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Abstract. In this paper indoor localization system based on 
the RF power measurements of the Received Signal 
Strength (RSS) in WLAN environment is presented. Today, 
the most viable solution for localization is the RSS finger-
printing based approach, where in order to establish 
a relationship between RSS values and location, different 
machine learning approaches are used. The advantage of 
this approach based on WLAN technology is that it does 
not need new infrastructure (it reuses already and widely 
deployed equipment), and the RSS measurement is part of 
the normal operating mode of wireless equipment. We 
derive the Cramér-Rao Lower Bound (CRLB) of local-
ization accuracy for RSS measurements. In analysis of the 
bound we give insight in localization performance and 
deployment issues of a localization system, which could 
help designing an efficient localization system. To compare 
different machine learning approaches we developed 
a localization system based on an artificial neural network, 
k-nearest neighbors, probabilistic method based on the 
Gaussian kernel and the histogram method. We tested the 
developed system in real world WLAN indoor environment, 
where realistic RSS measurements were collected. Experi-
mental comparison of the results has been investigated and 
average location estimation error of around 2 meters was 
obtained.  
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1. Introduction 
Localization using radio signals was first introduced 

in the World War II to locate soldiers in emergency 
situations. During the war in Vietnam the Global Position-
ing System (GPS) was introduced and became available for 
commercial applications in the 90s of the last century. 
Although it is the most popular positioning system for open 
outdoor environments, there is an unmet need for a reliable 
positioning system that can work indoors, where the 
microwave radio signals used by the GPS are greatly 
attenuated [1], [2], [3]. 

Accurate indoor localization is an important and novel 
emerging technology [1]. There are numerous important 
applications in industrial, commercial, public safety, every-
day life and military settings [4]. In commercial appli-
cations for residential and nursing homes there is an 
increasing need for indoor localization systems to track 
people with special needs, the elderly, and children who are 
away from visual supervision, to navigate the blind, to 
locate in-demand portable equipment in hospitals, and to 
find specific items in warehouses. In public safety and 
military applications, indoor localization systems are need-
ed to track inmates in prisons and navigate policemen, fire 
fighters, and soldiers to complete their missions inside 
buildings [1]. 

The ability of an accurate location determination leads 
to substantial context aware computing [5] and a great 
number of useful Location Based Services (LBS). Exam-
ples of such applications include asset tracking, context 
aware computing, pervasive computing, wireless access 
security, mobile advertising [6], and various personal 
robotics applications [7].  

As new mobile technology comprising highly 
sophisticated devices as smartphones or notebooks expe-
riences a massive growth these days, context defined by 
location of the mobile devices grows in importance. Total 
LBS service revenue in the EU is estimated to exceed $8.3 
billion by 2013 (with dominant part of advertising) [2]. 
Today, many practical applications exploiting the location 
of people are available. For example, Google offers a ser-
vice called Latitude which shows the position of the user 
on Google Map [8], another example is the feature Places 
of Facebook, where the features of the social networks are 
consolidated with the actual position of the users [9].  

To determine the location of the users within the net-
work it is preferable to employ the existing wireless com-
munications infrastructure. In indoor areas, the wireless 
communications infrastructure is primarily based on the 
wireless local area networks (WLANs), in particular the 
IEEE 802.11 standard. Our focus here thus lies on the 
experimental results with an IEEE 802.11g WLAN. 

In this article we propose a user location deter-
mination system in indoor environment based on the RF 
power measurements and the RSS fingerprinting. In 
Section 2, we discuss the various wireless positioning tech-
niques used in indoor environments. Section 3 describes 
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the location determination technique based on fingerprint-
ing. In section 4, the Cramér-Rao Lower Bound (CRLB) of 
localization accuracy for RSS measurements is derived. 
Section 5 describes the measurement setup of the devel-
oped positioning systems and the localization results 
obtained by an artificial neural network, k-nearest 
neighbors, probabilistic method based on the Gaussian 
kernel and the histogram method. We close this paper with 
a conclusion in Section 6. 

2. Indoor Wireless Positioning 
Techniques 
The main elements of the wireless positioning system 

are a number of location sensing devices that measure 
metrics related to the relative position of a mobile terminal 
(MT) with respect to a known reference point (RP), and 
a positioning algorithm that processes metrics reported by 
location sensing elements to estimate the location co-
ordinates of MT. The location metrics may indicate the 
approximate arrival direction of the signal or the approx-
imate distance between the MT and RP. As the meas-
urements of metrics become less reliable, the complexity of 
the position algorithm increases [3]. 

