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Abstract. This paper describes a new and original method
for designing oscillators based on the Normalized Determi-
nant Function (NDF) and Return Relations (RRT ). Firstly,
a review of the loop-gain method will be performed. The
loop-gain method pros, cons and some examples for explor-
ing wrong solutions provided by this method will be shown.
This method produces in some cases wrong solutions be-
cause some necessary conditions have not been fulfilled.
The required necessary conditions to assure a right solution
will be described. The necessity of using the NDF or the
Transpose Return Relations (RRT ), which are related with
the True Loop-Gain, to test the additional conditions will
be demonstrated. To conclude this paper, the steps for os-
cillator design and analysis, using the proposed NDF/RRT
method, will be presented. The loop-gain wrong solutions
will be compared with the NDF/RRT and the accuracy of
this method to estimate the oscillation frequency and QL will
be demonstrated. Some additional examples of plane refer-
ence oscillators (Z/Y /Γ), will be added and they will be an-
alyzed with the new NDF/RRT proposed method, even these
oscillators cannot be analyzed using the classic loop gain
method.

Keywords
Oscillator, Normalized Determinant Function, NDF ,
Stability, Loop-Gain.

1. Introduction
Oscillators are one of the most important elements in

all radiofrequency and microwave systems as for example
the Radar systems [1]. Unfortunately, they have a great in-
convenience, which is being one of the hardest circuits to be
designed because of their inherent non-linear behavior.

Nowadays, linear simulation and its approximation to
the first harmonic are widely used for simplifying the ini-
tial design [2], [3] and for other useful and interesting rea-

sons as estimating some important parameters. For example,
linear simulation requires less computational capacity than
non-linear simulation and the non-linear models are not al-
ways available or accurate enough. Before starting a non-
linear analysis it is usually required to have a good oscilla-
tion frequency and QL approximation, being also advisable
to have, at least, some knowledge of non-linear simulation
and approximations [4] and, in some hard cases, of non lin-
ear solutions stability analysis [5], [6], [7], [8].

As linear simulation requires less computational bur-
den, linear simulation is inherently quicker and easier, more
suitable for circuit parameters tuning and very useful to de-
velopment of new topologies. Linear simulation only re-
quires active device S parameters or a linear model, which
is easier to obtain than the non-linear one. On the other hand
linear simulation, for oscillators design, is only suitable for
oscillation frequency and QL estimation, but it is not suitable
for output power, phase noise (although it can be estimated
from QL value), harmonics level and time domain signal es-
timation. Common methodology consists of a first linear de-
sign and coarse tuning with a final fine optimization using
harmonic balance and transient simulation [9].

Classic linear analysis methods can be classified into
two groups. The first one is called loop-gain [3], [10] and
the second one is referred to as Reference Plane [2], [11],
[12], [13]. This last group includes negative resistance, neg-
ative conductance and reflection coefficient methods. Each
one has its own pros and cons, but the main advantage of
reference plane methods is that they can be directly used for
designing RF and microwave circuits. This advantage be-
comes clearer when circuits including distributed elements
are used. The distributed elements make it really difficult or
even impossible to use the Alechno virtual ground method
[3]. On the other hand, important circuit parameters, such as
gain margin and loaded Q, (directly related to phase noise)
can be obtained directly using Loop-Gain method. The start-
up time can be obtained using loaded Q and gain margin [9],
[10], [14]. It is important to point out that these parameters
are difficult to extract using plane reference methods.
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This paper shows a novel and general application
method based on a “true loop-gain”, term deeply described
in the next section. At the same time, the Loop Gain method
is explained and its problems are analyzed and the condi-
tions for proper use are also defined. Throughout the follow-
ing four sections, the new proposed method is described and
design examples are provided.

2. Previous and Necessary Conditions
for the Proper Use of Loop-Gain
Method.
Any oscillator can be analyzed by means of Z/Y /Γ net-

work functions. They are more accurate to use than general
transfer functions or loop-gain function because they include
all the system poles [15]. These two different ways of view
of an oscillator are drawn in Fig. 1.

Fig. 1. Oscillator analysis: Reference plane method(left bottom)
and Feedback scheme(right bottom).

