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Abstract. This paper brings a brief overview of the statis-
tical method called Principal Component Analysis (PCA). 
It is used for clutter reduction in detection of hidden ob-
jects, targets hidden behind walls, buried landmines, etc. 
Since the measured data, imaged in time domain, suffer 
from the hyperbolic character of objects’ reflections, the 
utilization of the Synthetic Aperture Radar (SAR) method is 
briefly described. Besides, the basics of PCA as well as its 
calculation from the Singular Value Decomposition are 
presented. The principles of ground and clutter subtraction 
from image are then demonstrated using training data set 
and SAR processed measured data.  
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1. Introduction 
The non-invasive detection of hidden objects (to-

gether with through-wall imaging and buried landmines 
detection) remains a challenge. Unlike metallic targets, 
which are easily detectable by techniques grounded on 
magnetic induction principle, the non-metallic ones are 
very difficult to locate. The ability of correct and precise 
detection of these objects depends primarily on factors that 
are ‘force majeure’ (for instance physical, electric and 
magnetic properties of mine and its surroundings). Apart 
from that, there are variable factors that should be selected 
if reliable results are to be achieved. They embody the used 
transmitted signals, frequency bandwidth, scanning tech-
niques, post-processing and imaging algorithms. Conse-
quently, various techniques derived from different detec-
tion principles have been developed, e.g. for the purposes 
of landmines detection; [1]. 

The electromagnetic-based techniques comprise 
detection methods rested mostly upon variety of radar 
concepts. For most applications, Ground Penetrating Radar 
(GPR) is usually used. Depending on a data processing 
speed and desired quality of final results (2D or 3D 

images), the signals received by GPR can be measured and 
processed in various ways. In order to obtain images with 
high azimuthal (in-line) resolution, the measuring system 
with synthetic aperture (SA) can be employed. It coher-
ently receives and processes the reflected signals and syn-
thetically extends the length of measuring antenna. There 
are many suitable algorithms, such as migration techniques 
(Synthetic Aperture Radar processing, K-F Migration, 
Kirchhoff Migration), de-convolution and image process-
ing techniques; [2], [3].  

For the purposes of this work, the Synthetic Aperture 
Radar (SAR) processing is applied in order to correct the 
shape and position of the target. However, the contrast of 
the investigated target and surroundings is still poor due to 
their similar electromagnetic properties as well as other 
clutter contributions. Clutter represents small unwanted 
reflections caused mainly by rough surface, buried metal, 
rocks, interfering signals, features incurred by SAR proc-
essing, antenna coupling and wall coupling or multiple 
reflections in case of the through-wall imaging. It is quite 
common to imaging radars that most of the transmitted 
energy is reflected back from the first obstruction (wall, 
ground surface etc.). This phenomenon suppresses targets 
visibility in the image. In case of even surfaces, the surface 
reflections can be eliminated by a simple subtracting of the 
mean image from collected data set. In practice, this 
method gives sufficient results only in case of flat and even 
surfaces. Otherwise it is rugged and inhomogeneous, so 
a more efficient method has to be applied. 

As far as the statistical analysis is concerned, the 
Principal Component Analysis method (PCA) has proven 
to be a beneficial technique for image compression as well 
as finding patterns in high-dimensional data, relationship 
among variables, face recognition and in other fields; [4], 
[5]. Thus, PCA has also been previously applied as the 
main image processing tool to landmines detection tech-
niques based on IR, UV and mm-wave sensing; [6], [7]. 
Yet it is the most frequently applied classification method 
for pre-processed GPR data [8] - [10]. Furthermore, PCA 
plays a significant role in the through-wall imaging, owing 
to its feature extraction property; [11], [12]. Contrary to 
that, in this paper, the PCA method is combined with other 
GPR processing method (namely SAR) and the values of 
the target and clutter components are under scrutiny.  
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2. Synthetic Aperture Radar 
Technique 
The SAR represents a measurement technique, where 

the transmitting and receiving antenna, mounted on a plat-
form, is moving along the investigated area and, unlike the 
Real Aperture Radar (RAR), collects a complex of returned 
echo waveforms. The acquired data are then subject to 
processing, while the length of antennas path is mathemati-
cally formed as a huge synthetic aperture and, accordingly, 
the final image shows a better azimuthal resolution. The 
fundamental SAR processing involves a migration tech-
nique that can correct a hyperbolic character of scanned 
objects by means of spatial frequency conversions, map-
ping and interpolation. 