The angle of arrival (AOA) is the common metric 
used in direction-based systems, where additional hardware 
is needed in order to measure the angle of incidence of the 
received signal [10]. The received signal strength (RSS) 
methods use the signal propagation models in estimation of 
distance of transmitter and receiver [11], [12]. Time of 
arrival (TOA) [13], and time difference of arrival (TDOA) 
of the received signal are the metrics used for estimation of 
distance between transmitter and receiver, both require 
precise clock synchronization and expensive infrastructure 
[14], [15]. In indoor environments where conditions of 
signal propagation are severe (multipath, non-line of sight 
(NLOS) signal propagation path between the transmitter 
and receiver), the traditional parametric positioning 
techniques (RSS, AOA, TOA, TDOA) or their com-
binations (TDOA with AOA or RSS) fail to provide 
adequate location accuracy. For these techniques, all the 
paths used for triangulation must have a line of sight (LOS) 
to ensure an acceptable accuracy, a condition that is not 
always met in an indoor environment. Positioning based on 
the received signals’ fingerprint performs better in such an 
environment when appropriate signatures and pattern-
matching algorithms are used [16], [17], [18]. The basic 
operation of a pattern recognition positioning algorithm is 
simple. Each indoor environment has unique signal propa-
gation characteristics; each spot in a building would have 
a unique signature in terms of RSS, TOA, and/or AOA, 
observed from different sensors in the building. A pattern 
recognition system determines the unique pattern features 
(i.e., the location signature) of the area of interest in 
a training process, and then this knowledge is used to 
develop rules for recognition.  

Broadly speaking, positioning techniques can be 
classified into two groups: device-oriented – where the 

location is principally determined by measurements of 
signals emitted from the infrastructure and received by the 
mobile device, network-oriented – where the location is 
principally determined by measurement of signals emitted 
from the mobile device and received by sensors within the 
network infrastructure [19].  

Device-oriented approach imposes greater hardware 
and processing requirements on the mobile device than 
does the network oriented approach. The biggest advantage 
is that it allows a mobile device to control the exposure of 
its location information since the location is determined by 
the mobile device and not by the infrastructure. The GPS is 
the most popular and well-known device-oriented location 
determination system but is limited only to outdoor usage. 

Cricket Location Support System [15] uses a com-
bination of RF and ultrasound technologies to track the 
location of mobile objects in an indoor environment. In the 
Cricket infrastructure, it is the individual mobile device, 
rather than a centralized server in the network that is 
responsible for computing its own location using infor-
mation gleaned from beacons emitted by wall or ceiling 
transmitters. As an additional feature, Cricket is also 
designed to provide orientation information. Significant 
advantage of this system is its accuracy, it can accurately 
delineate 4x4 square feet regions within a room. However, 
the use of ultrasound requires a great deal of infrastructure 
in order to be highly effective and accurate, and the costs 
make it inaccessible to most users. 

RADAR [18] is a device-oriented RF-based system 
for locating and tracking users inside buildings. The system 
requires each mobile wireless device to physically measure 
the received signal strength of beacons emitted by multiple 
802.11 access points at receiver location to estimate the 
user’s coordinates. The system has three access points or 
fixed stations and covers the entire zone of interest. A pat-
tern-matching algorithm, which consists of the nearest 
neighbor(s) in signal space, is used to estimate the user’s 
location. Experiments with RADAR indicated ~3 m reso-
lution accuracy at the 50th percentile.  

Nibble [20] provides a probabilistic estimation of the 
location coordinates by incorporating a Bayesian model for 
predicting the likely origin of 802.11 signal based on the 
signal quality observed at multiple access points. It relies 
on a fusion service to infer the location of an object from 
measured signal strengths. Data are characterized 
probabilistically and input into the fusion service. The 
output of the fusion service is a probability distribution 
over a random variable that represents some context. 

In contrast to the device-centric technologies, 
network-oriented approaches require relatively less 
sophisticated equipment on the mobile device, since the 
device merely needs to generate appropriate beacons or 
pulses. In many cases (e.g., the technologies based on 
Active (RFID) tags), the mobile device does not directly 
generate the beacons, but simply relays back appropriately 
modulated “echoes” of beacons transmitted by the infra-
structure nodes. 
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Active Badge [21] was one of the first indoor location 
systems. Each active badge is associated with a unique 
identity (ID), which is broadcast as part of the IR beacons 
emitted by the badge worn by a user. The Active Badge 
infrastructure consists of a group of Badge readers (sen-
sors) that are deployed in various locations in the smart 
environment. The location of a particular active badge 
(mobile user) is associated with the sensor that currently 
reports reading from the badge. Active Badge technology 
does not use any correlation technique (such as tri-
angulation) to further refine the location of a specific 
badge. The system also requires significant installation and 
maintenance costs and performs poorly in the presence of 
direct sunlight, which is likely to be a problem in rooms 
with windows. 