The use of a plane reference methods depend on be-
ing able to identify the resonator circuit or not. They have
been widely used when the feedback path and the resonator,
as a quadrupole, are difficult to identify. When the feed-
back path is identified, the Loop-Gain is commonly used [9].
Many times, choosing between both only depends on the de-
signer’s preferred design topology or even on his experience
using each method.

The start point for the loop-gain analysis is the general
function of a loopback system (Fig. 1), defined by (1)

X0 (s) =
G(s)

1−G(s) ·H (s)
·Xi(s). (1)

In a real circuit, specially in RF and MW , it is difficult,
or even impossible, to define (1) as an analytical function
in Laplace domain. Designers usually tend to use Nyquist
analysis for oscillator start-up conditions verification [16],
and sometimes, they even use simplifications of the Nyquist

criteria as Barkhausen criteria, although it has much more re-
strictions. Nyquist criteria fixes the oscillation condition by
means of (1−G(s) ·H (s)) zeros location, which in fact, are
loop-back system function poles. The Nyquist criteria uses
the argument principle, so what is really being calculated is
the difference between zeros and poles of (1−G(s) ·H (s))
lying in the Right Half Plane (RHP). For a well-conditioned
start-up condition and achieving a single frequency periodic
solution, the necessary condition is to have only a pair of
complex conjugated poles in the Right Half Plane (RHP).

Loop-gain [10], is based on previous works, mainly in
a feed-back structure stated by Randall and Hock (Fig. 2).
Their work determined the Z parameters network function,
which can be rewritten as an S parameters expression (2),
which became a great success in linear oscillator design

I0

I
=

Z21−Z12

Z11−Z12−Z21 +Z22

=
S22−S11 +2S21−S12S21 +S11S22−1

1+(S12 +S21−S12S21 +S11S22)
.

(2)

Fig. 2. Randall Feed-Back proposed structure.

For the network function (2), poles in the RHP can
be calculated by the frequency response of the denominator,
which is widely known as Characteristic Function (CF) (3).
This equation is useful to show and explain some problems
on the loop-gain analysis.

CF = 1+(S12 +S21−S12S21 +S11S22) . (3)

For a proper use of the Nyquist analysis (frequency re-
sponse) it is imperative to assure that the RHP poles of the
network function (2) only come from CF zeros (3). When
the network function is analysed, it can only be guaranteed
if none of S parameters has poles (visible or hidden [17],
[18], [19]) in the RHP. This lack of poles can only be
demonstrated by using the Normalized Determinant Func-
tion (NDF) as Platzer [17], [18] or Jackson [19] defined to
determinate the stability of a Z0 loaded quadrupole. But, this
specific condition was not envisaged by Randall and Hock
in their work [10].

NDF test is conceptually equivalent to the Rollet pro-
viso in amplifiers design [19], but, in our case, it is used to
assure the open-loop gain stability of the oscillator. Open-
loop stability is necessary before starting a Nyquist analysis
of the CF . This condition is equivalent to K [20] or µ [21]
analysis for amplifiers design.
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Related to the CF use, it is necessary to point out that
the use of Nyquist analysis for CF only determines the ex-
istence of poles in the RHP. Even if it is supposed that the
ℑ(CF) crossover zero is the oscillation frequency (which is
more accurate for high Q poles), as the CF is not a loop gain
it cannot provide information about the gain margin and the
QL. They are necessary parameters to obtain the start-up
time and phase noise estimations of oscillators. Even if CF
is properly used and it predicts rightly the oscillator start-
up condition, this method has an inherent variance of the
solution depending on the opening loop point for the anal-
ysis. The obtained S parameters (that comply the NDF test
function criteria) are functions of the point where the loop is
opened. Even if they have the information about the poles of
the system, the Nyquist analysis of the different CF provide
different traces and different zero crossovers.

This CF problem made Randall and Hock to obtain
a more suitable equation, which is invariant with the open-
ing point of the loop. It is the main advantage compared
with Rhea and Alechno’s work [22], [3]. At a first attempt,
Alechno only used S21 value, subsequently, Alechno rede-
fined and modified the equation [23] to include S11 and S22
influence. The final equation (4), defined by Randall and
Hock work, takes into account all S-parameters influence.
It was obtained by calculating the eigenvalues of an infinite
chain of Z0 loaded quadrupoles [10]

GL =
Z21−Z12

Z11 +Z22−2Z12
=

S21−S12

1−S11S22 +S12S21−2S12
. (4)

Anyway this new open-loop gain also requires, like the
CF expression, to verify some conditions for proper RHP
poles prediction. Even being independent from the opening
point of the loop, it still depends, like the CF expression,
on the position of the virtual ground. This variance will be
clearly shown with examples in Section 4. This variance
modifies oscillation frequency, quality factor and gain mar-
gin results where, obviously, a unique solution should be ob-
tained. The virtual ground position can even cause a false
negative oscillation condition.

