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Abstract. In this paper, we proposed a newly modified 
cuckoo search (MCS) algorithm integrated with the 
Roulette wheel selection operator and the inertia weight 
controlling the search ability towards synthesizing symmet-
ric linear array geometry with minimum side lobe level 
(SLL) and/or nulls control. The basic cuckoo search (CS) 
algorithm is primarily based on the natural obligate brood 
parasitic behavior of some cuckoo species in combination 
with the Lévy flight behavior of some birds and fruit flies. 
The CS metaheuristic approach is straightforward and 
capable of solving effectively general N-dimensional, lin-
ear and nonlinear optimization problems. The array 
geometry synthesis is first formulated as an optimization 
problem with the goal of SLL suppression and/or null pre-
scribed placement in certain directions, and then solved by 
the newly MCS algorithm for the optimum element or iso-
tropic radiator locations in the azimuth-plane or xy-plane. 
The study also focuses on the four internal parameters of 
MCS algorithm specifically on their implicit effects in the 
array synthesis. The optimal inter-element spacing solu-
tions obtained by the MCS-optimizer are validated through 
comparisons with the standard CS-optimizer and the con-
ventional array within the uniform and the Dolph-Cheby-
shev envelope patterns using MATLABTM. Finally, we also 
compared the fine-tuned MCS algorithm with two popular 
evolutionary algorithm (EA) techniques include particle 
swarm optimization (PSO) and genetic algorithms (GA). 

Keywords 
Modified cuckoo search, side lobe suppression, null 
control, linear array, isotropic radiator, Dolph-
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1. Introduction 
In modern wireless applications, the antenna pattern is 

designed so as to produce or steer a strong beam towards 
the preferred signal according to signal direction of arrival 
and/or concurrently to cancel interfering signals (placing 
prescribed nulls). Such antenna system is called smart 

antenna array [1], which uses arrays of antenna elements 
efficiently and can integrate multiple antenna elements to 
process a signal [2] coming from various directions. In 
other definition, the term smart antenna generally refers to 
any antenna array, terminated in a sophisticated signal 
processor, which can adjust or adapt its own beam pattern 
in order to emphasize signals of interest and to minimize 
interfering signals [3]. In this case, array geometry synthe-
sis plays an important role to determine the physical layout 
of the array that produces the radiation pattern closest to 
the desired pattern. The shape of the desired pattern can 
vary widely depending on the application [4].  

The array pattern should possess high power gain, 
lower side lobe levels, controllable beam width [5] and 
good azimuthal symmetry. The desired radiation pattern of 
the antenna array can be realized by determining the physi-
cal layout of the antenna array and by choosing suitable 
complex excitation of the amplitude and phase of the cur-
rents that are applied on the array elements [6]. Many syn-
thesis techniques are done through suppressing the side 
lobe level (SLL) while simultaneously maintaining the gain 
of the main beam. Other techniques focus on the null con-
trol to reduce the effects of undesired interference and 
jamming. In the linear array geometry context, this can be 
made through designing and/or optimizing the inter-ele-
ment spacings with respect to the λ/2 distance either while 
preserving a uniform excitation amplitude or phase over 
the array aperture or employing nonuniform excitation and 
phased arrays [7].  

2. System Description 

Due to the high versatility, flexibility and capability 
to optimize complex multidimensional problem, modern 
evolutionary algorithm (EA) techniques such as genetic 
algorithms (GA) [8], [9], simulated annealing (SA) [10], 
and particle swarm optimization (PSO) [2], [6], [7], [11] 
have been applied for antenna array beam design, which 
directly manipulates the configuration of individual or iso-
tropic radiating elements arranged in space and performs 
required beam forming techniques to produce a uniform 
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directional radiation pattern. In addition, the trade-off 
between the SLL and the half-power beam width (HPBW) 
stimulate was answered through obtaining the narrowest 
possible beam width for a given SLL or the smallest SLL 
for a given beam width [12]. This was also possible by 
using the orthogonal functions of Chebyshev [13] in order 
to design an optimum radiation pattern. Fortunately, the 
use of modern EA has solved the deficiency and burden-
some of matching the array factor expression with an ap-
propriate Chebyshev function appears for large number of 
elements [14]. In this case, PSO [11], [15] and tabu search 
(TS) [16] were used to reduce the side lobes of linear 
arrays in Chebyshev sense through evaluating the gradient 
of some cost function. 