The Active Bat [22] technology was developed as 
a follow-on to the Active Badge system to obtain higher-
resolution location information, since the properties of 
infrared signals imply that an active badge can be tracked 
at the granularity of individual rooms by identifying the 
unique sensor that is currently receiving beacons from the 
badge. In contrast to active badges, active bats employ 
ultrasonic (sound waves) technology. Each active bat 
essentially emits short ultrasonic beacons (pulses), which 
are then captured at multiple (a minimum of three) 
receivers or sensors mounted at well-defined reference 
locations on the ceiling. By accurately synchronizing the 
clocks between the sensors and an active bat and measuring 
the time of flight of the ultrasonic signal, each receiving 
sensor can compute the distance between itself and the bat 
being tracked. Experiments [23] with the Active Bat 
system indicate that the trilateration techniques, which may 
also exploit additional statistical techniques and reflection 
elimination algorithms to filter out spurious measurements, 
can provide readings with an accuracy of ~5 – 10 cm in 
95 % of cases. However, the performance is influenced by 
the reflection and obstacles between tags and receivers. 
Also, deploying a large number of sensors on the ceiling in 
each room is a time-consuming and costly task. 

The LANDMARC (Location Identification Based on 
Dynamic Active RFID Calibration) prototype [24] is a lo-
calization system that employs Active RFID tags. It 
deploys a group of Active RFID readers over the smart 
environment with partial overlap between the coverage 
area of different readers, governed by the power levels 
associated with each reader. LANDMARC system uses 
a set of RT reference tags (called landmarks) in a manner 
similar to RADAR’s use of reference locations. The 
LANDMARC readers receive updates not only from the 
tag being tracked, but also from this set of static reference 
tags, whose location is well known. The actual estimated 
location is computed as a weighted sum of the location of 
the k-nearest landmark tags. Experimental results demon-
strate that the maximum location estimation error using this 
technique is around 1 – 2 m. The accuracy of 
LANDMARC, however, depends on the appropriate 
a priori positioning of the reference tags; determining 
 

a good set of locations for a group of RT reference tags is 
still an open problem. 

We base our work on the localization of users in the 
widely available IEEE 802.11 WLAN network, e.g. RF 
networks offer a significant advantage over IR networks in 
terms of range, scalability, deployment and maintenance. 
Radio waves can travel through walls and human bodies 
easier, thus the positioning system has a larger coverage 
area and needs less hardware comparing to other systems. 
Unlike RFID technology, WLAN technology has been im-
plemented in public areas such as hospitals, train stations, 
universities, etc. WLAN-based positioning systems reuse 
the existing WLAN infrastructures in indoor environments, 
which lowers the cost of indoor positioning. Also, a person 
already carries possible positioning devices around with 
them in their daily life such as smart phones, laptops and 
tablets with WLAN interface. The RSS indicator can be 
easily read in every 802.11 interface which makes the solu-
tion cost effective since only software deployment is re-
quired. 

Another important aspect of any positioning 
technology is the support for privacy. Since we implement 
a device-oriented approach with WLAN passive scanning, 
privacy can be guaranteed. Advantages of passive scanning 
are its low power consumption, because no communication 
is required, and the fact that the user's privacy is com-
pletely preserved since his existence is not even revealed. 
Therefore the wireless user can determine its position but 
remain private if desired. 

Generally, the accuracy of localization systems is af-
fected by various elements in indoor environments such as 
movement and orientation of human body, walls, doors, 
etc. Although radio waves can travel through walls and 
human bodies (unlike the other technologies), these issues 
still significantly affect the performance. In the WLAN en-
vironment, there is also an issue of possible interference 
with other APs or other RF sources in the same band. One 
may think that the RSSs from two APs operating in the 
same channel might interfere with each other. However, 
results in [25] as calculated by the correlation indicate that 
both RSSs are independent and do not interfere with the 
reception of each other. This is due to the way in which the 
802.11 MAC operates where a transmission is either not 
heard or is deferred if a competing transmission exists. 
Disadvantage of an RF based approach is that the RSS 
values are highly susceptible to multipath effects, and the 
signal strength cannot be easily expressed with some 
propagation model. To deal with this issue, fingerprinting 
approach can be applied to construct the radio map of 
entire area. However, significant changes in the environ-
ment, such as moving furniture or large equipment, could 
require a reconstruction of the fingerprint database. 