In order to define the required additional conditions for
proper loop-gain method use the authors of this paper have
rewritten network function (2) as it is shown in (5)

I0

I
=

(
1−S11S22 +S12S21−2S12−S22 +S11

1−S11S22 +S12S21−2S12

)
(

1−
S21−S12

1−S11S22 +S12S21−2S12

) . (5)

The loop-gain (4) can be identified on the denomina-
tor of (5), which is one minus Randall loop gain. But in
our case it will be possible to obtain a “true loop-gain” as
network function with similarities with a general feedback
system function

Once the general feed-back system function (2) has
been rewritten using GL expression (6), the necessary con-

ditions for guaranteeing the use of GL for oscillator design
can be analysed.

I0

I
=

Z21−Z12

Z11−Z12−Z21 +Z22
=

(
−

GL (S22−S11)

S21−S12
+1

)
(1−GL)

.

(6)

Nyquist analysis of the loop-gain must search for +1
encircling. To assure oscillation stability, it is necessary that
the poles of the system only come from the zeros of (1−GL).
To guarantee that the poles of the system only come from the
zeros of 1−GL it is necessary that:

• GL does not have any poles in the RHP. This condi-
tion is fulfilled if “test function” T F = 1− S11S22 +
S12S21− 2S12 does not have any zero in the RHP; and
S21 and S12 do not have any poles in the RHP. This test
function can be properly analyzed with Nyquist criteria
if none of the S parameters have any poles, hidden or
not, in the RHP. If defined conditions are not satisfied,
the zeros of 1−GL function could be hidden to Nyquist
analysis.

• The numerator in (5) must not have any visible or hid-
den poles in the RHP. It is assured if none of S pa-
rameters of the circuit have any poles in the RHP and
the expression 1−S11S22+S12S21−2S12 does not have
any zeros in the RHP.

In order to verify the previous conditions it is neces-
sary to apply the Normalized Determinant Function (NDF)
criteria to the Z0 loaded quadrupole to guarantee that none
of the S parameters have any pole in the RHP. The next
step is to analyze the Nyquist trace of the GL denominator,
to assure that it does not have any zeros in the RHP. After
checking these requisites the analysis of GL can be used to
determine the existence of poles of the I0/I function. The os-
cillation frequency predicted by the Nyquist analysis of GL
is only accuracy for poles with high Q. But it is important
to remember that the multiple virtual ground possibilities of
the circuit provides different solutions of frequency, QL and
gain margin, as it will be shown in Section 4. The common
used approximation of S11 ≈ S22 ≈ S12 ≈ 0 presents similar
issues as the described ones.

The necessary conditions to guarantee the proper anal-
ysis of the oscillation condition have been described. It is
possible to extend these considerations to the first harmonic
approximation. The conditions of the characteristic equa-
tion for oscillation stability and minimum phase noise are
summarized in Tab. 1, where GT = 1−GL = 1−Gosc ·Gres.
These conditions have been obtained directly from those de-
scribed for oscillators analyzed by the reference plane [15],
[11] as their characteristic equations are formally the same
one.

In Tab. 1, GL is divided into two terms: active part
Gosc, and resonator term Gres. The A variable is the am-
plitude, usually the incident wave for S parameters,ω is the
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frequency; A0 and ω0 are the amplitude and the frequency
at the oscillation condition. But even it has an attractive for-
mal aspect, it is important to remember that this is only an
approximation to the first harmonic. The approximation is
more accurate when A0 is purer, in other words, when the
resonator has a higher Q and the compression is lower.

Equations in Tab. 1, also suppose that Gosc has a small
variation with the frequency. This condition is easy to fulfill
if active and passive elements are properly isolated, but in
fact, it is difficult to achieve in a real circuit.

