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Abstract. Continuous phase modulation (CPM) is a widely
used modulation scheme in communication systems. How-
ever, difficulties arise with the design of CPM receivers, due
to the nonlinear nature of CPM. One popular solution is to
linearize CPM with pulse amplitude modulation (PAM) rep-
resentation. In this paper, a reduced-complexity non-data-
aided (NDA) timing recovery method for PAM-based M-ary
CPM receivers is proposed. The proposed method is based
on the PAM representation and maximum likelihood prin-
ciple. The merits of the proposed method are twofold. On
one hand, the proposed method is reduced-complexity in na-
ture for PAM-based CPM receivers, i.e., it shares the match
filter bank with PAM-based detectors. On the other hand,
it is shown that the performance of the proposed method
is better than the existing method with some modulation
schemes. Therefore, the proposed method provides an im-
portant synchronization component for PAM-based M-ary
CPM receivers.
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1. Introduction
Continuous phase modulation (CPM) is a joint band-

width and power efficient modulation scheme with a con-
stant envelope. It is particularly appealing in radio channels
with nonlinear amplifiers, as CPM allows us to exploit the
full amplifier power without any backoff. However, diffi-
culties arise with the design of CPM receivers, due to the
nonlinear nature of CPM.

One popular method of dealing with the challenges of
CPM has been the pulse amplitude modulation (PAM) rep-
resentation. It is a method of linearizing CPM that was first
proposed for binary CPM in the well-known paper by Lau-
rent [1]. This method has been extended to CPM in gen-
eral in [2]-[5]. The PAM representation has been applied to

the design of reduced-complexity detectors [6]-[11], carrier
phase recovery [11], timing recovery [12]-[14], and carrier
frequency recovery [15].

In this paper, we apply the PAM representation to the
non-data-aided (NDA) symbol timing recovery problem for
CPM signals and propose a reduced-complexity method for
M-ary CPM receivers. Several NDA timing recovery meth-
ods for CPM have been proposed in previous literatures. In
[12], [16]-[18], NDA methods are discussed in the context
of MSK-type modulations. In [19] and [20], NDA timing
recovery methods are proposed for shaped offset quadrature
phase-shift keying (SOQPSK) and offset quadrature ampli-
tude modulation (OQAM), respectively. However, all of the
above methods are only suitable for one special modulation
scheme, not for M-ary CPM in general. In [21], a NDA tim-
ing recovery scheme is developed for M-ary CPM in gen-
eral. However, this method needs additional filters to obtain
sufficient statistics for synchronization, which increases the
complexity of the receivers.

In order to check out the performance of the pro-
posed method, the method presented in [21] is employed as
a comparison in analysis and simulations. Compared with
the method presented in [21], the merits of the proposed
method are twofold. On one hand, unlike [21] which needs
additional filters, the proposed method shares the match fil-
ter (MF) bank with PAM-based reduced-complexity detec-
tors. In other words, the proposed method is a reduced-
complexity method for PAM-based CPM receivers. On the
other hand, numerical results show that the proposed method
is able to outperform [21] with some modulation schemes.
Moreover, it is shown that the proposed method works in-
dependent of phase and can be applied to both coherent and
noncoherent receivers.

The outline of the paper is structured as follows. Sec-
tion 2 describes the signal model in details. In Section 3,
the PAM-based maximum likelihood sequence detection
(MLSD) is first reviewed. Then the proposed NDA method
and corresponding digital implementation are presented. In
Section 4 both analytical and numerical results are derived
to evaluate the proposed method. Finally, conclusions are
drawn in the Section 5.
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Notation description: E (•) is the expectation operator.
The estimated and hypothesized value of x is referred to as
x̂ and x̃, respectively. (•)∗ denotes the complex conjugate,
⊗ denotes the convolution operation, and b•c denotes the
floor function. Re(x) denotes the real part of x, int(x) de-
notes the integer part of x, and |x| denotes the absolute value
of x.

2. Signal Model
We introduce the conventional M-ary CPM signal

model in the Subsection 2.1, and then describe the PAM-
based M-ary CPM signal model in details in the Subsec-
tion 2.2.