Having the major advantage of exploiting already 
existing 802.11 network infrastructures, currently the most 
viable solution for RSS-based indoor positioning is the 
fingerprinting architecture [26], [27], [28] [29], [30]. 
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3. Location Determination Based on 
Fingerprinting 
A location fingerprint based on RF characteristics 

such as RSS is the basis for representing a unique position 
or location. It is created under the assumption that each 
position or location inside a building has a unique RF 
signature. The process is composed of two phases: a phase 
of data collection called off-line phase and a phase of 
locating a user in real-time (Fig. 1). The first phase consists 
of recording a set of RSS fingerprints in a database as 
a function of the user’s location covering the entire zone of 
interest and using this data as input and as the target of 
pattern matching algorithm. During the second phase, 
a RSS fingerprint is measured by a receiver and applied on 
pattern-matching algorithm to obtain location. 

 

Fig. 1. Location determination based on RSS fingerprints. 

Pattern matching algorithms can be classified into 
deterministic and probabilistic types based on the 
approaches that model the relationship between location 
fingerprints and location. The deterministic types of 
algorithms are those that are based on the nearest neighbor 
classifiers and the neural network classifiers. The 
probabilistic types of algorithms are those that are based on 
the statistical learning theory. Several localization systems 
using the fingerprinting technique have been recently 
deployed in outdoor and indoor environments. The main 
differences between these systems are the types of 
fingerprint information and pattern matching algorithms 
[18], [29], [31].  

3.1 Artificial Neural Network  

A trained artificial neural network can perform 
complex tasks such as classification, optimization, control 
and function approximation [32], [33]. Artificial neural 
network (ANN) can be used to establish a relationship 
between pattern of RSS samples and location. The pattern-
matching algorithm of the system can be viewed as a func-
tion approximation problem consisting of a nonlinear map-
ping from a set of input variables (RSS from N access 
points) into two output variables representing the two di-
mensional location (x, y) of the mobile station.  

An ANN is consisting of processing units which 
communicate by sending signals to each other over a large 
number of weighted connections. The total input to unit k is 

simply the weighted sum of the separate outputs from each 
of the connected units plus a bias or offset term θk: 

 ( ) ( ) ( ) ( )k jk j k
j

s t w t y t t  . (1) 

Generally, for activation function yk some sort of 
threshold function is used: a hard limiting threshold func-
tion (a sgn function), or a linear or semi-linear function, or 
hyperbolic tangent function. One of the most popular 
ANNs is the MultiLayer Percepton (MLP). It is a feed-
forward layered structure. Each layer consists of units 
which receive inputs from units from layer directly below 
and send their output to units in a layer directly above. 
There are no connections within a layer. Back-propagation 
learning rule is used for finding the optimal weights.  

3.2 Distance based Approach 

Deterministic distance based approach requires a set 
of constant location fingerprints from N access points 
which include mean vector and standard deviation vector. 
Let fingerprint Fi (labeled with a location information Li) 
be an RSS vector on ith referent location measured during 
the off-line phase and F denotes RSS vector on unknown 
location measured during the on-line phase. In order to 
determine the location, a form of discriminant function is 
commonly used to classify a sample of RSS fingerprints 
into a location [34]. Location L can be estimated based on 
the distance measurements in signal space. Some of the 
distance metrics are given in Tab. 1.  
 
 

Name L  
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1

1
( )

N
p p

p i
i

L F F
N 
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Modified 
p-distance 

1

1

1 1
( )

N
p p

mp i
i i

L F F
N w

   

Mahalanobis 
distance 

1( ) ( )T
M i iL F F F F    

Tab. 1. Distance in signal space. 
 

Location estimation is obtained from the training examples 
whose observation vector has a minimal distance when 
compared with test observation. 

The simplest distance is for p = 1, it is a Manhattan 
distance in which the sum of the absolute differences of 
signal is computed.  