In case of Stepped Frequency Continuous Wave 
(SFCW) measurement, it is possible to describe each 
measured data set for exact antenna positions x and y as 
follows: 
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where ETx is the transmitted signal, ρi denotes the ampli-
tude of reflected wave from i-th scatterer in the distance ri 
from the antenna and k represents the wavenumber. 

For the SFCW radar, the transmitted signal in the fre-
quency domain takes the form of ETx(x,y,f) = 1 and there-
fore, the equation (1) is simplified. The data subsequently 
stated in this form are converted to the domain of spatial 
wavenumbers kx and ky by 2D Fourier transform and final 
solution of the transformation is then: 
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For imaging purposes, the amplitude term stated in front of 
the integral can be neglected; [13]. The aforementioned 
simplified equation is similar to the 3D point spread func-
tion. The correction is performed via mapping function: 

 2224 ykxkkzk  . (3) 

The conversion in question gives rise to a non-uniform 
spacing of unevenly distributed data. As a result, the map-
ping is followed by interpolation back onto the rectangular 
grid. The corrected data are transformed back to the spatial 
domain through the 3D inverse Fourier transform:  
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2.1 Principal Component Analysis (PCA) 

The main goal of the PCA is to express the original 
data set in another domain by means of any appropriate 
linear transformation; [14]. The latter can be defined as: 

 SXY  . (5) 

The original data set X (where rows denote particular 
measurements and columns stand for their data samples) is 
expressed by a new transformed data matrix Y through the 
transformation matrix S. The rows of S represent eigen-
vectors – principal components of X. The question stipu-
lates the desired form of transformed data Y and, conse-
quently, stipulates the transformation matrix that ought to 
be selected. The measured data set can be characterized by 
the Signal-to-Noise Ratio and data redundancy, which 
stands for parts of measured signals correlated to each 
other, i.e. wall reflections, object reflection etc. It leads to 
the evaluation of correlation properties and, therefore, also 
construction of the covariance matrix from input data. In 
this case, PCA finds a set of orthonormal vectors of princi-
pal components (matrix S) describing the distribution of 
original data and transforms them into the new set of 
uncorrelated data. 

The cornerstone prerequisite of PCA technique states 
that the final data Y ought to be mutually uncorrelated. 
Hence the covariance matrix of Y has to be diagonalized, 
so that the appropriate transformation matrix S is found. 
The derivation [15] enables to obtain the principal compo-
nents in the form of eigenvectors of covariance matrix of 
the original data X. 

The covariance matrix consists of the correlation 
characteristics (covariance and variances) existing among 
all pairs of the data set X. The covariance between two 
measurements measures the degree of mutual similarity. 
A large absolute value denotes a high redundancy (or cor-
relation) of respective data. Contrary to that, zero covari-
ance points to completely uncorrelated data. The covari-
ance of one measurement represents, at the same time, its 
variance (diagonal components of covariance matrix). In 
order to construct the covariance matrix from the data set 
X, it is firstly necessary to subtract the mean value from 
each measurement: 
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where xij denotes the j-th data sample of the i-th row (i.e. 
measurement). Each measurement is centered and new data 
set takes the following form: 

  TNxxxX 210  .  (7) 

