Section, two implementations of digital signal

processing algorithms are outlined. The algorithms used for
the evaluation of parallel potentialities are fast Fourier trans-
form and discrete cosine transform.

4.1 Fast Fourier Transform Algorithms
The discrete Fourier transform (DFT) complexity

grows with the square of the data length N. Therefore, since
the original paper of Cooley and Tukey published in 1965
[11] a tremendous effort has been devoted to the fast Fourier
transform (FFT) algorithm research. The complexity of the
FFT is generally in order of N log2 N operations.

Many algorithms for the FFT calculations have been
proposed in the past. A very detailed overview contain-
ing the mathematical derivations is given in book [12]. The
methods can be basically classified as the decimation in time
(DIT) or decimation in frequency (DIF) families. Further
classification of the methods is according to the used radix
– from the basic radix-2 the algorithms of radix-4 or radix-8
can be derived. It is also possible to use combinations called
split-radix [13] or mixed-radix FFT. A derivation of one of
the basic methods – radix-2 DIT is based on the recursive de-
composition of the original DFT (note that the twiddle fac-
tors are defined as ωr

N = e rθ = e r
2π
N where =

√
−1)

X(r) =

N−1∑
l=0

x(l)ωrl
N (1)

of the N-point input sequence x(l) into two parts of the same
length [12] corresponding to the odd and even components:

X(r) =

N/2−1∑
k=0

x(2k)ωr2k
N +ωr

N

N/2−1∑
k=0

x(2k + 1)ωr2k
N . (2)

Considering that ω N
2

= ω2
N the radix-2 DIT FFT of N-

sample length sequence x(l) can be computed with the use of
two half-size FFT’s of sequences x(2k) (even samples) and
x(2k + 1) (odd samples):

Y(r) =

N/2−1∑
k=0

x(2k)ωrk
N
2

(3)

and

Z(r) =

N/2−1∑
k=0

x(2k + 1)ωrk
N
2
. (4)

The first N/2 output samples of the radix-2 DIT FFT
can thus be expressed according to equation (2) as:

X(r) = Y(r) +ωr
NZ(r). (5)

Similarly it can be simply shown that the second half
of the output samples can be computed as:

X (r + N/2) = Y(r)−ωr
NZ(r). (6)

An example of an 8-point long FFT calculated using
the radix-2 DIT algorithm is shown in Fig. 2.

−1

−1

−1

−1

−1

−1

−1

−1−1

−1

−1

−1

x0

x4

x2

x6

x1

ω0
N/4

ω0
N/4

ω0
N/4

x5

x3

ω0
N/4

x7

ω0
N/2

ω1
N/2

ω0
N/2

ω1
N/2

ω0
N

ω1
N

ω2
N

ω3
N

X7

X6

X5

X4

X3

X2

X1

X0

Fig. 2. Radix-2 DIT graphical representation for 8-point data se-
quence.

4.2 Discrete Cosine Transform
For vector with a dimension of N, the forward one-

dimensional discrete cosine transform (1-D DCT) is defined
in the following way [14]

D(r) = γ(r) ·
N−1∑
k=0

f (k) · cos
πr (2k + 1)

2N
(7)

RADIOENGINEERING, VOL. 21, NO. 1, APRIL 2012 439

where D(r) represents the 1-D DCT coefficient of a vector
item f (k) while r = 0, . . . ,N − 1. The constant γ(r) could be
expressed as follows

γ(r) =
√

1/N : r = 0,
√

2/N : r , 0.

According to the definition, the basic N-point DCT cal-
culation requires N2 multiplications and N ·(N−1) additions.
Supposing a color block with 8×8 elements, the 1-D trans-
form has to be repeated 48 (8×3 + 8×3) times to obtain 64
two-dimensional frequency coefficients. According to equa-
tion (7), calculation of such a block requires 3 072 multipli-
cations and 2 688 addition operations.

From the symmetry of the DCT base function, the com-
putation load of the DCT can be exploited. There are several
known algorithms, such as Arai’s [15], Chen’s [16], Loef-
fler’s [17], or Vetterli’s [18]. For further implementation, the
Arai’s forward DCT approach was chosen. Let N = 8, then
according to [15], [19], 5 multiplication and 29 addition op-
erations have to be evaluated in order to calculate eight one-
dimensional coefficients. Therefore, for a 8×8 color block,
only 720 multiplications and 4 176 additions have to be cal-
culated.