If p = 2 it is an Euclidian distance, a well-known 
distance metric used for classifying the positions [18], [35]. 
Modified p distance is a weighted distance, where wi are 
weighting factors (wi<1) that can promote or demote some 
RSS component in a fingerprint.  If all weights are equal, it 
is a k-nearest neighbor method, and for k=1 is simply 
a nearest neighbor method. K-nearest neighbor is based on 
the assumption that the averaging may yield to an estimate 
that is closer to the user’s true location than any individual 
neighbor. 
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Mahalanobis distance is based on correlations be-
tween location fingerprints, where  is the covariance 
matrix for the location fingerprint. If RSS values from 
different APs are assumed to be mutually independent then 
the covariance matrix becomes a diagonal matrix [36]. 

3.3 Probabilistic Approach 

Probabilistic approach is based on the empirical 
model that describes the distribution of received signal 
power at various locations. Let L denote location and F 
denote an observation variable or vector in the same area A. 
We assume that the observation variable is a vector of 
received signal strength values for a set of access points. 
The training data D consists of n examples, denoted by  
(Li, Fi). Let p( ) denote all probability distributions for 
either discrete or continuous variables. For the location 
estimation problem different models that estimate the 
probability distribution of the observation variable can be 
used. Simply applying the Bayes rule, we can then obtain 
the so-called posterior distribution of the location:  

 
( ) ( ) ( ) ( )

( )
( ) ( ) ( )i i

i L

p F L p L p F L p L
p L F

p F p F L p L


 
  


 (2) 

Where p(F|L) is the likelihood function, the prior distri-
bution p(L) is the prior probability of being at location L 
before knowing the value of the observation variable, p(F) 
doesn’t depend on location variable L, and can be seen as 
a normalizing constant, and the summation goes over the 
set of possible locations. The prior distribution p(L) gives 
an ability to incorporate background information such as 
personal user profiles.  

There are several approaches for computing 
likelihood p(F|L) [34]. Some of them are given in Tab. 2.  
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Tab. 2. Likelihood for location L. 
 

Estimation of the likelihood function is obtained from 
the measurements of received signal strengths at each 
location. In case of the missing RSS values from some 
access points at some location, special heuristic for han-
dling the missing data is required, but the simplest way is 
to replace the missing values with a constant smaller than 
any of the measured RSS values [37].  

4. Theoretical Analysis on Lower 
Bound of Location Estimation Error  
Since nowadays WLAN infrastructure, besides 

providing data communication, is currently the most 
promising approach for localization systems, during net-
work deployment both coverage and localization 
requirements should be taken into account. Impact of some 
parameters (such number of APs, geometry of deployed 
APs, etc.) can be investigated through the properties of the 
lower bound on location estimation error. Performance of 
the RSS based localization system can be theoretically 
expressed by the Cramér-Rao Lower Bound [38]. For the 
theoretical propagation model we can derive lower bound 
on the variance of location estimation error for any un-
biased estimator defined by CRLB. Basic estimation 
problem for n observations X1 = x1, X2 = x2, …, Xn = xn is to 
define the "best" estimator for unknown parameter   on 
which these observations are dependent. Precisely, basic 
estimation assumption is that the joint probability density 
function of X1, X2,…,Xn given by fX(x1, x2, …, xn, ) 
depends on the unknown parameter . Since all infor-
mation is contained in the observations and the cor-
responding probability density function (PDF), estimation 
accuracy will be directly dependent of that PDF. Thus it is 
unlikely to expect that the parameter can be accurately 
estimated if the PDF is weakly, or in extreme case, not 
dependent on that parameter. Generally, the more depend-
ent the PDF is on the unknown parameter, the better it can 
be estimated. 

Let ˆ( )X  denote the estimator for  . Obviously 
ˆ( )X is a function of only the observations. In ideal case 

the estimate ˆ( )X  would coincide with the unknown 
parameter  . This may not be possible, and the estimation 
will almost always result in an error given by ˆ( ) .e X    
Generally, the estimator has to minimize that error. The 
Cramér-Rao Lower Bound theorem defines the lower 
bound on the variance estimation error, where the variance 
of any unbiased estimator ̂  

 
must satisfy the lower bound 

 
2

1 2
2

1ˆvar( ) ,
ln ( , , , ; )
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 (3) 

It is assumed that the probability density function (PDF) 
satisfies regularity condition 

1 2ln ( , , , ; )
0X nf x x x

E



    


 for all  .  