The covariance matrix can be then expressed as a dot 
product of the centered matrix X0 that is divided by the 
number of data samples: 
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Principal components of PCA method are represented by 
eigenvectors of the covariance matrix C. These can be 
obtained by means of the Singular Value Decomposition 
method (SVD) that allows factorizing the data matrix onto 
its Λ eigenvalues and eigenvectors U and V: 
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The left matrix U represents eigenvectors of the XXT 
matrix, which is in fact identical to the covariance matrix, 
while V embraces eigenvectors of XTX. Accordingly, the 
principal components of the PCA are evaluated in equation 
(10) as the matrix U. Yet apart from the principal compo-
nent, the complete PCA method can be carried out via 
SVD as well by rewriting the equation (5) in the following 
manner: 
 0XUV TT  . (10) 

On the right side, the input data are multiplied by the 
matrix of principal components, so UT ≡ S. Subsequently, 
the left side of (10) represents a transformed input data X0 
with a zero correlation between particular measurements 
(ΛVT ≡ Y). Furthermore, in the PCA the eigenvalues from 
Λ are sorted in descending order. Since each eigenvalue is 
related to a certain eigenvector (principal component), the 
matrix U is reorganized as well. Every eigenvalue repre-
sents a specific amount of variance in measured data and 
thus reflects the importance of particular eigenvector. In 
fact, the eigenvector (belonging to the largest eigenvalue – 
first principal component) contributes decisively, among 
others, to the reconstruction of the original data set, be-
cause it shows the highest correlation. The second principal 
component is correlated with some of the original data that 
are uncorrelated with the first component. Since the matrix 
S of principal components is orthonormal (S-1 = ST), the 
original data are obtained by means of the following trans-
formation: 
 00 XSXSYS  TT . (11) 

Based on the selected components, the required data set 
can be restored only from the selected ones. The recon-
struction applying only to n components {c1, c2,…, cn} is 
expressed by the following equation: 
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Dimension of the reconstructed matrix X
~

 is identical to the 
one of the original matrix X.  

3. Hardware Setup and Measurement 
To obtain the testing data set, the SFCW radar meas-

urement in monostatic configuration was performed. At 
each of its positions, the utilized double ridged horn (DRH) 
antenna transmitted a set of harmonic waves within the 
frequency range from 45 MHz to 26 GHz at 401 frequency 
points. A wooden box filled with dry homogeneous sand 
was selected as a surveyed medium. The data were col-
lected from the area 0.5 meters long and 0.5 meters wide 
with the help of the 2D scanner and Agilent E8364A Vec-

tor Network Analyzer (VNA). The antenna was placed 
150 mm above the sand surface, see Fig. 1. The complex 
parameter Γmeas(f) was collected for imaging purposes. The 
parameter Γmeas(f) is linearly proportional to the ratio of the 
E(x,y,f) to ETX(x,y,f) through the proportional constant 
called Antenna Factor and Transmit Antenna Factor. In 
addition, the own antenna reflection coefficient is addi-
tively included in the measured reflections. It should be 
noted that the antenna reflections are eliminated as a mean 
value using (6). Three different measurements were un-
dertaken. First, a metallic round-shaped target was buried 
approximately 50 mm under the surface and then replaced 
with a plastic anti-personal (AP) mine and measured in two 
different depths (50 and 80 mm). The measurements were 
proposed so that it was possible to obtain three dimensional 
images (C-scans). The collected data were processed and 
computed in MATLAB. 

 
Fig. 1.  Hardware setup for the SAR measurement. 

4. Experimental Results 

4.1 SAR Processing 

The results of SAR technique allow more accurate 
detection and localization of hidden objects. Given the data 
obtained from the GPR measurement, the images recon-
structed from the raw data show, unfortunately, a hyper-
bolic character of detected objects. 