Parameter Definition

Characteristic
Equation

GT (A,ω) =− 1
Gosc (A)

+Gres (ω) = 0

Oscillation
Condition

GT (A0,ω0) =−
1

Gosc (A0)
+Gres (ω0) = 0

Stability 1
Gosc(A)

with Gres (ω)

cross into a clockwise angle from 0 to π

Minimum 1
Gosc(A)

with Gres (ω)

noise cross into a π

2 clockwise angle

Tab. 1. Loop Gain Oscillation Conditions.

3. Proposed Method Based on
NDF/RRT

One of the most important conclusions that were ob-
tained in Section 2 is that it is required to use the NDF before
performing the GL analysis. On the same way, this conclu-
sion can be applied to plane reference methods, like negative
conductance, negative resistance and refection coefficient, as
authors stated in [15]. There is only one way to assure that
Yosc, Zosc, and Γosc do not have any hidden or visible poles
in the RHP. This is to use NDF to analyse the active sub-
circuit network loaded with a short-circuit for Yosc, with an
open circuit for Zosc or with Z0 for Γosc. This guarantee-
ing method was explained by the authors in [15] taking [17],
[18], [19], [25] as references. At this point, the proper ques-
tion would be “Why not use the NDF for oscillator design?”.
This question is the starting point for this section, where the
NDF /RRT method is described pointing out its advantages
over the reference plane and loop-gain methods.

NDF (7) was proposed by Platzer [17], [18] to verify
the Rollet proviso. They proposed a practical and rigorous
method for an N-port network stability analysis. NDF is de-
fined as the quotient between the network determinant and
the normalized network determinant. This last one is ob-
tained by disabling active devices,

NDF =
4(s)
40 (s)

. (7)

Properties of this function have been deeply described
by Platzer [18], pointing that it is suitable to assure if a net-
work function has any poles in the RHP. A clockwise

Nyquist NDF trace encircling of the origin indicates the ex-
istence of a pole (a complex pair of poles) in the RHP. The
NDF has unity as upper boundary so it is easy to determine
the maximum frequency to be analysed.

Return Relations (RRi) were defined by Bode [26].
Platzer [17] describes its use to calculate the NDF as

NDF =
n

∏
i=0

(RRi +1) . (8)

The RRi term is the Return Relation for the i-depending
generator while previous i− 1 have been disabled. The ac-
tive devices must be replaced with linear models as the one
shown in Fig. 3. So, as it was explained before, it is neces-
sary to have a linear model of the transistor, if it is not avail-
able, it can be extracted by simulation from the non-linear
[19] or S parameters one.

Fig. 3. Lineal BJT Model.

Redrawing linear equivalent circuit of the oscillator to
have access to the terminal of the depending generator, and
all other components including transistor parasites in the
passive feedback sub-circuit, it is possible to calculate RR
and so, NDF (Fig. 4).

NDF used as design function does not need any addi-
tional calculus or supposition for determining the oscillation
frequency of the first harmonic approximation (Kurokawa
approximation). It provides direct information about the
RHP poles of the system, which should only be a pair of
complex poles to achieve a proper oscillating start-up and
stability condition. The oscillation frequency is obtained
without requiring the compression of the transistors, the QL
and gain margin of the oscillator is obtained without any am-
biguity. This unambiguous result is achieved thanks to using
the RR, which is the only proper way to consider an oscilla-
tor as a feedback system by isolating the active element from
the rest of the circuit. It should be pointed out that, as it is
presented in Fig. 4, the loop gain can be related to RR as

True Loop Gain = RRT =−RR = RRosc ·RRres
= gm ·H (ω) .

(9)

Using (9) and Tab. 1 it is possible to redefine the con-
ditions for oscillation start-up, oscillation stability and min-
imum phase noise. These conditions for RRT have been de-
fined in Tab. 2 following an analogous process as it was done
for GL. The RRT is divided into its active device contribution
RRosc = gm, which is function of the depending generator,
and its passive contribution RRres = H (ω), which includes
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all passive elements and transistor parasitics. In Tab. 2, V is
the control variable of the depending generator, ω is the fre-
quency; and V0 and ω0 are respectively the voltage at oscil-
lation condition and the oscillation frequency. It is important
to point out that this solution is the first harmonic approxi-
mation, so it will be more accurate when V becomes a purer
tone. The tone is purer when the resonator has a higher Q and
the gain margin is smaller. Also, it is supposed that RRosc is
invariant with the frequency invariant. It is absolutely true
because RRosc only depends on the transconductance of the
transistor.