2.1 Conventional CPM Model
The complex envelope of M-ary CPM signal is de-

scribed as

s(t;α) =

√
2Es

T
exp{ jϕ(t;α)} (1)

where Es is the symbol energy, T is the symbol period
and α = {αi} belong to an M-ary alphabet {±1,±3, · · ·,
±(M−1)}. The phase of the signal is given by

ϕ(t;α) = 2π∑
i

αihq(t− iT ) (2)

where h is the modulation index and the phase pulse q(t)
is the time-integral of frequency pulse with length LT and
area 1/2. L = 1 indicates that the signal is full response
and L > 1 means that the signal is partial response. In nu-
merical examples discussed later, we consider two shapes
of frequency pulse, i.e., length-LT rectangular (LREC) and
length-LT raised-cosine (LRC).

2.2 PAM-based CPM Model
It was shown by Laurent [1] that the right-hand side of

(1) can be formulated as a superposition of data-modulated
pulses for the special case of binary (M = 2) single-h CPM.
This PAM representation of CPM has been extended to M-
ary CPM in [2].

Using the PAM-based model for M-ary CPM [2], we
represent the complex envelope of the CPM signal as a su-
perposition of PAM waveforms, i.e.,

s(t;α) =

√
2Es

T

N−1

∑
m=0

∑
i

am,igm(t− iT ) (3)

where {am,i} are the pseudo-symbols which are a nonlin-
ear function of the real symbol sequence α, {gm(t)} are
the PAM signal pulses. N is the number of {gm(t)} and
N = 2log2 M(L−1)(M− 1) when M is an integer power of 2.
A detailed description of such pseudo-symbols can be found
in [1], [2]. Similarly, the PAM pulses {gm(t)} are defined in
[1], [2] explicitly.

An important property of PAM representation is that
only a few PAM pulses count for the most energy of the
signal [1], [2]. Exploiting this property, the less significant
pulses can be discarded with optimal approximation tech-
nique [1], [2]. As a result, (3) turns out to be the reduced-
complexity form

s(t;α)∼=
√

2Es

T

K−1

∑
m=0

∑
i

am,ihm(t− iT ) (4)

where {hm(t)} is the approximated PAM signal pulses, K is
the number of {hm(t)} and K ≤ N.

3. Proposed NDA Timing Recovery
Method
We briefly review the PAM-based MLSD in Subsec-

tion 3.1 and then propose the PAM-based NDA timing re-
covery method in Subsection 3.2. Furthermore, the corre-
sponding digital implementation of the proposed method is
presented in Subsection 3.3.

3.1 PAM-based MLSD
The signal observed at the receiver is described as

r(t) = s(t− τ;α)e jθ +w(t) (5)

where w(t) is the complex-valued additive white Gaussian
noise with zero mean and power spectral density N0. The
variables τ and θ represent the symbol timing error and phase
offset, respectively.

The symbol sequence α can be recovered using MLSD.
In [7], it was shown that the likelihood function of the
hypothesized symbol sequence α̃ over the observation
0≤ t ≤ L0T is

Λ(t; α̃,θ,τ) = Re[
L0TZ
0

r(t)s∗(t− τ; α̃)e− jθ]. (6)

Inserting (4) into (6), we derive that

Λ(t;{ãm,i},θ,τ)∼=Re{
L0TZ
0

[r(t)e− jθ
K−1

∑
m=0

∑
i

ã∗m,ihm(t−iTs−τ)]}.

(7)

Changing the order of integration and summation, we have

Λ(t;{ãm,i},θ,τ)∼=
L0−1

∑
i=0

Re[yi({ãm,i},θ,τ)] (8)

which can be maximized efficiently using the Viterbi algo-
rithm (VA). The metric increment is defined as [7]

yi({ãm,i},θ,τ) = e− jθ
K−1

∑
m=0

ã∗m,ixm,i(τ) (9)

where
xm,i(τ) = r(t)⊗hm(−t)|t=τ+iT . (10)
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Here, the time-reversed PAM pulses {hm(−t)} serve as the
impulse response of MF bank and xm,i(τ) are the outputs of
MF bank sampled at the time τ+ iT .