Since the data were collected in the frequency do-
main, the most trivial way to display them is to convert 
them into the time domain through the inverse Fourier 
transform. For easier interpretation, the C-scan is normal-
ized to 1. Only useful reflections were subject to imaging, 
i.e. there was a threshold value equal to 0.029, while the 
data values not reaching it were neglected. The threshold 
value was set experimentally from the 2D cuts of data sets 
obtained from different measurements. The raw C-scan of 
metal object is depicted in Fig. 2. 

Fig. 2 demonstrates a typical hyperbolic character of 
the measured data. Neither the shape nor the position of the 
object can be correctly determined. 

Nevertheless, better results are attained, provided that 
the 3D SAR processing is utilized. As the SAR method 
eliminates the hyperbolic reflection effect, both the shape 
and size of the image are similar to a real object. The situa-
tion is demonstrated in Fig. 3. The threshold value is the 
same as in the first case. 
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Fig. 2. 3D image of raw data of the metallic mine-like object. 

 
Fig. 3. 3D SAR processed image of the metallic mine-like 

object. 

The 3D SAR method represents a time-consuming 
process and is ineligible for real-time processing. In most 
cases, only the 2D imaging is practically used. Accord-
ingly, the 2D SAR processed data were considered for 
clutter reduction. 

4.2 PCA Processing 

Following section 2.1, the PCA can be employed for 
clutter and surface reflection reduction. The crucial contri-
bution of this method consists in its apparent suitability for 
both, subsurface and through-wall survey and detection. 
Prior to the utilization of the PCA, initial issues listed be-
low have to be taken into consideration: 

 The surface of explored area is nearly even and most 
of the energy is reflected right from the surface. The 
given reflection creates the largest contribution to the 
image. It represents the first principal component of 
the PCA. 

 Other considerable part of the image stands for the 
reflection of searched target and, indeed, constitutes 
the second principal component of the PCA method. 

 In ideal case, the other principal components embody 
unimportant ‘noises’, such as weaker reflections from 
smaller objects and other multiple reflections. 

These assumptions are valid only in an ideal case. In 
reality, the surface is non-even. In addition, in the PCA 
domain, not only is the surface reflection represented by 
the first component, but it is also determined by a finite 
number of the most important principal components. The 
reflection from the target is then characterized by another 
or even several components. 

4.2.1 Training Data Set 

To validate the statements mentioned in section 4.2, 
a simple simulation of the metallic target behind a wall was 
carried out in Transient solver of CST Microwave Studio. 
The modeled scenario is depicted in Fig. 4. The metallic 
20 mm thick target with a radius of 40 mm is located 
80 mm behind a 100 mm thick concrete wall. The complex 
data (A-scans) are collected along the 0.5 m long wall from 
the distance of 40 mm. Its dispersive permittivity, appro-
ximated by the first order of Debye model, is 5.5 + 0.11j at 
the frequency 3.1 GHz. The frequency bandwidth was set 
from 1 to 12 GHz. 

 
Fig. 4. CST model of the PEC target behind concrete wall. 

The collected data can be described from the simpli-
fied signal flow graph of the modeled scenario; see Fig. 5. 
The S parameters stand for parameters of the antenna, Γair 
represents the reflection from air, exponential terms denote 
the wave propagation and Γobj includes reflections from the 
wall and target. The measured data are then expressed as 
the total reflection coefficient Γmeas: 
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Since S11 and S22 describe the connector and aperture re-
flections of the antenna, their influence can be removed 
from the data set through the process of time-gating.  

 
Fig. 5. Signal flow graph of the modeled scenario. 

 
Fig. 6. Signal flow graph of transmission scenario. 

Furthermore, Γair can be considered as equal to zero. 
The denominator can be considered as equal to one due to 
its negligible exponential term. In the remaining relation, 
S12S21 describes the antenna transmission parameters and 
the exponential term represents the wave propagation (in 
both directions). To extract the Γobj from this simplified 
equation, the second simulation (concerning only two 
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antennas) was carried out. The separation equals to the dis-
tance between the antenna and metallic target. The signal 
flow graph of this scenario can be seen in Fig. 6.  

