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Abstract. In this paper, design of linear phase second order 
recursive digital integrators and differentiators is dis-
cussed. New second order digital integrators have been 
designed by using Genetic Algorithm (GA) optimization 
method. Thereafter, by modifying the transfer function of 
these integrators appropriately, new digital differentiators 
have been obtained. The proposed digital integrators and 
differentiators accurately approximate the ideal ones and 
have linear phase response over almost entire Nyquist 
frequency range. The proposed operators also outperform 
the existing operators in terms of both magnitude and 
phase response. 
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1. Introduction 
The frequency response of an ideal digital integrator 

is 1/jω and that of differentiator is jω, where j= 1  and ω 
is the angular frequency in radians.  

Al-Alaoui [1] has proposed interpolation method to 
design digital integrator. This interpolation method has 
become very popular. Papamarkos-Chamzas [2] has used 
linear programming optimization method to propose the 
design of digital integrators. Hsu-Wang-Yu [3] has de-
signed integrators by using genetic algorithm method. Ngo 
[4] has used Newton-Cotes integration method to design 
digital integrators. Tseng-Lee [5] has used fractional delay 
to design digital integrators. Gupta-Jain-Kumar (GJK) [6- 
8] have also proposed digital integrators by using interpo-
lation method. Al-Alaoui [9] has also designed a family of 
digital integrators and differentiators by using interpolation 
and simulated annealing optimization method. Varshney-
Gupta-Visweswaran [10] have also used interpolation 
method to design new digital differentiator, they then de-
signed half order digital integrator and differentiator by 
using it. 

Recently, pole-zero optimization method has been 
used by Upadhyay-Singh (US) [11] for the design of 
integrator and differentiator with absolute relative error 
(ARE) ≤ 0.48% over 0 ≤ ω ≤ 0.94π radians. The maximum 
phase deviation of the US [11] differentiator is 24.5o from 
the ideal linear phase response and integrator has nearly 
linear phase response for almost entire Nyquist frequency 
range except near ω = 0 radians.  

In this paper, Genetic Algorithm optimization method 
[12-13] is used to design the proposed digital integrators. 
Digital differentiators have been designed by modifying the 
transfer function of the proposed integrators by using the 
approach described in [14]. The proposed (integrator-I and 
differentiator-I) and (integrator-II and differentiator-II) 
have absolute relative error (ARE) ≤ 0.20% over  
0 ≤ ω ≤ 0.80π radians and 0.30% over 0 ≤ ω ≤ 0.95 π 
radians, respectively. It has also been shown in results that 
proposed integrators and differentiators have almost linear 
phase response for the entire Nyquist frequency range 
including ω = 0 radians.  

These proposed second order digital integrators and 
differentiators can be used in almost all engineering disci-
plines including control, communications, biomedical, 
radar and signal processing applications [15–20]. 

This paper is organized as follows. Section 2 presents 
the brief about genetic algorithm. Section 3 describes the 
designing of integrators using GA and designing of differ-
entiators by using the transfer function of designed inte-
grators. In Section 4 comparisons of the designed integra-
tors and differentiators with the existing ones are carried 
out.  The conclusions are given in Section 5.  

2. Use of GA in Design of Digital 
Integrators 
The flow chart of Genetic algorithms (GA) optimiza-

tion method [12-13] is shown in Fig. 1. First of all a second 
order transfer function is assumed as an integrator, then 
absolute relative error of this integrator with respect to 
ideal integrator is defined as a fitness function. Initial val-
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ues of coefficients were decided. A set of possible solutions 
(individuals) is generated randomly from within a pre-de-
fined range, they are represented as binary strings. 

 
Fig. 1. Flow chart of Genetic Algorithm (GA) optimization 

method.   

Then fitness function is applied on them and on the 
basis of their performance a fitness value is given to each 
individual. The reproduction operator is used to privilege 
good individuals and remove bad ones. The population size 
has been kept constant while creating new population. 

Two individuals are selected on the basis of their 
fitness value (higher fitness value has higher chance for 
selection). These individuals are known as parents. In the 
next step, crossover and mutation processes has been 
applied over parents to form new individuals (children). 