5. Practical Experiments
Algorithms were tested via two dimensional transfor-

mation of color frame(s) with QSXGA resolution, i.e., with
dimensions of 2,560×2,048 pixels. Each pixel is coded in
RGB color space by 24 bits. Tested frames were separated
into small blocks of N ×N pixels and those blocks represent
an input signal for the two-dimensional FFT, or DCT coder.
FFT uses complex input/output values, whereas the DCT al-
gorithm is adapted for real data only. The proposed imple-
mentation of both algorithms (according to subsection 4.1
and 4.2) uses the common dimension of a transform base
in signal processing domain, i.e., N = 8. Only in the MAT-
LAB environment were the built-in functions with dimen-
sions from 8 to 2,048 used.

For evaluating the considered parallel computing meth-
ods, several test cases were performed. Mainly, the con-
suming time of two-dimensional FFT and DCT algorithms
with MPI, OpenMP, MATLAB, and Texas Instruments DSP
approaches were tested. Two-dimensional transforms were
always divided to successive calculations of two 1-D trans-
forms.

All CPU based parallel computing tests were per-
formed on the HP BL465c G5 Blade Server with two quad-
core Opteron processors and 32 GB of RAM. The core clock
frequency is 2.7 GHz, synchronous DDRII memory was run-
ning at 800 MHz.

For the simulation results discussion, we also mention
the size of the CPUs internal cache. Internal L1 cache is

256 kB per processor (64 kB for data and 64 kB for instruc-
tion), L2 cache is 2 MB (4×512 kB) per processor, L3 cache
6 MB per processor, TLB (Translation Lookaside Buffer) of
4 kB.

The DSP based computing tests were performed on
the Texas Instruments evaluation board OMAP-L137. The
board incorporates the Texas Instrument OMAP-L137 pro-
cessor [20], which integrates 300 MHz ARM9 processor and
300 MHz fixed/floating-point C674x DSP core with very
long instruction word (VLIW) architecture, where eight si-
multaneous instructions can be dispatched. The instructions
in a VLIW packet can be executed in parallel or serial based
on a special status bit in the VLIW packet. The cache memo-
ries can be used as well as memory for data (L1D 32 kB) and
instructions (L1P 32 kB). In such a case, the access to data or
instructions are in full speed but read from main memory is
not cached and access data from main memory can be slow.

The Texas Instruments DSP library (DSPLib) [9] for
TMS320C67x DSP’s contains optimized DSP functions for
floating-point C67x series of DSP’s. Among others, the li-
brary contains various versions of FFT algorithm [12] as
radix-2, radix-4 and mixed radix FFT. It contains a function
for adaptive filters, correlations, FIR and IIR filters, matrix
operations as well. All functions in this library are hand op-
timized to maximize their speed on a target DSP core.

For radix-2 FFT decimation-in-time algorithm, the
function DSPF sp cfftr2 dit from DSPLib must be used.
The input complex array is stored in normal order. The twid-
dle factors are passed into a vector, which contains N/2 com-
plex numbers. The result of the FFT is stored back to an
input vector in bit-reversed order. The functions to gener-
ate twiddle factor and reverse order are not part of this li-
brary. Using this library function could be as follows and
theoretical computation complexity of this function is from
[9]: cycles = 2 ·N · log2(N) + 42.

/ / g e n e r a t e c o e f f i c i e n t t a b l e
gen_twiddle (w , N) ;

/ / b i t − r e v e r s e c o e f f i c i e n t t a b l e
bit_rev (w , N>>1) ;

DSPF_sp_cfftr2_dit (x , w , N) ;

/ / normal o r d e r FFT c o e f f i c i e n t s
bit_rev (data , N) ;