From this signal graph, the total transmission coeffi-
cient is computed and simplified as in the first case and, 
given the matched receiver (ΓL = 0) and negligible back-
ward transmission (exponential term), the transmission 
coefficient takes the final form as follows: 

 jkreSS
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.  (14) 

Assuming constant propagation velocities in different 
environments (air, wall), the simulated data Γmeas can be 
corrected by the data described by (14). 

 
Fig. 7. 2D SAR image of the target behind concrete wall. 

 
Fig. 8. Corrected 2D SAR image of the target behind concrete 

wall. 

Raw and corrected data were firstly processed in 
MATLAB by the SAR technique. The results are depicted 
in Fig. 7 and 8. The depth shift of corrected data arises 
from the exponential term of (14). The ripple on both 
images originates from the performed SAR algorithm and 
can be extracted via PCA. As a result, the processed cor-
rected data are converted into the Principal Component 
domain using (10). Given the strength of wall reflections, it 
is presumed that the first component could only restore the 
wall reflection, so the second component corresponds to 
the target. The assumption can be proved exclusively by 
the image restoration from the first two components with 
the help of (12); see Fig. 9. The other smaller components 
are constituted by clutter, noise or reflections of insignifi-

cant importance. The shape of detected object is obviously 
restored better using (13-14). The vertical axis depicts 
time-related samples. Due to the difference between the 
propagation velocities in respective environments (air or 
wall), the axis corresponding to the dimension is dispro-
portional to the time. The boundaries between air and wall 
are highlighted in Fig. 7 and 8 by the red arrow. 

 
Fig. 9. Reflection of the metallic target and its surface recon-

structed by PCA; 1st and 2nd components. 

4.2.2 Measured Data Set 

In the next step, the PCA technique was applied after 
2D SAR processing in three different measurements (from 
Γmeas) using a metallic round-shaped disc and a plastic 
mine. The decomposition is demonstrated only for the case 
of the AP mine measurement. Unlike the raw data, the ones 
processed with SAR are corrected and the hyperbolic 
character of mine reflection is suppressed; see Fig. 10. 
Even if the position of mine is more precise, its contrast 
with surrounding remains poor. 

 
Fig. 10. 2D SAR image of the plastic landmine under surface. 

As the simulated results show, an even surface can be 
expressed only by the first principal component. In case of 
the given measured data (Fig. 10), four most important 
principal components are to be utilized in order to restore 
the surface reflection; see Fig. 11. The reconstructed sur-
face takes almost the same form as in Fig. 10. 

As it was mentioned before, the second largest part of 
the measured data should be embodied in the landmine 
reflection. Accordingly, the next (fifth) component is in-
corporated into its reconstruction process. The rest of com- 
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Fig. 11. PCA reconstruction of the sand surface from 2D SAR; 

first four principal components are used. 

 
Fig. 12. PCA reconstruction of the plastic landmine from 2D 

SAR; fifth principal component is employed. 

 
Fig. 13. Sum of the reconstructed surface and landmine. 

ponents represent the noise, which contributes only mod-
estly to the final image reconstruction. The restored image, 
depicted in Fig. 12, includes mainly the reflection from the 
landmine. The stronger additional reflections situated 
above the main reflection represent the rest of the surface 
and also the largest clutter reflections. The other reflections 
embody merely the rests of another clutter and can be sub-
sequently filtered. Fig. 13 illustrates the combination of 
data depicted in Fig. 11 and 12. In these images, the con-
trast between the mine and surface is improved, so the 
position and depth can be determined more accurately. 

4.2.3 Principal Components Selection 

Every principal component belongs to its given 
eigenvalue. The size of each eigenvalue is related to the 

variance or correlation of the part of the original data 
represented by the appropriate component. In other words, 
the biggest eigenvalue generally creates the most signifi-
cant pattern in the imaged data. Consequently, owing to the 
knowledge of eigenvalues size, the target can be extracted 
from the whole image. Based on the given assumptions and 
results, the target reflection is represented by principal 
components, whose eigenvalues are ten times lower than 
the largest one. The eigenvalues exceeding the threshold 
stand for either the surface or wall backscatter. Clearly, the 
image can be reconstructed by less than 20 out of 300 
components, without losing any important information. 

