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Abstract. A full wave two-dimensional Multiresolution 
Frequency Domain formulation for efficient analysis of the 
dispersion characteristics of ferrite loaded waveguide 
structures is developed and presented. It has been con-
cluded that the proposed formulation, which takes advan-
tage of the compactly supported wavelet bases to expand 
electric and magnetic fields, allows coarser discretization 
compared to conventional Finite Difference Frequency 
Domain (FDFD) scheme. The efficiency and accuracy of 
the newly developed formulation, in comparison to FDFD 
method, is demonstrated by solving the dispersion charac-
teristics of fully and partially ferrite loaded waveguide 
structures. 
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1. Introduction 
Since ferrites are magnetically anisotropic materials, 

their magnetic constitutive relations can be controlled by 
means of a DC magnetic bias field. This flexibility of fer-
rites makes them the choice of material in the manufactur-
ing of non-reciprocal and control devices such as isolators, 
circulators and phase shifters. Numerical characterization 
of ferrite materials is an essential issue in the design proc-
ess of these devices; hence the finite difference techniques 
in time domain [1], [2] and frequency domain [3] are read-
ily used for this purpose.  

The multiresolution analysis has been extensively 
studied in computational electromagnetics research [4-6] 
and it has been concluded that multiresolution analysis 
based techniques yield very efficient algorithms when 
applied to the numerical modeling of differential equations. 
Based on the conclusions, the Multiresolution Frequency 
Domain (MRFD) technique was introduced [7-9]. This 
technique is developed by applying Galerkin’s method of 
moments procedure to Maxwell’s curl equations while 
using the Cohen-Daubechies-Feauveau (CDF) [10] family 
of wavelets as the basis of expansion of unknown fields. 
CDF wavelets are a symmetric biorthogonal wavelet family  

that utilizes two scaling functions due to biorthogonality. 
The CDF(2,2) wavelet, which is sketched in Fig. 1, is 
adopted for this work. 

MRFD is a mathematically intensive yet computa-
tionally efficient technique, which consumes computer 
resources more efficiently. It has been used to model dis-
persion characteristics of general guided wave structures 
loaded with isotropic materials [11]. In this work, the 2D-
MRFD technique is extended to anisotropic material mod-
eling. 

 

Fig. 1. Scaling functions of the CDF(2,2) wavelet base. 

2. Formulation 

2.1 Field Equations 

Ferrite materials with diagonal dielectric constant 
tensors and y-directed bias magnetization are considered. 
For these materials, permittivity and permeability tensors 
can be expressed as [12]: 
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Here γm = -2.21042x105 (rad/s)/(A/m) is the gyro-
magnetic ratio, α is the damping factor, Ms and H0 are DC 
magnetic saturation and magnetic bias, respectively.  

Assuming that the waveguiding structure is uniform 
along the z axis and the wave is propagating in the positive 
z direction, the electric and magnetic fields inside the 
guided wave structure can be expressed as: 
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where  is the propagation constant. 

Substituting (6) into Maxwell’s curl and divergence 
equations and replacing the space derivatives with respect 
to z by -jβ, the following scalar equations are obtained: 
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2.2 MRFD Equations 

The MRFD equations for (7.a), (7.c), (7.d) and (7.e) 
are provided in [10], however due to the extra terms in 
(7.b) and (7.f), MRFD equations for these should be de-
rived. Derivation procedure is similar to the one provided 
in [10]. Derivation starts with the expansion of the un-
known fields in terms of the dual scaling functions and 
inserting the expansions into field equations. The resulting 

equation is then sampled with the scaling function accord-
ing to Galerkin’s method. 

Derivation of the MRFD equation for (7.b) is pro-
vided below. Derivation starts with the expansion of the 
unknown fields in terms of the dual scaling functions of the 
CDF (2,2) wavelet, such that: 
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The locations of the scaling functions, indicated by 
indexes i, j in the above expansions, correspond to the 
locations of the field components on the compact 2D grid 
shown in Fig. 2. This grid structure is obtained simply by 
collapsing the 3D Yee cell in the z direction. 