Expression in the denominator of the inequality denotes 
Fisher information ( )J   for data X 

 
2

1 2
2

ln ( , , , ; )
( )

 
X nf x x x

J E





 
    


. (4) 

In order to investigate the theoretical lower bound on 
variance estimation error of the RSS based localization 
system CRLB has been derived as follows.  
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Received signal strength is generally a random 
variable and a shadowing model is often used for de-
scribing the propagation of signal strength [39] 

 0
0

( ) ( ) 10 log( ) sh

d
P d P d n X

d
    (5) 

where P(d) in dBm denotes path loss at distances d, d0 is a 
reference distance, n is the path-loss exponent which 
indicates the rate at which path loss increases with distance 
and shX  is a log-Gaussian distributed random variable with 

standard deviation  in dBm which describes losses due to 
random shadowing effects. 

 
Received signal strength can be described as a proba-

bility density function 
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where 2 2( ) ( )i id x x y y    , (xi,yi) are the coordinates 

of i-th access point and (x,y) are the coordinates of a mobile 
terminal. For N access points we have a joint probability 
density function 

 

2

0
0

2

ln ( ) ( ) 10 log

2

1

1
( ; )

2 ( )

i
i

d
P d P d n

dN

i i

f P e
P d




 
   

 



 . (7) 

If ˆ ˆ ˆ( , )Tx y  is a location estimate of ( , )Tx y   then the 
variance of location estimation is 

                      1ˆ( ) ( ) ,Var J    (8) 

where  
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It can be derived that 
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from which follows the lower bound on the variance of 
location estimation  
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From (11) it is evident that the CRLB depends on the 

 number of access points N, 

 geometry of access points  (xi,yi), 

 geometry of mobile terminal (x,y), 

 propagation model parameters σ and n. 

In order to investigate the influence of the number and 
geometry of access points on performance of a localization 
system, simulation has been made. In Fig. 2, the CRLB for 
a case of four APs placed on the edges of the square area is 
shown. 3D and 2D plots of the lower bound on the variance 
are given in the left and right panels, respectively. It can be 
seen that the variance is smaller in the center of the area 
while rapidly grows towards the edges.  

 
Fig. 2. Lower bound on variance of location estimation. 

It can be shown that the optimal geometry occurs 
when APs are placed on the vertices of a regular polygon 
[40]. First, we analyzed the arrangement of four APs on 
vertices of squares of different sizes. Test has been made 
for 10 different arrangements, from A1 which denotes the 
arrangement of APs on the edges of the biggest square to 
A10 for the smallest square. Fig. 3 shows the 2D plots of 
the CRLB for the arrangements A1, A4, A7 and A10. 

 
Fig. 3. Lower bound on the variance of estimation for 

different arrangement of four Aps. 

For each of these arrangements of four APs, the 
variance in the center c  and the mean variance   have 
been calculated and shown below each figure. It can be 
seen that mean value of the variance is decreasing and after 
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the arrangement A6 begins to increase. It can be explained 
by the fact that the area inside the polygon has much lower 
variance than the area outside. With the approaching of 
APs to the center, variance in the center gets smaller with 
each arrangement, but the space inside the polygon also 
gets smaller, and on average the variance increases. It is 
illustrated in Fig. 4, where the mean value of the variance 
for the whole area and the variance value in the center are 
shown. 
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Fig. 4.  Influence of the arrangement of four APs on the 

variance in the center and the mean variance. 

We have also analyzed the influence of a different 
number of APs placed on the vertices of a regular polygon 
starting from triangle, square, pentagon, etc. In Fig. 5, 
2D representations of the lower bound on the variance for 
3, 4, 5 and 6 APs arrangement on vertices of regular 
polygons are given. Generally, all APs are arranged on the 
same circle for fair comparison (circle is denoted with 
dashed green line). For each of these arrangements, the 
variance in the center c and the mean variance   have 
been calculated and shown below each plot. In Fig. 6, the 
mean value of the variance for the whole area and the 
variance value in the center are shown. 

 
Fig. 5.  Lower bound on the variance of estimation for 

different regular polygon arrangements of APs. 
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Fig. 6. Influence of different arrangements of APs on the 

variance in the center and the mean variance. 

From the calculated values of the variances in the 
center and the mean variance values it can be seen that both 
of them become lower with the increasing number of APs. 
Obviously, it is better to have a greater number of APs, but 
after some point improvement becomes less significant.  

5. Empirical Results  
Our developed positioning system is based on the 

WLAN using IEEE 802.11 standard in six storey building. 
Measurements were made in the part of the fourth floor, 
dimensions of approximately 28m×15m, total area 420m2. 
Area includes 4 offices, 3 laboratories, a classroom and 
a hallway. The layout of the floor and locations of the APs 
are shown in Fig. 7.  