3.2 Proposed PAM-based NDA Timing
Recovery Method

In this subsection, we are going to derive the proposed
PAM-based NDA timing recovery method. Now we assume
that the timing error and phase offset are unknown. Conse-
quently, (7) turns out to be

Λ(t;{ãm,i}, θ̃, τ̃) = Re[
L0−1

∑
i=0

e− jθ̃
K−1

∑
m=0

ã∗m,ixm,i(τ̃)]. (11)

Averaging the likelihood function with respect to θ, we have

Λ(t;{ãm,i}, τ̃)∼= I0

[√
2Es

T
1

N0

∣∣∣∣∣K−1

∑
m=0

L0−1

∑
i=0

ã∗m,ixm,i(τ̃)

∣∣∣∣∣
]

(12)

where I0 is the modified zero-order Bessel function. Here we
assume a low signal to noise ratio and make the approxima-
tion, i.e., I0(λ) ∼= 1 + λ2/4 [21]. As a result, (12) turns out
to be

Λ(t;{ãm,i}, τ̃)∼=

∣∣∣∣∣K−1

∑
m=0

L0−1

∑
i=0

ã∗m,ixm,i(τ̃)

∣∣∣∣∣
2

. (13)

Equation (13) can be rearranged in the following form

Λ(t;{ãm,i},τ̃)=
L0−1

∑
i=0

K−1

∑
m1=0

K−1

∑
m2=0

L0−1−i

∑
p=−i

ã∗m1,iãm2,i+pxm1,i(̃τ)x∗m2,i+p(̃τ). (14)

Averaging the likelihood function with respect to {am,i}, we
have

Λ(t;τ̃)=
L0−1

∑
i=0

K−1

∑
m1=0

K−1

∑
m2=0

L0−1−i

∑
p=−i

Am1,m2(p)xm1,i(τ̃)x∗m2,i+p(τ̃)

(15)

where Am1,m2(p) = E{a∗m1,iam2,i+p} are the autocorrelations
of the pseudo-symbols. The expression and property of these
autocorrelation functions are well-known and the interested
reader can refer to [1], [2] for details. Particularly, it is shown
that absolute value of the autocorrelation functions is a de-
creasing function of |p| [1], [2]. This property enables us
to further reduce the complexity of the proposed method by
truncating the likelihood function with respect to p. Conse-
quently, (15) turns out to be

Λ(t; τ̃)∼=
L0−1

∑
i=0

K−1

∑
m1=0

K−1

∑
m2=0

d

∑
p=−d

Am1,m2(p)xm1,i(τ̃)x∗m2,i+p(τ̃)

(16)
where d is a design parameter. We can infer that the perfor-
mance of the proposed method will improve as d increases.
This inference is further verified in Section 4.

Now we look for the value of τ. We define Λ̇(t; τ̃) as
the derivative of Λ(t; τ̃) with respect to τ. Then this problem
can be solved by forcing Λ̇(t; τ̃) to zero. It is shown that
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Fig. 1. Digital implementation of the proposed PAM-based
NDA timing recovery system.

Λ̇(t;τ̃)∼=2Re{
L0−1

∑
i=0

K−1

∑
m1=0

K−1

∑
m2=0

d

∑
p=−d

Am1,m2(p)xm1,i(τ̃)ẋ∗m2,i+p(τ̃)}

(17)

where ẋm,i(τ̃) is the time derivation of xm,i(τ̃) sampled at the
time τ̃+ iT . A discrete-time differential is used to implement
ẋm,i(τ̃), which will be discussed in the next subsection.

Then, the value of τ can be estimated in a recursive
manner every L0T .

τ̂n+1 = τ̂n− γen (18)

where τ̂n is the n-th estimation of τ, en is the n-th error signal.
γ represents the step size of the first order phase lock loop
(PLL), which can be derived from the following expressions

γ =
1

E( ∂Λ̇(t;τ)
∂τ
|τ̂ = τ )

. (19)

3.3 Digital Implementation
Fig. 1 shows a digital implementation of the proposed

method. First, the discrete signal r(k) is sampled from r(t)
at an oversample rate Q. A sample interpolator is used to
synchronize the samples based on the most recent timing es-
timate τ̂n. Then the synchronized samples are fed to the MF
bank. The output of MF bank are denoted as xm,i,l(τ), where
i = int(k/Q) and l = kmod−Q.

In order to generate the error signals, we need to ob-
tain xm,i(τ) and ẋm,i(τ). Notice that xm,i(τ) can be obtained
by a proper combination of xm,i,l(τ), and ẋm,i(τ) can be ob-
tained by a proper combination of ẋm,i,l(τ), where ẋm,i,l(τ) is
the time derivation of xm,i,l(τ) [22], i.e.,

ẋm,i,l(τ) =
1

2QT
[xm,i,l+1(τ)− xm,i,l−1(τ)]. (20)

At the same time, the MF outputs xm,i,l(τ) are sampled
at the symbol rate and then sent to PAM-based Viterbi algo-
rithm (VA) [6]-[11] to obtain branch metrics.