Fig. 4. Oscillator Model. As feedback system for RR extraction.

Parameter Definition

Characteristic 1−RRT (V,ω) =− 1
RRosc (V )

+RRres (ω) = ...

Equation ... =− 1
gm (V )

+H (ω) = 0

Oscillation 1−RRT (V0,ω0) =−
1

RRosc (V0)
+RRres (ω0) = ...

Condition ...=− 1
gm (V0)

+H (ω0) = 0

1/RRosc(V ) with RRres (ω)
Stability cross into a clockwise angle from 0 to π

Minimum 1/RRosc(V ) with RRres (ω)
noise cross into a π/2 clockwise angle

Tab. 2. NDF/RRT Oscillation Conditions.

4. Practical Examples
An oscillator circuit without specific ground reference

is the base circuit used in this section. Different virtual
ground points can be defined for this basic circuit using
Alechno [24]. Some resulting possibilities of this exam-
ple are the well-known classic topologies: common col-
lector (also named Colpitts), common emitter (also named
Pierce) and common base. Using virtual ground concept, it is
demonstrated that there is a unique oscillator topology and,
as it will be explained throughout this example, NDF /RRT
is the best tool to analyze it.

The circuit in Fig. 5 is an oscillator without ground ref-
erence. It uses as active device a BFR360F transistor biased
with IC = 10 mA and VCE = 3 V. AWR software has been
used for all the simulations shown in this paper. The circuits
in Figs. 6, 7 and 8 include the parasitics of the package of all
devices. These figures show classic topologies obtained by

using virtual ground theorem. It should be pointed out that
these figures have been already drawn with open-loop point
to be used for GL and CF analysis.

C

B

E

1

2

3Cr=1pF Cb=2pF

Lr=16nH Ce=4pF

Cl=1pF

Rl=50

BFR360F

Fig. 5. General oscillator model without ground reference.
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(c)
Fig. 6. a) Common emitter oscillator. b) Pierce classic topology.

c) Common emitter oscillator opened for GL analysis.
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(a)
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Lr=16nH Ce=4pF Cl=1pF

Rl=50

BFR360F

P1 P2

(b)
Fig. 7. Common collector oscillator. a) Colpitts classic topol-

ogy. b) Opened for GL analysis.

Obviously the three “topologies” must have the same
oscillation frequency, gain margin and quality factor (QL).
As first step, Randall and Hock GL is going to be used to
analyze all the obtained circuits topologies, specifically with
the circuits on Fig. 6(c), Fig. 7(b) and Fig. 8(c).

The open-loop analysis, Fig. 9, predicts that only the
common emitter topology will oscillate, but “How can it be
possible if the three schematics represent the same circuit?”.
The problem appears due to the Nyquist analysis of GL ex-
pression is not valid for common collector and common base
topologies. In these two cases the denominators of GL have
two hidden zeros which make Nyquist analysis not to encir-
cle +1.

It is interesting to point out that the GL analysis of the
common collector circuit does not cross the positive real axis
with a real part greater than the unit. So, it does not comply
with the Barkhausen criteria, and from a traditional point of
view, it will not oscillate. Meanwhile, common base circuit
complies the Barkhausen criteria at two different frequen-
cies, 1467 MHz and 3927 MHz. The first one crosses from
a positive to a negative phase, but the second one crosses
from a negative to a positive phase. This example can be
considered as complementary to Nguyen examples [16], but
+1 is not encircled.
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Rl=50

BFR360F
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Ce=4pF

Cl=1pF Rl=50

BFR360F

(b)

C
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23

Cr=1pF

Cb=2pF

Lr=16nH

Ce=4pF

Cl=1pF Rl=50

BFR360F

P1 P2

(c)
Fig. 8. a) Common base oscillator. b) Classic topology. c) Com-

mon base oscillator opened for GL analysis.

Fig. 9. GL Nyquist plot for common emitter, common collector
and common base.
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Fig. 10. NDF Nyquist plot of Z0 loaded circuits.

Fig. 11. “Test Function” Nyquist plots.

In Section 2, the required conditions for a proper GL
oscillator analysis were defined. The conditions for an S
parameter analysis were the Nyquist NDF analysis of the
open-loop quadrupole loaded with Z0 and the Nyquist verifi-
cation of “test function” (1−S11S22 +S12S21−2S12). None
of these function analyses can have any zeros in the RHP.