The main idea of crossover is that the children should 
be better than their parents. Crossover can be classified as 
one-point, two-point and uniform crossover. Here, one 
point crossover is used on parents to generate children. For 
this, a point is chosen which is known as crossover point 
and the segments to the right of this point are exchanged.  

Let us have two parents solution as 

 x1=111010111000111 and x2=101110110011001 

The crossover point is chosen between bit 8 and 9 
(leftmost bit is assumed as bit 1). 

x1=11101011¦1000111 and x2=10111011¦0011001 

Then, their children are 

y1=111010110011001 and y2=101110111000111 

The crossover is always defined with crossover rate 
(RC). Population size defines the number of individuals in 
one generation. If the population size is small, then GA has 
fewer possibilities to perform crossover and only a small 
part of search space can be explored. On the other hand, if 
the population size is large, then GA slows down. Let the 
population size be N, that means there are N individuals in 
each generation. In each generation N*RC individuals will 
perform crossover. If the crossover probability is high, then 
children will quickly add to the population. If the crossover 
probability is too high then high-performance individuals 
will be discarded very quickly before selection can produce 
improvements and if the crossover probability is low than it 
may stagnate the search due to loss of exploration power. 
In mutation a few randomly chosen bits of a chromosome 
will switch from 1 to 0 or from 0 to 1. Mutation process is 
used in GA to avoid local optimization. For example, lets 
x1=100010101011011 and the mutational bit is bit 7, then 
the child is y1=100010001011011. Mutation is also defined 
with mutation rate (RM), which is a probability by which 
each bit position of each individual in the intermediate 
population undergoes a random change. If L is the length of 
the chromosome then RM*N*L number of mutations will 
occur per generation. If mutation probability is too high 
then GA will become a random search. 

Crossover and mutation processes are repeated until 
maximum number of generations has reached. During the 
entire algorithm, the all time best solution is stored and 
returned at the end of algorithm.  

3. Design of Digital Integrators and 
Differentiators  

3.1 Design of Digital Integrators  

When dealing with an integrator and differentiator not 
only the amplitude but also the phase information is im-
portant. However, obtaining the efficient amplitude and 
phase response of any integrator or differentiator is diffi-
cult. Therefore, a very strong research effort is focused on 
the design of new digital integrator and differentiator with 
efficient frequency (both magnitude and phase) response. 
Here, classical binary encoding Genetic Algorithm has 
been implemented in design of digital integrators.  

First of all, a recursive second order transfer function 
with unknown coefficients is considered as a digital inte-
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grator whose coefficients have to be optimized using GA.  
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The set of possible solutions (individuals) forms the 
population, which is evolved by means of the selection, 
crossover and mutation operators. Each individual (chro-
mosome) consists of 20 bits. Here 50 generations with the 
population size of 20 individuals have been used, therefore, 
the maximum number of fitness evaluation per iteration is 
1000. In order to create a new generation of individuals, 
crossover and mutation operators have to be applied. In 
each generation, the individuals are decoded and evaluated 
according to a fitness function. Here, absolute relative error 
(ARE) of the integrator I(z) as compared to ideal one is 
taken as a fitness function. It is defined as:  
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where, Iint(ω) is the transfer function of ideal digital inte-
grator (defined earlier) and I(e

jωT) is calculated by replacing 
z by ejωT in (1). Here sampling period of the filter T is as-
sumed as 1 second in the frequency plots and the Nyquist 
frequency is   radians/ sample. 

Initially, the coefficients are assumed as a1= +0.0001, 
a2= +0.0001, a3= +0.0001, b1= +0.0001 and b1= +0.0001.  

Crossover and mutation operators have been used to 
create new population. The main idea of crossover is that 
the children should be better than their parents. Crossover 
can be classified as one-point, two-point and uniform 
crossover. Here, one point crossover is used on parents to 
generate children. For this, a point is chosen which is 
known as crossover point and the segments to the right of 
this point are exchanged, crossover rate (RC) has been set to 
0.60.  

In mutation a few randomly chosen bits of a chromo-
some will switch from 1 to 0 or from 0 to 1. Mutation 
process is used in GA to avoid local optimization, mutation 
rate (RM) has been set to 0.10. The better individual (the 
solution with lower ARE) is chosen and used to create 
children. Before each fitness values computation, the 
chromosome is compared with the previous ones. If it was 
similar, fitness values are copied instead of repeating the 
already performed computation.  