It is worth noting that the proposed method works in-
dependent of phase recovery, which means that the proposed
method can be applied to both coherent and noncoherent
CPM receivers. The only difference is that a additional phase
estimator is needed for the noncoherent system. Moreover,
as the same MF outputs are utilized in both the proposed
method and PAM-based detectors, the proposed method is
reduced-complexity in nature, i.e., it does not need addi-
tional filters to obtain the statistics for synchronization when
applied to the PAM-based CPM receivers.
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4. Performance
In Subsection 4.1, both the analytical and simulated re-

sults of S-curves for the proposed method are derived. Fur-
thermore, the tracking performance of the proposed method
is investigated by simulation in Subsection 4.2. Finally, the
computational complexity of our proposed method and the
method presented in [21] are compared in Subsection 4.3.

4.1 S-curves
The S-curve is a key characteristic that establishes the

loop acquisition properties. It is defined as the expected
value of the error signal en as a function of the timing offset,
i.e.

S(δ) = E{en |δ} (21)

where the timing offset is defined as δ = τ− τ̂. The S-curves
give an easy method to identify the stable lock points for the
method. It is also used to calculate the step size of first order
PLL.

Without loss of generality, we let τ̂ = 0. Inserting (17)
into (21) , we have

S(δ)=

2Re{
L0−1
∑
i=0

K−1
∑

m1=0

K−1
∑

m2=0

d
∑

p=−d
Am1,m2(p)E[xm1,i(δ)ẋ∗m2,i+p(δ)]}.

(22)

The computation of E[xm1,i(δ)ẋ∗m2,i+p(δ)] is a straight-
forward but awkward task. The final results can be derived
as follows

E[xm1,i(δ)ẋ∗m2,i+p(δ)]=

(n1+Dm1
)TR

n1T

(n2+Dm2)TR
n2T

K−1
∑

q1=0

K−1
∑

q2=0

I12
∑

i1=I11

I22
∑

i2=I21

·Am1,m2(n1−n2)hm1(t1−δ− i1T )hq1(t1−n1T )

·hm2(t2−δ− i2T )ḣq2(t2−n2T )dt1dt2

(23)

with
Ik1 = b(tk−δ)/Tc−Dqk +1,k = 1,2 (24)

and
Ik2 = b(tk−δ)/Tc ,k = 1,2 (25)

where ḣm(t) is the time derivation of hm(t).

Fig. 2 and Fig. 3 present the analytical and simulated S-
curves of the proposed method with two schemes, i.e., M = 2,
1REC, h = 1/2 scheme and M = 4, 2RC, h = 1/4 scheme. The
parameters of the simulation are set to be K = 1,d = 0 for
the M = 2, 1REC, h = 1/2 scheme and K = 3,d = 1 for the
M = 4, 2RC, h = 1/4 scheme, respectively. As shown in the
figures, the analytical curves confirm the numerical results
accurately. Moreover, no stable false lock points exist for
the proposed method in these schemes. Simulations for other
modulation schemes yield similar results (not shown).
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Fig. 2. S-curves for the proposed method with M = 2, 1REC,
h = 1/2 scheme.
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Fig. 3. S-curves for the proposed method with M = 4, 2RC,
h = 1/4 scheme.

4.2 Tracking Performance
In this subsection, we will investigate the tracking per-

formance of the proposed method. Unfortunately, no analyt-
ical method has been found to evaluate the tracking perfor-
mance. Thus, we shall rely on the simulation results.

Figs. 4 - 7 present the tracking performance of the
proposed method with several schemes, i.e., M = 2, h = 1/2,
L = 1 schemes, M = 4, h = 1/4, L = 1 schemes, M = 2, h = 1/2,
L = 2 schemes and M = 4, h = 1/4, L = 2 schemes. In or-
der to check out the performance of the proposed method,
the tracking performance of [21] and modified Cramer-Rao
bound (MCRB) [21] are also shown as comparisons. In the
figures the proposed method is called Prop for short, while
the method presented in [21] is called Exist for short. Timing
errors are normalized to the symbol period. The observation
length L0 is set to be 200 and the oversample rate Q is set to
be 8. The number of PAM pulses K is set to be 1 for M = 2
schemes and 3 for M = 4 schemes, respectively. The parame-
ter d is set to be 1 for L = 1 schemes and 3 for L = 2 schemes,
respectively. It is shown that
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Fig. 4. Normalized timing error variance for the proposed
method and method presented in [21] with M = 2, h = 1/2,
L = 1 schemes.
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Fig. 5. Normalized timing error variance for the proposed
method and method presented in [21] with M = 4, h = 1/4,
L = 1 schemes.