Fig. 10 shows the Nyquist NDF plots of Fig. 6(c),
Fig. 7(b) and Fig. 8(c) quadrupoles loaded with the char-
acteristic impedance Z0. The nyquist plots confirm that all
the circuits are stable when they are loaded with Z0 because
none of the NDF plots encircle the origin.

At the same time, Fig. 11 shows the Nyquist plots of
the three “test functions” showing that the common collec-
tor and the common base plots encircle the origin. These two
“test functions” have a pair of zeros in the RHP, so it is not
possible to use GL expression to analyze them as oscillators.

Another possibility is to use the CF (3) to analyze the
oscillator instead of using the GL. In this case, only the first
condition of the GL case (NDF) is required. It has been pre-
viously verified that none of the proposed topologies have
any zeros in the RHP, so the CF analysis should provide
correct solutions. Fig. 12 shows the CF Nyquist plots of

Fig. 12. CF Nyquist plot of Z0 loaded circuits.

Fig. 13. NDF Nyquist plot for the three circuit topologies.

the three circuits. The obvious advantage of requiring only
the first condition (NDF) is not such a big advantage because
CF function has a strong dependence with the selected open-
loop point and with the virtual ground position. Meanwhile,
although GL has no dependence with the open-loop point, it
has dependence with the virtual ground position.

On the other hand, the NDF , or the RRT , analysis has
a unique solution for the three schematics, Fig. 13. As all
the NDF analyses are identical and they predict a unique
complex pair of poles in the RHP, so the required condition
for proper oscillation is satisfied. Although the AWR com-
mercial simulation software is used and it already has the
NDF function, it is possible to calculate RR with any simu-
lator. The RRT is usually calculated, it is −RR and “the true
loop gain”. All the simulations presented in this paper do not
use AWR NDF function, they have been solved using Platzer
definition, Fig. 4.

The second example is a similar oscillator scheme that
has additional resistors for circuit biasing. Now that the bias
circuit is included, it is possible to use the transistor non lin-
ear model (Fig. 14). As in the previous example, the base
circuit has no ground reference point and it is redrawn as the
three classic topologies using the virtual ground concept.
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Fig. 14. Biased general oscillator without ground reference.

Fig. 15. Biased common collector oscillator.
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Fig. 16. Biased oscillator as common emitter.
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Fig. 17. Biased oscillator as common base.

Figs. 15, 16 and 17 respectively show the three com-
mon topologies: common collector, common base and com-
mon emitter. Common collector oscillator, also named Col-
pitts or Clapp, is usually analyzed with the negative resis-
tance method or the reflection coefficient method, as it is
shown in Fig. 15. For an effective demonstration of the three
schematics are the same circuit, the Harmonic Balance anal-
ysis (HB) and Time Domain analysis(T D) are used to obtain
the signal spectrum and the phase noise.

Fig. 18 shows the time domain responses and spectra
of the three different oscillator configurations. As it can be
checked, the time domain responses and spectra are the same
for the three circuits.

(a)

(b)
Fig. 18. Time(HB) and Spectrum of the CC, CE and CB models.

The phase noise of the common emitter and the com-
mon base circuits are identical, Fig. 19. The phase noise
of the common collector is nearly identical,but it differs at
noise floor. This small difference must be caused by numer-
ical errors, maybe because of Jacobian matrix conditioning
[27].

Fig. 19. Phase noise of the CC, CE and CB models.



486 J. L. JIMÉNEZ, V. GONZÁLEZ, A. PARRA, L. E. GARCÍA, D. SEGOVIA, COMMENTS AND REMARKS OVER CLASSIC LINEAR. . .

A transient time simulation has been performed using
a DC linear ramp source from 0 V to 5 V on 5 ns as transient
generator signal. Start-up transients and steady state signals
are shown in Fig. 20. They are identical for the three cir-
cuits. With all these simulations and results it can be assured
that the three circuits are the same.

(a)

(b)

Fig. 20. Transient time (a) and steady state signal (b) of the CC,
CE and CB models.