It should be noted that the threshold amounting to 0.1 
is valid for the presented set of results and similar sce-
narios. It is typical to express the eigenvalues as a percent-
age of the total, so they are normalized to the biggest one. 
The size of the target components varies with the target 
size, reflectivity and, to a certain extent, also with the ratio 
between the target dimensions and overall dimensions of 
the tested area. The results from the metallic target meas-
urement reveal that the reflection of the disc can be 
restored from the fourth and smaller components. In com-
parison, the reflectivity of an AP mine located 8 and 5 cm 
under the surface is smaller, therefore the target can be 
determined from the fifth component (see measurements 2 
and 3 in Fig. 14). 

 
Fig. 14.  Normalized eigenvalues of the measured and simulated 

data. 

5. Conclusions 
In this paper, the relation among SVD, PCA and PCA 

applications in the field of the hidden objects detection was 
presented. The measurements were performed in laboratory 
conditions and the complex reflection parameters were 
collected by means of VNA. Prior to the utilization of PCA 
decomposition, the SAR processing was applied in order to 
correct phases of the acquired datasets. As the SAR 
method enabled to suppress the hyperbolic effect, the target 
shape dimensions were enhanced and the clutter removal 
the PCA subtraction was proposed. Additional enhance-
ment was performed using antenna parameters corrections. 
Besides, in order to prove and verify the functionality and 
given the hypothesis of the PCA, the simulation of the 
metallic target behind a concrete wall was carried out. It 
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was demonstrated that the correlated data could be decom-
posed into a set of uncorrelated components sorted by their 
importance. It turned out that each component carried 
information about the (correlated) patterns in the original 
signal sets (image). Unlike few last components that cre-
ated only a noise and almost/nearly uncorrelated data, the 
most important (and also the first principal) component 
represented the strongest or the most distinct pattern. These 
considerations were confirmed by image restoration with 
only the first two components, where the most important 
one stood for wall reflections and the second one for the 
target reflection. It should be emphasized that this rule 
cannot be generalized (see measurements). 

With respect to the results, the PCA was applied to 
the real SAR processed data. The ground was non-even 
and inhomogeneous and the contrast of the detected target 
was low. It led to the necessity to restore the ground re-
flections from more than one component. As a conse-
quence, the target had to be represented by the next one. 

The target extraction based on the size of data eigen-
values was shown via simulation and three measurements. 
The enhanced image could be restored only from the prin-
cipal component representing the target reflection so that 
its eigenvalue amounted approximately to one tenth of the 
largest one. The larger components denoted the surface 
reflection, whereas the smaller ones represented other 
clutter. 

On the other hand, in practice, it is highly compli-
cated to set up the threshold value and to set correctly both 
the number of principal components creating unwanted 
reflection and components constituting the searched target. 

Acknowledgements 

The research is part of activities of the Department of 
Electromagnetic Field of the Czech Technical University in 
Prague. It was carried out within the research project of the 
Czech Science Foundation No. 102/09/P536. We would 
also like to express gratitude to Iveta Černá for the proof-
reading of the paper. 

References 

[1] MACDONALD, J., LOCKWOOD, J. R. Alternatives for 
Landmine Detection. RAND, Science and Technology Policy 
Institute, 2003. 

[2] DANIELS, D. Ground Penetrating Radar. The Institution of 
Electrical Engineers, London, 2004. 

[3] SCALES, J. A. Theory of Seismic Imaging. Samizdat Press. 
Colorado School of Mines, 1997. 