New functions for VLIW DSP were optimized with an
auxiliary tool for assembly code generation. This tool could
provide optimal and synoptical reprogramming of intended
algorithms. The main goal of the tool is to ensure the utiliza-
tion of the majority of functional DSP’s units in any stage of
execution and to bring information to the programmer what
general purpose registers are available and ready to use. The
tool contains a list of known instructions [21], their brief de-
scription including a list of input arguments, possible func-
tional unit(s), execution time and/or pipelining stages. In any
time, the number of used functional units, i.e. the instruction

440 T. FRYZA, J. SVOBODOVA, F. ADAMEC, R. MARSALEK, J. PROKOPEC, OVERVIEW OF PARALLEL PLATFORMS . . .

packet length, is calculated. With this tool, the programmer
has absolute control of instruction packet length, free regis-
ters and instants when previous executions are finished. This
list of instructions are not limited only to the used Texas In-
struments DSPs, but can be easily extended to an arbitrary
processor or microcontroller. The final code can be exported
to development environment (such as Code Composer Stu-
dio) and assembled for target device.

6. Results

6.1 Message Passing Interface
Results from the first test case are shown in Fig. 3. For

various QSXGA color frames, the length of MPI message
buffer was altered. The buffer contains both the input pic-
ture data (from master to slaves communication), and trans-
formed two-dimensional coefficients as well (from slaves to
master communication). All data were represented in single
precision floating-point format. Average computation times
were calculated from sixteen evaluations; eight cores were
used for all calculations. The first fall of the computation
time for both transforms can be seen, which corresponds
with hardware setting of the blade server; specifically the
TLB size. On the other hand, the second (wider) fall of
the computation time corresponds with the L2 cache size.
For further computing, the MPI message buffer size of 4 kB
would be chosen.

From Fig. 3 (a) and Fig. 3 (b) it is obvious, the se-
lected implementation of the FFT algorithm is slower than
the implementation of the DCT algorithm. For N = 8, the im-
plemented FFT algorithm is approximately 1.5-times slower
than the DCT algorithm. The reason is that the FFT needs
complex data, whereas DCT needs real input and output val-
ues. Therefore, thirty two QSXGA color frames could be
transformed in 2.2 s by the FFT, but only in 1.4 s by the DCT
method.

6.2 OpenMP
The second test case describes a parallel implemen-

tation of FFT and DCT algorithms with the help of
the OpenMP approach. For the transformation of several
QSXGA color frames, 1, 2, 4, and 8 cores were used. The
number of transformed frames varied between 1 and 32 for
the FFT algorithm and between 1 and 128 for the DCT al-
gorithm. The computation times are shown in Fig. 4. With
dotted lines, the serial versions of implemented algorithms,
as well as ideal curves for parallel versions are expressed.
The ideal versions are computed as a portion of serial re-
sults. The dashed line in the figures represents the results
achieved by the MPI approach as well.

For a smaller amount of processed data, it can be seen,
that the OpenMP version is less effective than the MPI ver-
sion. In addition, while a single QSXGA color frame is be-

ing transformed, the computation time for a serial version
is lower than for a parallel version with two cores! There-
fore, the beneficial uses of simple OpenMP in signal pro-
cessing domain could be with bitrate, which is adequate to
64 QSXGA color frames.

6.3 MATLAB Environment
The third test case was performed in a MATLAB en-

vironment. The MATLAB built-in functions fft and dct
were called, in all the individual workers. The computational
time measurement starts before the parfor loop and ends after
the variables’ final reshape after the parfor loop. The results
for the FFT and DCT computation from one to eight threads
for the blocks of vectors with the lengths of 8, 16, 32, 64,
128, 256, 512, 1,024 and 2,048 are depicted in Fig. 5. It is
obvious, that the parallel computing is most advantageous
for the vector length of 8, because there is the highest num-
ber of blocks to be computed and the individual vectors are
quite short. So the time to compute the corresponding FFT’s
and DCT’s is short, but the number of runs, dependent on the
amount of data to be computed, is high. For the other vec-
tor lengths, the time increases when computing by 8 threads.
It is caused by redundant communication between threads
which should be eliminated in newer releases of the Paral-
lel Computing Toolbox. For the lengths of 512 and more,
the parallel approach is unnecessary, because there are fewer
loop runs and the vectors are long, so the FFT and DCT func-
tions take a long time to be computed themselves and the
parallelization of these calculations is not very effective. The
FFT and DCT functions in MATLAB are optimized, so their
computational time itself is as short as possible. A single
QSXGA color frame could be transformed approximately in
5 s by both FFT and DCT functions.