Now, the three circuits are analyzed using CF , the
GL and the RRT expressions. The open-loop circuits from
Figs. 15, 16 and 17 used for CF and GL analysis are shown
in Figs. 21, 22 and 23 respectively. It has been added a high
value inductance in series, for biasing the circuit, and two
high value capacitors for DC-block. In this way, the S param-
eters, needed for CF and GL calculus, have been extracted by
simulation.

The first step is to check the necessary conditions be-
fore starting a CF or GL analysis. The NDF Nyquist plots
of the quadrupoles loaded with Z0 = 50 must not clockwise
encircle the origin. Fig. 24(a) shows that none of the NDF
encircle the origin, so the three schematics are suitable for
CF analysis. But for the GL, it is necessary a second con-
dition to check, it is the “test function” Nyquist plot. Plots
of these three “test functions” are shown in Fig. 24(b). The
“test functions” of the common emitter and common collec-
tor circuits do not encircle the origin, so these two circuits
are suitable for GL analysis. But, the common base one is
not suitable to be analysed by GL because the “test function”
Nyquist plot encircles the origin, so GL analysis of this cir-
cuit will provide wrong results.
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3

Cr1=1pF Cb=2pF

Lr=3nH

Ce=4pF

Cl=1pF

BFR360F
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Rc=42

Re=157Cr2=3pF

Vcc=5

Cc=100pF
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Cp=1e5pF Cp=1e5pF

P1 P2

Fig. 21. Circuits for CF and GL analysis common collector.
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Fig. 22. Circuits for CF and GL analysis common emitter.
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Fig. 23. Circuits for CF and GL analysis common base.

CF expressions of all three circuits have been simu-
lated and they are presented in Fig. 25. The CF plots pre-
dict proper start-up condition for all circuits, but each circuit
present a different gain margin. Common base gain margin
has an important difference with the other two ones. This
fact demonstrates that CF solution is a function of the vir-
tual ground location.

It is also possible to define the open loop loaded quality
factor (QL) as

QL =−ω

2
· d

dω
Arg(F (ω)) =− f

2
· d

d f
Arg(F ( f )) . (10)
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QL is a function of the speed of the phase variation with
the frequency [9] and it also has dependence of the selected
function F(f) to be analysed. In our examples, this definition
can be applied to CF , GL, RRT or NDF , although it is only
suitable for being used with RRT . Fig. 26 shows the QL re-
sults using the CF function. Significant differences between
circuits can be observed, but these differences cannot exist
because they are all really the same circuit.

(a)

(b)
Fig. 24. Three circuits: a) Zo = 50 loaded NDF Nyquist plot.

b) Test function Nyquist plot.

Fig. 25. CF of the three circuit models.

Fig. 26. Oscillator models QL obtained from its CF.

To sum up, CF properly predicts oscillation condition
for three topologies of the oscillator of this example, but the
obtained gain margin and QL are not unique. All of these
point us that this method is not a suitable option for design-
ing.

It seems to be that GL is a better option than CF , be-
cause GL has no dependence with the open-loop point. But,
it is important to point that GL has dependence with the
virtual ground position. The GL Nyquist plots of the three
topologies are shown in Fig. 27. These plots predict oscilla-
tion for the common collector and common emitter circuits,
but not for the common base one.

The GL Nyquist plot of the common base circuit has
two crosses with the real positive axis, but it does not clock-
wise encircle the +1, then it does not comply with Randall
and Hock oscillation condition. Although common emitter
and common collector predict similar oscillation frequen-
cies, the gain margin and QL values have a significant dif-
ference, Fig. 28. When Randall start-up time approximation
(11) is used with the data from Fig. 28 and 29 different re-
sults will be obtained. The same difference appears when QL
is used to estimate the phase noise using Lesson’s model,

tr ≈
38.2 ·QL

ω0 ·G0dB
. (11)

But, NDF and RRT Nyquist plots are identical for the
three circuits, as it is shown in Fig. 29. This way the QL
factors are also identical, Fig. 30, and then the start-up time
and phase noise estimation are also identical.

All the CF and GL previous analysis are small signal
analysis. gm must be compressed to apply the first harmonic
analysis approximation. When gm value is compressed to
make the complex zeros (poles of the network function) to
locate over the imaginary axis, the Nyquist plots of GL and
CF will cross over +1, as shown in Fig. 31. In this case CF
and GL crossing frequencies match the NDF and RRT one.
But, even with the compressed gm the QL factors, Fig 32, are
still different.
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(a)

(b)
Fig. 27. GL of the three circuit models. a) full view. b) detailed

view.