• The performance of the proposed method is good for
full response schemes, as well as the method pre-
sented in [21], but partial response schemes are more
difficult to synchronize for both methods. This phe-
nomenon can be explained as follows. During the av-
eraging approach, NDA timing recovery methods suf-
fer self-noises from the inter-symbol interference (ISI)
of signals. Thus, limitations arise with partial response
schemes with which the ISI exists.

• Similarly, the performance with LRC schemes is bet-
ter than LREC schemes, due to the fact that ISI is
more severe with LREC schemes than LRC schemes.

• The proposed method outperforms the method pre-
sented in [21] with some modulation schemes, e.g.,
M = 2, h = 1/2, 2RC scheme and M = 4, h = 1/4, 2RC
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Fig. 6. Normalized timing error variance for the proposed
method and method presented in [21] with M = 2,
h = 1/2, L = 2 schemes.
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Fig. 7. Normalized timing error variance for the proposed
method and method presented in [21] with M = 4,
h = 1/4, L = 2 schemes.

scheme. Though no analytical method has been found
to evaluate such phenomenon, we can give the explana-
tion as follows. The two method average the likelihood
function over data in different manners, i.e., in [21]
the likelihood function is averaged over actual symbols
{αi}, while it is averaged over pseudo-symbols {am,i}
in our method. As a result, the two methods suffer self-
noises in different manners and it is possible that the
proposed method suffers less self-noises than the one
presented in [21] with some modulation schemes.

Furthermore, the effect of parameter K and d is inves-
tigated in Fig. 8. In this figure, the modulation scheme is
M = 4, 2RC, h = 1/4 scheme. The observation length L0 is
set to be 100 and the oversample rate Q is set to be 8. Ac-
cording to the figure, we can infer that
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Fig. 8. Normalized timing error variance with M = 4, 2RC,
h = 1/4 scheme.

Algorithm, Additions Multiplications
Modulation schemes per symbol per symbol
Proposed Method,

M = 2,L = 1 schemes 5 6
Method presented in [21],

M = 2,L = 1 schemes 560 1120
Proposed Method,

M = 4,L = 2 schemes 33 54
Method presented in [21],

M = 4,L = 2 schemes 816 1632

Tab. 1. Computational complexity comparison between the pro-
posed method and method presented in [21].

• The performance of the proposed method improves as
the number of MFs K increases. This phenomenon cor-
responds to what has been found with PAM-based de-
tectors [6]-[11] and decision-directed timing estimator
[13].

• As we have expected in Subsection 3.2, the normalized
timing error variance is an decreasing function of d.

• Minor improvement is seen if K and d exceed cer-
tain values. Moreover, the complexity of the proposed
method increases as K and d grows. Therefore, we can
infer that optimal values of K and d exist for a special
modulation scheme, which minimizes the complexity
while satisfactory performance is still maintained.

4.3 Computational Complexity
In Tab. 1, the computational complexity of the pro-

posed method and the method presented in [21] are com-
pared with several typical modulation schemes, i.e., M = 2,
L = 1 schemes and M = 4, L = 2 schemes. The number of
PAM pulses K is set to be 1 for M = 2 schemes and 3 for
M = 4 schemes, respectively. The parameter d is set to be 1
and the oversample rate Q is set to be 8. The multiplication
and additions referred are all real. In consideration of the
reduced-complexity nature of the method, MFs are not taken

into account when we calculate the complexity of the pro-
posed method. As shown in the table, compared with [21],
the proposed method reduces the computational complexity
remarkably when applied to PAM-based CPM receivers.

5. Conclusion
In this paper, we propose a reduced-complexity NDA

timing recovery method for PAM-based M-ary CPM re-
ceivers. A digital implementation of the proposed method
which is easy to be realized is also presented. Compared
with the existing method in [21], the proposed method is
reduced-complexity in nature, due to the fact that it shares
the MF bank with PAM-based CPM detectors. Furthermore,
numerical results show that the performance of the proposed
method is better than the existing method in [21] with some
modulation schemes. Therefore, the proposed method pro-
vides an important synchronization component for the PAM-
based M-ary CPM receivers.
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