 
Fig. 7. The test location layout with positions of the access 

points. 

We used three Access Points (AP) WRT54GS from 
Linksys which are IEEE 802.11b/g compatible. For 
collection of the RSS samples from APs we used a Fujitsu-
Siemens laptop with the Network Stumbler software [41]. 
The WLAN Proxim Orinoco card was plugged into the 
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PCMCIA slot on the right side of the laptop. To collect the 
RSS samples, the laptop was placed on the box ap-
proximately one-meter high.  

The radio frequency channels of IEEE 802.11b/g are 
in the 2.4 GHz band which is shared by other equipment in 
the industrial, scientific, and medical (ISM) band such as 
the Bluetooth. The number of non-overlapping channels for 
802.11b/g is three [42]. The radio channels we used for 
each AP are channel 1, 6, and 11, respectively, as can be 
seen in Fig. 8. 

 
Fig 8. Graphical representation of 802.11 channels in 2.4 

GHz band [43.] 

We observed that the RSS values reported by the 
WLAN card were an average value over a sampling period 
and in integral steps of 1 dBm. The received signal 
sensitivity of the WLAN card also limits the range of the 
RSS to be between -94 dBm and 0 dBm. Nevertheless, the 
highest typical value of the measured RSS was 
approximately -15 dBm (WLAN card near the AP 
antenna). The measurement was done by sampling the RSS 
data every one second. The vector of RSS data at each 
location forms the location fingerprint with RSS elements 
in the vector. The locations of APs on this floor are labeled 
as AP1, AP2 and AP3.  

Locations in terms of coordinates for the 
measurement of RSS have been chosen and stored together 
with three measurements of RSS values for given location. 
Total number of measurements was 125, 110 for training 
and 15 for testing. Collecting enough statistics for creating 
location fingerprints is the key to achieving good per-
formance with any indoor positioning system. The duration 
of data collection in the literature is different due to the 
sampling period. For instance, RADAR [18] used a 0.25-
second sampling period. The sampling period is limited by 
either the software or the hardware. The software limits 
depend on how often a device driver can be accessed and 
how often the BSSID scan list is updated. Some wireless 
cards have the capability to scan for APs' signal in the 
background [44]. The hardware limits depend on how the 
vendor implements the scanning cycle and the amount of 
the channel dwelling time. 

The RSS sampling period in our measurement was 
one second, with 400 samples per location. Measurement 
locations were not forming the regular grid due to office 
and laboratory equipment, inaccessible areas, etc. In Fig. 9, 
RSS values from three APs are shown at one measurement 
location. It can be seen that the measured signal strength at 
a fixed position varies over time and the variations can be 
up to 10 dBm. 

In Fig. 10, 2D propagation of the signal strength of 
AP1 is plotted. Colors denote signal strength, blue presents 

the weakest signal and red the strongest signal. For AP1 
signal strength is from -86.4 dBm to -45.8 dBm. 
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Fig. 9. RRS values from three AP. 

 
Fig. 10. 2D propagation of the signal strength of AP1. 

Location fingerprint presents a vector of RSS values 
at each location from all APs. Since we used three APs, 
location fingerprints can be visualized on 3D graph where 
on coordinate axes the RSS values of each AP are labeled, 
as can be seen in Fig. 11. Fingerprints of four locations are 
shown with red, green, blue and magenta circles (green and 
red belong to two close locations – 1.93m). It can be seen 
that patterns of the same location are grouped together as 
a cluster and concentrate around average value. Fig. 11 
indicates that the RSS patterns can be separated by some 
pattern matching algorithm (artificial neural network, 
nearest neighbor, probabilistic approach). 
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Fig. 11. Location fingerprinting. 
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The first method we applied was the Multi-Layer-
Perceptron (MLP) feed-forward artificial neural network 
(Fig. 12) consisting of three inputs (received RSS from 
three APs), outputs with two neurons (corresponding to 
location of a user (x,y) and one hidden layer with different 
number of neurons. 

 
Fig. 12. MLP neural network. 

From the 125 measured data, 100 patterns have been 
employed to train the network, 10 for the validation pur-
pose and the remaining 15 non-training patterns have been 
applied to the network for testing the proposed location 
system. In order to train the network, these patterns have 
been applied to the pattern-matching neural network 
together with location coordinates. Criterion for stopping of 
the network training was chosen as a moment after which 
the performance of validation set terminated to enhance. 
Fig. 13 shows train, test and validation performance. 
Iteration at which the validation performance reached 
a minimum is denoted with green circle. 
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Fig. 13. Train, test and validation performance. 