Tab. 1 describes all the GA parameters used to ob-
tained best results in this paper. The whole optimization 
process is performed in MATLAB 7. 

Using GA, twelve integrators are obtained which have 
less ARE compare to the ideal one. All the coefficients of 
these twelve designed integrators are shown in Tab. 2 and 
their ARE response is shown in Fig. 2. It is seen that all 
these integrators have less ARE but design XI and XII have 
minimum ARE in the entire Nyquist frequency range. Thus 
these are called as proposed integrator-I and II in this 
paper.  

S.No  Parameters  Value  

1. Initial coefficients (0.0001,0.0001,0.0001, 
0.0001, 0.0001) 

2. No. of bits used in digital 
representation 

20 

3. Fitness function Absolute Relative Error 
(ARE) of I(z) (Eq.2 ) 

4. Mutation Uniform 

5. Population size 20 

6. Crossover rate 0.60 

7. Mutation rate 0.10 

8. Maximum generation 50 

9. Total time of calculation  

Tab. 1.  GA parameters. 
 

S.No a(1) a(2) a(3) b(1) b(2) 

I. +0.0858 +0.9146 +0.5116 -0.4891 -0.5108 

II. +0.8648 +0.6562 +0.0611 -0.4183 -0.5818 

III. +0.0875 +0.9099 +0.5107 -0.4863 -0.4999 

IV. +0.0999 +0.9269 +0.4999 -0.4799 -0.5199 

V. +0.0934 +0.9242 +0.5065 -0.4901 -0.5207 

VI. -0.8641 -0.5856 -0.0518 -0.5044 -0.4899 

VII. +1.7467 +1.1706 +0.1022 +1.0146 -2.0070 

VIII. +0.0909 +0.9175 +0.5064 -0.4817 -0.5080 

IX. +0.0878 +0.9161 +0.5065 -0.4880 -0.5107 

X. +0.0845 +0.9151 +0.5114 -0.4893 -0.5108 

XI. +0.0868 +0.9148 +0.5122 -0.4881 -0.5107 

XII. +0.8647 +0.5998 +0.0541 -0.4812 -0.5142 

Tab. 2.  Coefficients of designed integrators.  

 
Fig. 2. Percentage relative error response of all twelve 

designed integrators   

The transfer functions of the proposed integrator-I and 
II using the coefficients mentioned in Tab. 2 (Design XI 
and XII).  
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The magnitude response of ideal and proposed inte-
grators is shown in Fig. 3. It can be seen that the magnitude 
response curves of the proposed and ideal integrators are 
overlapping each other. 

  
Fig. 3. The magnitude response of the ideal integrator and the 

proposed integrators; I1(z) and I2(z).  

3.2 Designing of Digital Differentiators 

In this paper digital differentiators have been designed 
by inverting and modifying the transfer function of the 
proposed digital integrators (3-4) as suggested by Al-
Alaoui [14]. On inverting (3), one pole appears outside the 
unit circle at z = - 9.946. This unstable pole is replaced by 
inverting it to get a stable pole at z = -1/9.946. The result-
ing change in amplitude is compensated by multiplying the 
denominator by a factor of 9.946. On inverting of (4), all 
the poles are inside the unit circle, therefore stabilization 
and compensation are not required. The resulting transfer 
function D1(z) and D2(z) are 
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These are called as proposed differentiator-I and II in 
this paper. The magnitude response of ideal and proposed 
differentiators is shown in Fig. 4. It can be seen that the 
magnitude response curves of the proposed and ideal dif-
ferentiators are overlapping each other. 

 
Fig. 4. The magnitude response of ideal differentiator and the 

proposed differentiators; D1(z) and D2(z). 

4. Comparison of the Proposed Inte-
grators and Differentiators with the 
Existing Ones  
To define and compare the efficiency of the designed 

integrators, various recently proposed integrators have been 
considered. These are, Gupta-Jain-Kumar1 integrator 
(IGJK1(z)) [6], Gupta-Jain-Kumar2 integrator (IGJK2(z)) [7] 
and Upadhyay-Singh integrator (IUS(z)) [11]. Their transfer 
functions are 
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The ARE response of the above mentioned integrators 
are shown in Fig. 5.  