6.4 Digital Signal Processors
The last test considered was performed using the digi-

tal signal processor TMS320C6747, controlled using a clock
frequency of 300 MHz (9-times slower than the CPU based
tests). Although the evaluation board contains only a sin-
gle core DSP, the VLIW architecture meets the parallel ap-
proach. Selected algorithms were implemented in C lan-
guage, in linear assembly language, and in assembly lan-
guage generated by a suggested generator tool. Develop-
ment tool Code Composer Studio v.3.3 from Texas Instru-
ments was used. Higher level codes were optimized using
CCS internal tools as well.

This new auxiliary tool was used for developing an ef-
ficient implementation of FFT decimation-in-time algorithm
with length of N = 4, 8, and 16 and DCT algorithm with
length of N = 8. All codes were furthermore hand opti-
mized and FFT routines were also compared with official
Texas Instruments function DSPF sp cfftr2 dit from DSP
library [9]. The comparison was done using the number of
needed CPU cycles, which were enumerated with the help

RADIOENGINEERING, VOL. 21, NO. 1, APRIL 2012 441

1×10
2

1×10
3

1×10
4

1×10
5

1×10
6

Buffer message size (number of floats)

0

1

2

3

4

5

6

7

A
v
er

ag
e

co
m

p
u
ta

ti
o
n
 t

im
e

[s
]

64 QSXGA frames

32 QSXGA frames

16 QSXGA frames

8 QSXGA frames

MPI - buffer message size
2-D FFT (N = 8, 8 threads)

(a) 2-D FFT

1×10
2

1×10
3

1×10
4

1×10
5

1×10
6

Buffer message size (number of floats)

0

1

2

3

4

5

6

7

A
v
er

ag
e

co
m

p
u
ta

ti
o
n
 t

im
e

[s
]

128 QSXGA frames

64 QSXGA frames

32 QSXGA frames

16 QSXGA frames

8 QSXGA frames

MPI - buffer message size
2-D DCT (N = 8, 8 threads)

(b) 2-D DCT

Fig. 3. Average computation time for two-dimensional MPI implementations with varying buffer message size (N = 8, fCPU = 2.7 GHz, 8 threads,
QSXGA color frames: 2,560×2,048 pixels).

1 10 100
Number of color QSXGA frames

1×10
-1

1×10
0

1×10
1

A
v

er
ag

e
co

m
p

u
ta

ti
o

n
 t

im
e

[s
]

1 thread
2 threads
2 threads ideal
4 threads
4 thread ideal
8 threads
8 threads (MPI, size = 960)

8 thread ideal

OpenMP, MPI
2-D FFT (N = 8)

(a) 2-D FFT

1 10 100
Number of color QSXGA frames

1×10
-1

1×10
0

1×10
1

A
v

er
ag

e
co

m
p

u
ta

ti
o

n
 t

im
e

[s
]

1 thread
2 threads
2 threads ideal
4 threads
4 thread ideal
8 threads
8 threads (MPI, size = 960)

8 thread ideal

OpenMP, MPI
2-D DCT (N = 8)

(b) 2-D DCT

Fig. 4. Average computation time for two-dimensional OpenMP implementations with varying transformed frames and threads number (N = 8,
fCPU = 2.7 GHz, QSXGA color frames: 2,560×2,048 pixels).

Algorithm Programming language/tool
Cycles

Remark
theoretical / measured

FFT, N = 4 Assembly code generator – / 24 2×, normal order output
FFT, N = 8 C code – / 540 -o3 optimization
FFT, N = 8 Linear assembly – / 126 -o3 optimization
FFT, N = 8 Assembly code generator – / 42 2×, normal order output

FFT, N = 16 Assembly code generator – / 116 2×, normal order output
FFT, N = 32 Assembly code generator 350 estimated 2×, normal order output

DSPLib, N = 32 Assembly language 362 / 512 1×, bit-reverse order output
DSPLib, N = 64 Assembly language 810 / 1 016 1×, bit-reverse order output