During the training, we experimented with several 
topologies with a different number of hidden layers, but the 
results were quite similar. Experimenting with a number of 
hidden layer neurons, we found that 20 neurons are ade-
quate to achieve minimal mean distance test error. 

Second method we used was the k-nearest neighbors. 
It has been shown that the maximum improvement can be 
obtained for k = 2-4, for larger k accuracy degrades rapidly 
because points far removed from the true location also are 
included in the averaging procedure, thereby corrupting the 
estimate [18]. Thus we used three nearest neighbors in our 
positioning system.  

In this work we also used the statistical approach. In 
the statistical approach, to determine the position it is 
necessary to know the probability distribution for each 
training location. Probability distribution can be expressed 
with the histogram or can be approximated by the Gaussian 
kernel with the appropriate mean value and the variance. In 
this work we used both approaches, the histogram based 
and the Gaussian kernel based approach. As a performance 
metric of developed systems, we used the Euclidian 
distance between the estimated and true location. 

The results of positioning accuracy for all four meth-
ods are given in Tab. 3 (mean error, 50 percentile error and 
95 percentile error) in meters for location determination 
based on the Multi-Layer-Perceptron (MLP), three nearest 
neighbors (3NN),  statistical approach based on the 
histogram (HIST) and statistical approach based on the 
Gaussian kernel (GAUSS). 
 

Location Estimation Errors 

Method 
mean±   

variance 
50 % 95 % 

MLP 2.35 ± 1.62 2.23 6.38 

3NN 2.79 ± 1.19 3.29 5.41 

HIST 4.14 ± 3.56 2.82 9.76 

GAUSS 2.05 ± 0.98 2.20 7.83 
 

Tab. 3. Location Estimation Errors (mean, 50 and 95 percen-
tiles in meters). 

Positioning accuracy indicated by the cumulative 
percentage of localization error is plotted in Fig. 15. 
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Fig. 14. Accuracy comparison. 

It can be seen that all four methods performed well in 
our experiments, with the probabilistic method based on 
the Gaussian kernel leading with slightly lower localization 
error of around 2 m on average. Finally, our experimental 
results demonstrate that practical applications based on 
these location estimation methods are quite feasible. 

In comparison with other positioning systems (some 
of them briefly described in Section 2), one should consider 
the accuracy of the systems as well as their costs/ 
complexities. Furthermore, the accuracy cannot be directly 
compared since the measurement areas are completely 
different in terms of size and complexity (some systems are 
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tested only in hallways, others in highly complex areas). 
Our system is deployed in 420 m2 area with 4 offices, 
3 laboratories (with various electronic equipment and 
telephone exchange along the wall in one lab), classroom 
and hallway. Also, a different number of APs are used 
which also affects the performance. E.g. RADAR 
experiments [18] (measured only in hallways) indicate 
~3 m resolution accuracy at the 50th percentile, 
LANDMARC experiments [24] (in the small 40 m2 area) 
demonstrate that the location error is around 1-2 m. On the 
other hand, ultrasonic ActiveBat system [22] achieves less 
than 10 cm location errors, but as discussed in Section 2, 
this type of positioning system requires costly infra-
structure. The advantage of our approach based on WLAN 
technology is that it does not need new infrastructure (it 
reuses already and widely deployed equipment), and the 
RSS measurement is part of the normal operating mode of 
wireless equipment (RSS indicator can easily be read in 
every 802.11 interface) which makes the solution cost 
effective since only software deployment is required. 

6. Conclusion 
In this paper, we studied the WLAN user location 

estimation problem in the machine learning framework. We 
derived the CRLB of localization accuracy for RSS meas-
urements. We investigated the influence of geometry and 
quantity of APs on this bound of localization error. In the 
experimental part of this work, four different machine 
learning approaches were considered: two non-probabilistic 
methods – k-nearest neighbor method and artificial neural 
network and two probabilistic approaches – one based on 
the Gaussian kernel and one based on the histogram. We 
compared the performance of the four developed position-
ing systems and obtained quite similar results, with the 
probabilistic method based on the Gaussian kernel leading 
with slightly lower localization error of around 2 m on 
average. The results showed that practical applications for 
location based services based on this type of machine 
learning approaches are quite feasible, especially consider-
ing the fact that they can be deployed on existing wireless 
communications infrastructure. 
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