It can be seen that the proposed integrators; I1(z) and 
I2(z) (3-4) have ARE ≤ 0.20% over 0 ≤ ω ≤ 0.80  radians 
and ≤ 0.30% over 0 ≤ ω  ≤ 0.95  radians, respectively, 
thus these can be regarded as wideband digital integrators. 
Existing wideband digital integrators Gupta-Jain-Kumar1 
[6], Gupta-Jain-Kumar2 [7], and Upadhyay-Singh [11] 
have ARE ≤ 3.0% over 0 ≤ ω ≤  radians, ≤ 2.8%  
over 0 ≤   ≤ 0.95 radians and ≤ 0.48% over 
0 ≤ ω ≤ 0.94 radians, respectively. 

This is verified by the simulation results (Fig. 5) that 
the proposed wideband integrators outperform all these 
existing integrators over entire Nyquist frequency range.  
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Fig. 5. Percentage relative error response of the proposed 

integrators; I1(z) and I2(z), Gupta-Jain-Kumar 
integrators [6,7] and Upadhyay-Singh  integrator [11].  

The efficiency of the designed differentiators has also 
been shown by comparing with the recently proposed 
differentiators.  

These are Gupta-Jain-Kumar1 differentiator 
(DGJK1(z)) [6], Gupta-Jain-Kumar2 differentiator (DGJK2(z)) 
[7], and Upadhyay-Singh differentiator (DUS(z)) [11]. Their 
transfer functions are  
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The ARE response of the above mentioned 
differentiators is shown in Fig. 6.  

 
Fig. 6. Percentage relative error response of proposed 

differentiators; D1(z) and D2(z), Gupta-Jain-Kumar 
differentiators [6,7] and Upadhyay-Singh differentiator 
[11]. 

It can be seen that the proposed differentiators; D1(z) 
and D2(z) have ARE ≤ 0.20% over 0 ≤   ≤ 0.80  radians 
and ≤ 0.30% over 0 ≤   ≤ 0.95  radians, respectively, 
thus these can be regarded as wideband digital differenti-
ators. Existing digital differentiators Gupta-Jain-Kumar1 
[6], Gupta-Jain-Kumar2 [7], and Upadhyay-Singh  [11] 
have ARE ≤ 3.0% over 0 ≤   ≤  radians, ≤ 2.8%  
over 0 ≤   ≤ 0.95 radians and ≤ 0.48% over  
0 ≤   ≤ 0.94 radians, respectively. This is verified by 
the simulation results (Fig. 6) that the proposed wideband 
differentiators outperform all these existing differentiators 
over entire Nyquist frequency range. 

Phase response of the proposed integrators and 
differentiators are shown in Fig. 7.  

 
Fig. 7. Phase response of proposed integrators; I1(z) , I2(z), 

and differentiators; D1(z), D2(z).  

The maximum phase deviation from ideal linear phase 
response in case of Gupta-Jain-Kumar1 integrator and 
differentiator [6] is 35.3o and 12o, respectively, Gupta-Jain-
Kumar2 integrator and differentiator [7] is 34.2o and 11o, 
respectively, and Upadhyay-Singh differentiator [11] is 
24.5o; whereas Upadhyay-Singh integrator [11] has nearly 
linear phase response for almost entire Nyquist frequency 
range except near ω =0 radians. However, it can be seen 
(Fig. 7) that the proposed operators have linear phase re-
sponse over almost entire Nyquist frequency range. 

It is verified by the simulation results (Fig. 5- 7) that 
the proposed wideband operators outperform all the exist-
ing operators in frequency domain analysis (magnitude and 
phase response). 

5. Conclusion  
The proposed integrators and differentiators accu-

rately approximate the ideal ones with very small absolute 
relative error and linear phase response over almost entire 
Nyquist frequency range. It is verified by the simulation 
results that the proposed second order wideband operators 
outperform all the existing operators in frequency domain 
analysis. The low order (second order), less relative error 
and linear phase response of the proposed integrators and 
differentiators make them useful in real time applications. 
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