DSPLib, N = 128 Assembly language 1 834 / 2 143 1×, bit-reverse order output
DSPLib, N = 256 Assembly language 4 138 / 4 658 1×, bit-reverse order output

Tab. 1. Velocity of complex single precision FFT algorithm implementations (TMS320C6747 floating-point DSP, fDS P = 300 MHz).

of CCS v.3.3 profiling tool. The achieved results can be seen
in Tab. 1. The optimization process was based on the idea
that as many functional units as possible are executing a sin-
gle instruction in every CPU cycle. Considering a limited

number of assigned instructions for L, S, M, and D function
units, a proposed parallel algorithm must be assembled with
respect to the number of needed cycles, pipeline stage, and
available general purpose registers.

442 T. FRYZA, J. SVOBODOVA, F. ADAMEC, R. MARSALEK, J. PROKOPEC, OVERVIEW OF PARALLEL PLATFORMS . . .

1 2 3 4 5 6 7 8
Number of parallel labs

5

50

500

C
o
m

p
u
ta

ti
o
n
 t

im
e

[s
]

N = 8
N = 16
N = 32
N = 64
N = 128
N = 256
N = 512
N = 1,024

N = 2,048

Matlab - Parallel Computing Toolbox, Distributed Computing Server

2-D FFT

(a) 2-D FFT

1 2 3 4 5 6 7 8
Number of parallel labs

5

50

500

C
o
m

p
u
ta

ti
o
n
 t

im
e

[s
]

N = 8
N = 16
N = 32
N = 64
N = 128
N = 256
N = 512
N = 1,024

N = 2,048

Matlab - Parallel Computing Toolbox, Distributed Computing Server

2-D DCT

(b) 2-D DCT

Fig. 5. Computation time for two-dimensional MATLAB implementations with varying parallel lab number (fCPU = 2.7 GHz, 1 QSXGA color
frame: 2,560×2,048 pixels).

In contrary to the DSPF sp cfftr2 dit function, the
proposed solution can store the output frequency coefficients
directly in normal order and not in bit-reverse order. The
output coefficients normal-order addressing mode could be
achieved using a specific storing routine which was included
to the proposed function. With the help of a pointer with
pre/post-incrementing/decrementing index, arbitrary coeffi-
cients order could be suggested.

Furthermore, proposed functions can operate only in
one DSP data path. The important impact of this strategy
is the opportunity to execute two independent data streams
simultaneously: one in data path A, and the second in data
path B. Due to this, the objective algorithms’ velocity of pro-
posed functions is doubled. Suppose a DSP core with clock
frequency of fDS P = 300 MHz. With the proposed FFT func-
tion more than 11.5 million executions of FFT N = 8 can be
performed every second. According to functional units’ sup-
port, the average workload for the proposed FFT DIT N = 8
algorithm is 50 %. The achieved computing performance of
the fast DCT algorithm can be seen in Tab. 2 and the appli-
cation of both FFT and DCT transforms in QSXGA color
frame encoding is shown in Tab. 3.

It is obvious, that the general abstraction brought by the
C code is not effective. The low-level programming of both
FFT and DCT algorithms represents an outstanding contri-
bution in signal processing. A single QSXGA frame could
be transformed in 0.28 s by FFT, and in 0.24 s by the DCT
method.

7. Conclusion
The paper focused on multiplatform approaches for ef-

fective parallel computing. The outline of currently used
methods for parallel computing on a CPU was performed
as well. The MPI, OpenMP, and MATLAB approaches
were taken into account. The goal of the paper was also to

present the possibility to create an interconnection between
CPU based methods and VLIW architecture DSP evaluation
boards. The computing performance of the parallel meth-
ods was tested by two transforms, commonly used in sig-
nal processing domain. The two-dimensional FFT and DCT
were chosen. The optimal conditions for MPI, OpenMP and
MATLAB approaches were tested. It was proved, using the
more sophisticated MPI approach, that better computation
times can be achieved. The dependency between hardware
parameters (mainly the cache size) and processing time was
also demonstrated. Besides the CPU approach, the imple-
mentations were optimized for a digital signal processor with
very long instruction word architecture as well. To achieve
an optimal workload of the DSPs involved, a low level pro-
gramming approach had to be applied. The assembly code
of the proposed functions were generated by a new auxiliary
tool, which facilitates the exploitation of general purpose
registers and parallel functional units. New routines were
tested on fixed/floating-point processor C6747 with develop-
ment board OMAP-L137. The achieved results were com-
pared with Texas Instruments function from floating point
DSP library. With the help of C6747, the proposed routines
double the performance of previous functions. Future work
would be focused mainly on the implementation of digital
signal processing algorithms to graphical processing units as
well as to compare with other CPUs, such as Intel quad-core
Xeon e5640.