Fig. 28. Oscillator models QL obtained from its GL.

Fig. 29. RRT of the three circuit models.

Fig. 30. Oscillator models QL obtained from its NDF/RRT .

(a)

(b)
Fig. 31. CF(a) and GL(b) Nyquist plots of the gm compressed

circuit models.

gm is only a scale factor of RRT and NDF , so the cross-
ing frequency (oscillation frequency) and the QL factor of the
RRT model does not depend on gm. NDF and RRT provide
directly the first harmonic approximation solution. And QL
factor is also a good approximation of the real phase noise
of the oscillator, Fig. 19. The frequency at which the phase
noise is 3 dB above the noise floor is 10 MHz. According
to Lesson model[9] the QL is 75, it is quite similar to 64,
NDF /RRT result.

The third example is shown in Fig. 33. It represents
a typical negative conductance oscillator with base induc-
tive feedback. The selected active device is BFR380F biased
with IC = 40 mA and VCE = 5 V. This oscillator topology is
usually analyzed with negative conductance method and not
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with open loop gain one, because the base-emitter capacitor
is included into the feedback path. But, however it is pos-
sible to analyze it using the NDF or RRT method. These
methods provide the first harmonic approximation, the gain
margin, the QL factor and the start-up time, which are not
possible to obtain when the negative conductance method
is used. The NDF and QL of this example are shown in
Fig. 34.

The spectrum, oscillation frequency and phase noise of
the negative conductance oscillator have been calculated us-
ing HB, and they are shown in Figs. 35a) and 35b).

The NDF /RRT oscillation frequency is 1314 MHz,
which is very close to the HB result, 1346 MHz. And, the
NDF /RRT QL is 39, while the obtained one using the HB
phase noise is 29.

(a)

(b)
Fig. 32. Oscillator gm compressed models QL obtained from its

CF(a) and GL(b).

Fig. 33. Negative conductance oscillator.

(a)

(b)

Fig. 34. Negative conductance oscillator: a) NDF. b) QL.

(a)

(b)

Fig. 35. Negative conductance oscillator: a) Spectrum. b) Phase
Noise (dBc/Hz).
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5. Conclusions
This paper has reviewed the classic open-loop-gain

method for oscillators analysis and design. It has been
shown, through examples, that it is not suitable for all
topologies and the obtained solutions in some cases are
wrong if previous conditions are not fulfilled. These required
conditions have also been defined and explained through-
out this paper. To use Characteristic Function (CF) of the
system, it is required to apply the NDF analysis in order
to verify if the transfer function is suitable for being ana-
lyzed, otherwise the obtained results may be wrong. On the
other hand, the widely used Randall and Hock open-loop-
gain method does not only need the NDF analysis but it
also needs an additional “test function” to assure proper re-
sults. It has also been pointed out that both methods, CF
and open loop-gain, provide different solutions for the same
circuit when the Alechno virtual ground theorem is used.

The NDF method provides information about the RHP
poles of the network without requiring any additional ap-
proximation or verification. A good-conditioned oscillator
must only have a pair of conjugated poles in the RHP. This
article presents the NDF expression as a direct method for
oscillators design and analysis. It has been demonstrated that
the NDF solutions are independent of the virtual ground lo-
cation, while they depend on the position for the CF and
open loop gain methods. This NDF independence is based
on its relation with the Return Relations (and RRT ), as they
provide the “true open-loop-gain”.

The authors of this article propose the RRT method
as an accurate and direct technique for linear oscillator de-
sign, which provides the first harmonic approximation (as
Kurokawa defined) without requiring transistor compres-
sion. This method is suitable for calculating the real QL
factor of the circuit. The RRT technique is also suitable to
apply the loop-gain concept to any oscillator topologies that
were not previously analyzed in this way, but they were anal-
ysed by reference plane methods, like negative conductance
and negative resistance. Also an example of RRT analysis
has been provided for a negative conductance oscillator. To
sum up, the NDF /RRT method is stated as an optimum tool
for the necessary quasi-lineal oscillator analysis before using
the HB or T D techniques to obtain a complete and correct
solution.
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Ángel del Casar Tenorio and Dr. Álvaro Blanco del Campo
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