This paper introduces the newly evolved cuckoo 
search (CS) metaheuristic algorithm developed recently by 
Xin-She Yang and Suash Deb in 2009 [17]. It was proven 
in [18] that the CS was more generic and robust than the 
PSO and GA in optimizing multimodal objective functions. 
Through simulations running on various standard test func-
tions, CS was found to be more efficient in finding the 
global optima with higher success rates. This is partly due 
to the fact that there are fewer parameters to be fine-tuned 
in CS than in PSO and GA [18]. Furthermore, CS is still 
new and has never been used for any array geometry syn-
thesis before. To the best of our knowledge, so far, CS was 
successfully used for mechanical engineering problems, 
which were spring design optimization and welded beam 
design [19]. Hence, CS has a great potential also to be as 
an effective alternative besides other evolutionary algo-
rithms in handling electromagnetic or array optimization 
problems. In this paper, the newly modified CS (MCS) 
algorithm is proposed to optimize the distance between the 
n-th elements of the symmetric linear array to generate 
a radiation pattern with minimum side lobes and prescribed 
null placement control in the xy-plane or azimuth plane as 
shown in Fig. 1. 

 

 

 

 

 

 

 

Fig. 1.  Geometry of the 2N-element symmetric linear array. 

Besides, the MCS algorithm will be also used to syn-
thesis an optimal linear array in the Chebyshev sense with 
equiripple side lobes radiation patterns. It was assumed 
throughout the experiment that the 2N-isotropic radiators 
were placed symmetrically along the x-axis. The array fac-
tor in the azimuth plane can be stated as [7]  
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where k = 2л/λ is the wave number, and In, φn, and xn are 
the excitation amplitude, phase, and location of the n-th 
element, respectively. For a uniform excitation of ampli-
tude and phase, In is assumed to be 1.0 whereas φn is set to 
0 for all elements. Hence, the array factor can be simplified 
to be as [7]  

 



N

n
nkxnIAF

1
)](cos[cos2)(  . (2) 

Through the above simplification, the newly developed 
MCS algorithm is specifically used to find the locations, xn 
of the symmetric linear array elements with minimum side 
lobes and/or nulls at specific direction. 

3. Modified Cuckoo Search 
The power and beauty of modern metaheuristic comes 

from the capability of emulating the best feature in nature, 
specifically biological systems evolved from natural selec-
tion over millions of years via two important characteris-
tics, which are selection of the fittest in biological systems, 
and adaptation to the environment [18]. Blum and Roli in 
2003 [20] classified two crucial attributes in the modern 
heuristics, which were intensification, and diversification. 
Precisely, intensification aims to search around the current 
best candidates (possible solutions) and through it, selects 
the best solutions, while diversification ensures the algo-
rithm to explore the local or global search space efficiently. 

Cuckoo search (CS) was inspired by the obligate 
brood parasitism of some cuckoo species by laying their 
eggs in the nests of other host birds (of other species). 
Some host birds can engage direct conflict with the intrud-
ing cuckoos. For example, if a host bird discovers the eggs 
are not their own, it will either throw these alien eggs away 
or simply abandon its nest and build a new nest elsewhere. 
Some cuckoo species such as the new world brood-para-
sitic Tapera have evolved in such a way that female para-
sitic cuckoos are often very specialized in the mimicry in 
colors and pattern of the eggs of a few chosen host species, 
thus having a greater chance for the cuckoo’s eggs hatch 
successfully. The simplest approach of using new metaheu-
ristic CS algorithm can be done through three idealized 
assumptions, which are: 1) Each cuckoo lays one egg at 
a time, and dump its egg in randomly chosen nest; 2) The 
best nests with high quality of eggs will carry over to the 
next generations; and 3) The number of available host nests 
is fixed where the egg laid by a cuckoo is discovered by 
the host bird with a measured fraction probability, 
Pa   [0, 1]. In this case, the host bird may throw the egg 
away or may abandon the nest, hence build a completely 
new nest. The third assumptions can be approximated as 
the fraction Pa of the n nests is replaced by new nests (new 
random solutions). Many studies have shown that the flight 
behavior of many animals and insects has demonstrated the 
typical characteristics of Lévy flights [20-23]. Lévy flight 
is defined as a random walk with the step-lengths based on 
a heavy-tailed probability distribution [24]. Consequently, 
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such behavior has been emulated to optimization and 
global optimal search with a promising capability [23], 
[25]. 

In this study, the standard CS algorithm has been 
modified to enhance its performance. In this case, when 
generating new solutions x(t + 1) for a cuckoo i, a Lévy flight 
[18], [19] integrating with the inertia weight, w, which con-
trols the search ability is performed  

 )(.1 λLévy αt
i

xwt
i

x   (3) 

where α > 0 is the step size related to the scales of the 
problem of interest while the product   means entry-wise 
multiplications. Technically, the larger w has greater global 
search ability whereas the smaller w has greater local 
search ability. Based on (3), w was linearly decreased from 
a relatively large value to a small value through the course 
so that the MCS had a better performance compared with 
fixed w settings. 

    maxIteriterwwww /minmaxmax   (4) 

where  wmax = initialWeight, wmin = finalWeight.  