Acknowledgements
The research leading to these results has received

funding from the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement
no. 230126. Research published in this paper was also fi-
nancially supported by the project CZ.1.07/2.3.00/20.0007
WICOMT of the operational program Education for compet-

RADIOENGINEERING, VOL. 21, NO. 1, APRIL 2012 443

Algorithm Programming language/tool Cycles Remark
DCT, N = 8 C code 233 -o3 optimization
DCT, N = 8 Linear assembly 78 -o3 optimization
DCT, N = 8 Assembly code generator 37 2×, normal order output

Tab. 2. Velocity of real single precision DCT algorithm implementations (TMS320C6747 floating-point DSP, fDS P = 300 MHz).

Algorithm Programming language Computation time [s]
2-D FFT, N = 8 C code 7.08
2-D FFT, N = 8 Linear assembly 1.65
2-D FFT, N = 8 Assembly code generator 0.28
2-D DCT, N = 8 C code 3.05
2-D DCT, N = 8 Linear assembly 1.02
2-D DCT, N = 8 Assembly code generator 0.24

Tab. 3. Computation time for two-dimensional FFT and DCT implementations with varying programming approaches (TMS320C6747 floating-
point DSP, fDS P = 300 MHz, 1 QSXGA color frame: 2,560×2,048 pixels).

itiveness and the described research was performed in labo-
ratories supported by the SIX project; the registration num-
ber CZ.1.05/2.1.00/03.0072, the operational program Re-
search and Development for Innovation.

References

[1] Intel. Intel 22nm Technology. [Online] Cited 2012-03-14.
Available at: http://www.intel.com/content/www/us/en/silicon-
innovations/intel-22nm-technology.html.

[2] MPI Forum. Message Passing Interface Forum. [Online]. Cited
2012-03-14. Available at: http://www.mpi-forum.org/.

[3] Message Parsing Interface Forum. MPI: A Message-Passing Inter-
face standard. The International Journal of Supercomputer Applica-
tions and High Performance Computing, 1994, vol 8.

[4] SNIR, M., OTTO, S., LEDERMAN, S. H., WALKER, D., DON-
GARRA, J. MPI – The Complete Reference. Cambridge (MA, USA):
MIT Press, 1998.

[5] OpenMP. [Online]. Cited 2012-03-14. Available at:
http://openmp.org/wp/.

[6] CHAPMAN, B., JOST, G., VAN DER PAR, R. Using OpenMP –
Portable Shared Memory Parallel Programming. Cambridge (MA,
USA): MIT Press, 2007.

[7] BLAISE, B. OpenMP. [Online]. Cited 2012-03-14. Available at:
https:// computing.llnl.gov/tutorials/openMP/.

[8] FFTW Home Page. [Online]. Cited 2012-03-14. Available at:
http://www.fftw.org/.

[9] Texas Instruments. TMS320C67x DSP Library. [Online]. Cited
2012-03-14. Available at: http://www.ti.com/tool/sprc121.

[10] MathWorks. MATLAB and Simulink for Technical Computing. [On-
line]. Cited 2012-03-14. Available at: http://www.mathworks.com/.

[11] COOLEY, J. W., TUKEY, J. W. An algorithm for the machine calcu-
lation of complex Fourier series. Mathematics of Computation, 1965,
vol. 19, no. 90, p. 297 - 301.

[12] CHU, E., GEORGE, A. Inside the FFT Black Box: Serial and Par-
allel Fast Fourier Transform Algorithms (Computational Mathemat-
ics). Boca Raton (USA): CRC Press, 1999.