After the expansions are inserted to (7.b), the 
sampling procedure starts with testing the left-hand side of 
the resulting equation with i(x) j+1/2(x): 
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where n(x) is the scaled and shifted CDF scaling function 
 (x) defined similar to (9). 

Next, the first term on the righthand side of (7.b) is 
tested: 
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The second-term on the right-hand side of (7.b) is 
sampled to yield: 
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The b(l) coefficients are given in Tab. 1. Due to 
symmetry of the wavelet base b(-1-l)= b(l). 

Finally, the last term on the right-hand side of (7.b) is 
sampled to yield: 
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The a(l) coefficients are given in Tab. 1. Due to 
symmetry of the wavelet base a(-l)= -a(l+1). 
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Fig. 2.  2D compact unit cell. 

 
 
 

L 0 1 2 
a(l) 1.2291667 -0.0937500 0.0104167 
b(l) 0.5625 -0.0625 1.05e-18 

Tab. 1. The a(l) and b(l) coefficients. 

Substituting (10), (11), (12) and (14) into (7.b) yields 
the MRFD equation: 
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The MRFD equation for (7.f) can be obtained 
similarly: 
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MRFD equations can be used to form an eigen-value 
problem as: 

    A x I x    (18) 

where [A] is a sparse coefficient matrix, [I] is the unit ma-
trix and x is the unknown field vector. The eigenvalues of 
[A] deliver the propagation constant and eigenvectors of 
[A] deliver the corresponding electromagnetic fields. In this 
work, an iterative technique called IRAM (Implicitly Re-
started Arnoldi Method) [13] is used to compute the eigen-
values of [A]. 

2.3 Boundary Conditions 

In order to satisfy the boundary conditions on the per-
fect electric conductor (PEC)-ferrite interface, tangential 
electric fields and normal magnetic flux density should be 
set to zero. Conventional FDFD scheme can easily model 
the PEC boundary owing to the localized scaling function. 
Multiresolution schemes, however, are non-localized in 
nature because of the wider support of scaling functions, so 
they cannot support localized boundary conditions. This 
aspect of multiresolution schemes is the consequence of the 
fact that the MRFD equations of the grid nodes in the vi-
cinity of the boundary include field components outside of 
the computational domain. 

To demonstrate the problem, consider the PEC 
boundary on the left wall of the waveguide, as shown in 
Fig. 3. In this figure, the two leftmost cells are outside of 
the computational domain and consequently fields on these 
regions are unknown. MRFD equation (17) for Hz on the 
boundary cell (0, j) requires unknown field components 
such as Hx(-1, j), Hx(-2, j), Ey(-1, j) and Ey(-2, j). In order to 
tackle this problem, multiresolution based techniques util-
ize the image principle [14] for modeling PEC boundary, 
which requires symmetry of fields around such boundary. 



RADIOENGINEERING, VOL. 21, NO. 3, SEPTEMBER 2012 863 

Because of the lack of symmetry of the magnetic fields at 
the ferrite-PEC boundary, image principle is not suitable to 
model such interface. In this work, FDFD equations of [3] 
are used at the boundary cells and MRFD equations are 
used elsewhere. 

Even though FDFD equations are utilized at the 
boundary, MRFD equations are still used at the cells 
neighboring the boundary cells and similarly, MRFD equa-
tion (17) for Hz on cell (1, j) requires unknown field com-
ponents such as Hx(-1, j) and Ey(-1, j). Since Ey is zero on 
the left waveguide wall, image principle can be imple-
mented by forcing odd symmetry in the form of: 

 ( 1, ) (1, ).y yE j E j    (19) 

Hx(-1, j) is not zero on the PEC boundary so symme-
try conditions don’t apply. Instead, extrapolation can be 
used to solve Hx(-1, j) as: 

 ( 1, ) 2 (0, ) (1, )x x xH j H j H j    . (20) 

Finally, inserting (19) and (20) into (17) yields the 
MRFD equation for Hz(1, j). Similarly, boundary condi-
tions for all equations and PEC walls are developed.  
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Cell (-2, j) Cell (-1, j) Cell (0,j) Cell (1,j)

 
Fig. 3.  2D grid on the left wall. 