[4] KIM, K. I., JUNG, K., KIM, H. J. Face recognition using kernel 
Principal Component Analysis. IEEE Signal Processing Letters, 
2002, vol. 9, no. 2. 

[5] ABUJARAD, F. Ground penetrating radar signal processing for 
landmine detection. Ph.D. Thesis. Otto Von Guericke Universität, 
Magdeburg, 2007. 

[6] DU BOSQ, T. W., LOPEZ-ALONSO, M. J., BOREMAN, D. G., 
MUH, D., GRANTHAM, J., DILLERY, D. Millimeter wave 
imaging system for the detection of non-metallic objects. 
Proceedings. of SPIE, 2006, vol. 6217, p 621723-1. 

[7] MIAO, X., AZIMI-SADJADI, R., M., TIAN, B., DUBEY, C., A., 
WITHERSPOON, H., N. Detection of mines and minelike targets 
using principal component and neural-network methods. IEEE 
Transactions on Neural Networks, May 1998, vol. 9, no. 3. 

[8] CHENG, J., MILLER, E. Model-Based Principal Component 
Techniques for Detection of Buried Landmines in Multiframe 
Synthetic Aperture Radar Images. Center for Subsurface Sensing 
and Imaging Systems, Boston. 

[9] ABUJARAD, F., OMAR, S. A. Factor and Principle Component 
Analysis for automatic landmine detection based on ground 
penetrating radar. In German Microwave Conference. Karlsruhe 
(Germany), 2006. 

[10] KARLSEN, B., LARSEN, J., SORENSEN, B. D., H., 
JAKOBSEN, B. K. Comparison of PCA and ICA based clutter 
reduction in GPR systems for anti-personal landmine detection. 
IEEE Signal Proc. Workshop on Statistical Signal Proc., 2001. 

[11] VERMA, K. P., GAIKWAD, N. A., SINGH, D., NIGAM, J. M. 
Analysis of clutter reduction techniques for through wall imaging 
in UWB range. Progress in Electromagnetics Research B., 2009, 
vol. 17, p. 29-48. 

[12] MOBASSERI, G. B., ROSENBAUM, Z. 3D Classification of 
through-the-wall radar images using statistical object models. 
Image Analysis and Interpretation, 2008. 

[13] YIGIT, E., DEMIRCI, S., OYDEMIR, C., KAVAK, A.  
A Synthetic Aperture Radar - based focusing algorithm for B-scan 
ground penetrating radar imagery. Wiley. Microwave and Optical 
Technology Letters, August 2007, vol. 49. 

[14] JACKSON, J. E. A User’s Guide to Principal Components. A 
Wiley-Interscience Publication, 1991. 

[15] SHLENS, J. A Tutorial on Principal Component Analysis. 2th ver. 
Institute for Nonlinear Science. University of California, 2005. 

About Authors... 
Václav KABOUREK was born in 1985. He received his 
M.Sc. degree from the Czech Technical University in 
Prague in 2010. His research interests include UWB com-
munication, RCS measurement, microwave detection of 
non-metallic object, analysis and development of detection 
techniques and signal transformations in MATLAB. 

Petr ČERNÝ was born in 1976. He was awarded his 
M.Sc. and Ph.D. degrees by the Czech Technical Univer-
sity in Prague in 2001 and 2008, respectively. His contem-
porary research activities are focused on high-resolution 
microwave and terahertz spectroscopy, microwave circuits 
and antennas, ultra wideband devices and die bonding. He 
is a member of IEEE and Radioengineering Society. 

Miloš MAZÁNEK was born in 1950. He received his 
M.Sc. and Ph.D. degrees from the Czech Technical Uni-
versity in Prague in 1974 and 1980, respectively. He has 
been a head of the Dept. of Electromagnetic Field since 
1997. He is a senior member of IEEE, head of the Radio-
engineering Society and Radioengineering journal execu-
tive editor. His research interests are aimed at antennas, 
EMC, microwave radiometry and propagation. 