[13] DUHAMEL, P., HOLLMANN, H., Split radix FFT algorithm. Elec-
tronics Letters, 1984, vol. 20, no. 1, p. 14 - 16.

[14] RAO, K. R., YIP, P. Discrete Cosine Transform. Algorithms, Advan-
tages, Applications. San Diego (USA): Academic Press, 1990.

[15] ARAI, Y., AGUI, T., NAKAJIMA, M. A fast DCT-SQ scheme for
images. IEICE Transactions (1976–1990), 1988, vol. E71-E, no. 11,
p. 1095 - 1097.

[16] CHEN, W.-H., SMITH, C. H., FRALICK, S. C. A fast computational
algorithm for the discrete cosine transform. IEEE Transactions on
Communications, 1977, vol. 25, no. 9, p. 1004 - 1009.

[17] LOEFFLER, C., LIGHTENBERG, A., MOSCHYTZ, G. Practical
fast 1-D DCT algorithms with 11 multiplications. In International
Conference on Acoustics, Speech and Signal Processing, ICASSP
1989. Glasgow (UK), 1989, vol. 2, p. 988 - 991.

[18] VETTERLI, M. Fast 2-D discrete cosine transform. In International
Conference on Acoustics, Speech and Signal Processing, ICASSP
1985. Tampa (USA), 1985, p. 1538 - 1541.

[19] GONZALEZ, R. C., WINTZ, P. Digital Image Processing. Boston
(USA): Addison Wesley, 1987.

[20] Texas Instruments. OMAP-L137, C6-Integra DSP+ARM
Processor. [Online]. Cited 2012-03-14. Available at:
http://www.ti.com/product/omap-l137.

[21] Texas Instruments. TMS320C674x DSP CPU and In-
struction Set. [Online]. Cited 2012-03-14. Available at:
http://www.ti.com/litv/pdf/sprufe8b.

About Authors. . .

Tomas FRYZA was born in 1977 in Novy Jicin, Czech Re-
public. He received his M.Sc. and Ph.D. degrees in Elec-
trical Engineering from the Faculty of Electrical Engineer-
ing and Communication, Brno University of Technology in
2002 and in 2006, respectively. At present he is an associate
professor at the Department of Radio Electronics, Brno Uni-
versity of Technology. His research interests include dig-
ital and microprocessor techniques, parallel programming,
source code optimization, and digital signal processing. He
has been an IEEE member since 2003.

444 T. FRYZA, J. SVOBODOVA, F. ADAMEC, R. MARSALEK, J. PROKOPEC, OVERVIEW OF PARALLEL PLATFORMS . . .

Jitka SVOBODOVA was born in 1984 in Olomouc, Czech
Republic. She received her M.Sc. degree in Electrical Engi-
neering from the Faculty of Electrical Engineering and Com-
munication, Brno University of Technology in 2009. She is
interested in parallel computing, neural networks and opti-
mization.

Filip ADAMEC was born in 1983 in Celadna, Czech Re-
public. He received his M.Sc. degree in Electrical Engineer-
ing from the Faculty of Electrical Engineering and Commu-
nication, Brno University of Technology in 2008. At present
he is a Ph.D. student at the Department of Radio Electron-
ics, Brno University of Technology. His research interests
include digital and microprocessor techniques, digital hard-
ware design and programming.

Roman MARSALEK was born in 1976 in Brno, Czech Re-
public. He received his M.Sc. in Control and Measurements

in 1999 from Brno University of Technology and the Ph.D.
equivalent degree (Doctorat) in Electronics and Signal Pro-
cessing from Université de Marne la Vallée, France in 2003.
After his habilitation in 2008, he is currently working as an
associate professor at Brno University of Technology. His
research is oriented to signal processing applied to digital
communications, the power amplifier linearization and mul-
ticarrier system communications.

Jan PROKOPEC was born in 1978 in Rychnov nad Knez-
nou, Czech Republic. He graduated at Brno University of
Technology in 2001, where he also received the Ph.D. in
2006. He is currently an assistant professor at Department
of Radio Electronics, Brno University of Technology. His
research interests are mobile communication systems and
parallel programming. He has been an IEEE member since
2003.