3. Numerical Results 
In order to validate the proposed MRFD formulation, 

two waveguide structures are analyzed. First example is 
a completely ferrite loaded waveguide with dielectric con-
stant εr = 9, damping factor α = 0.02, H0 = 15915.5 A/m, 
MS = 159155 A/m, x-dimension of 22.86 mm and y–dimen-
sion of 10.16 mm, shown in Fig. 4. This structure is ana-
lyzed with both the FDFD [3] and MRFD techniques and 
phase constant of the dominant TE10 mode, as shown in 
Fig. 5 is calculated. The simulation results are compared to 
the exact results [12] and it is observed that the agreement 
between MRFD, FDFD and exact solution is almost per-
fect. The grid size, matrix size and simulation time for both 
FDFD and MRFD simulations are summarized in Tab. 2. 
For this case, compared to FDFD, MRFD scheme utilized 
a coarser grid by a factor of three and consumed 45% less 
memory and 72.6% less simulation time while achieving 
a competitive accuracy. 
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Fig. 4. Uniformly ferrite loaded waveguide. 
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Fig. 5. Phase constant of the uniformly ferrite loaded 

waveguide. 
 

 
Grid 
size 

Matrix Size 
[byte] 

Time 
[sec] 

FDFD 15x1 3736 3.25Uniform 
Waveguide 

MRFD 5x1 2056 0.89

FDFD 15x1 3736 4,20Partially Loaded 
Waveguide 

MRFD 6x1 2560 1.38

Tab. 2. Simulation parameters and computer resources 
consumed by the two methods. 

b

w
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H0

a

 
Fig. 6. Partially ferrite loaded waveguide. 

The second example is a rectangular waveguide with 
dimensions a = 22.86 mm, b = 10.16 mm as shown in 
Fig. 6. This waveguide is partially loaded with a ferrite 
material of width w = a/3, dielectric constant εr = 9, damp-
ing factor α = 0.02, H0 = 15915 A/m, MS = 159150 A/m. 
This type of structure allows the propagation of forward 
and backward waves with different propagation constants. 
This structure is again analyzed with both the FDFD [3]  
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and MRFD techniques and phase constants of the dominant 
TE10 mode are calculated. The simulation results are then 
compared to the exact results [12] in Fig. 7. Very good 
agreement between the simulation results and exact results 
is noticed. Simulation parameters are summarized in 
Tab. 2. It is observed that for this case, in comparison to 
FDFD, MRFD scheme utilized a 2.5 times coarser lattice 
and consumed 31% less memory and 67% less simulation 
time while achieving similar accuracy. 
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Fig. 7. Phase constant of the partially ferrite loaded 

waveguide. Forward phase constant at the bottom and 
backward phase constant on the top. 

4. Conclusions 
In this study, the CDF wavelet based multiresolution 

frequency domain scheme is extended to the analysis of 
ferrite loaded waveguide structures. In order to overcome 
the difficulty of modeling PEC-Ferrite interface, FDFD 
equations are used on the boundary cells and a combination 
of image principle and extrapolation technique is utilized at 
the boundary region. 

Dispersion characteristics of fully and partially ferrite 
loaded waveguide structures are analyzed in order to vali-
date the newly developed formulation. Simulation results 
are compared to the FDFD simulations and exact calcula-
tions. It is observed that while achieving similar accuracy, 
MRFD scheme utilized coarser grids by factors of 3 and 
2.5 for uniform and non-uniform cases respectively, com-
pared to FDFD. Utilizing coarser grids yielded significant 
savings in favor of the MRFD scheme in memory require-
ment and simulation time.  
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