Conceptually, Lévy distribution for large steps 
applied a power law, thus has an infinite variance [24], 
depicted as 

 )31(  λ,-λtLévy~u .  (5) 

Lévy flight is classified as a Markov process where 
after a large number of steps, the distance from the origin 
of random walk tends to a stable distribution. Statistically, 
this is done through the stochastic process with both sta-
tionary and independent increments. In this paper, three 
types of α-stable distribution will be explained and simu-
lated for comparison purposes. The first one is Mantegna’s 
algorithm with α  [0.3, 1.99] as the input parameters [26]. 
In Mantegna’s algorithm, the step v can be calculated as 

 


1
y

x
v    (6) 

where x and y are normally distributed stochastic variables 
with standard deviations, respectively  
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If (6)-(8) are applied, the resulting distribution will 
have the same behavior of a Lévy distribution for large 
values of random variable (|v| ≥ 0). To calculate the step 
size of Lévy flights, v will be then multiplied with n factor 
where n . Normally, n is set to 0.01 from the fact that 
L/100 is the step size of walks or flights where L is the 
length scale of cuckoo’s motions in searching for new nest.  

Proper step size factors must be set to ensure the Lévy 
flights do not be too aggressive, which makes new solu-
tions jump outside of the design domain. 

Secondly, we can use McCulloch’s algorithm to gen-
erate α-stable generation of Lévy flights or noise [27], [28]. 
The algorithm returns matrix of random numbers with 
characteristic exponent α, scale c, and location parameter τ. 
In this case, α must be greater than 0.1 due to the non-neg-
ligible probability of overflow and no skewness (β = 0) is 
assumed. There are three cases to calculate the simplified 
step v of α-stable distribution:  

1) Cauchy case (α = 1) 

   )tan(cv   (9) 

2) Gaussian case (α = 2) 
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3) Other cases (α ≠ 1 or α ≠ 2) 
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where c > 0, w are negative logarithm of random numbers, 
φ are random angles in radians, and for simplicity, τ = 0. 
Thirdly, the simplest way to generate a stable Lévy distri-
bution is by creating standard random walk which has 
a step v constantly equal to one. 

Fig. 2 is the flowchart diagram, which shows the main 
steps of the conventional CS algorithm. Here the concept 
of fitness, F is used to guide the Lévy flights during the 
search for the optimum nest (solution) in the N-dimen-
sional space. The N-dimensional solution refers to the N-
symmetric element positions along the xy-plane. 

In antenna design, the fitness optimization is done to 
examine or analyze scientifically on many aspects depend-
ing on the application wise such as directivity, gain, side 
lobe level (SLL), size, and weight. In this paper, the fitness 
optimization is primarily done to design the geometry of 
a linear antenna steering at the desired direction with mini-
mum average SLL and/or nulls control using the following 
objective function: 
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where [li, ui]‘s are the spatial regions in which the side 
lobe is suppressed, i = ui - li, and k’s are the directions 
of the nulls. Precisely, the first-term on the right-hand side 
of the fitness function focuses on side lobe suppression 
whereas the second-term on the right-hand side is used for 
null control. In this study, the nest’s location vector re-
sulted the minimum value of the fitness function is chosen 
as the best nest’s location (the best normalized elements’ 
locations). 
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Fig. 2.  Flowchart of conventional cuckoo search algorithm. 

Below is the proposed pseudo-code of MCS 
algorithm used to search the optimal excitation location of 
the n-th elements of the symmetric linear array as shown in 
Fig. 1. 

begin 
 Let iter denote the iteration number of MCS. 
 iter ←1; 
 Initialize population of host nests with size n at iter=1;  
 for each iteration 

Operate the Roulette wheel selection to obtain the “fittest” 
host nests with size n; 
Generate a new solution (host nest) but keep the current 
best (say, i) randomly by Lévy flights incorporating with 
inertia weight, w, which controls the search ability 
according to (3); 
Evaluate new solution fitness, Fi according to (12); 
Get a selected host nest among n (say, j) and calculate its 
fitness, Fj according to (12); 
if (Fi < Fj) 
 Replace j by the new solution, i; 
end 
A fraction probability, Pa of worse nests is abandoned and 
a new nest (solution) is built; 
Keep the best nests with quality solutions; 
Rank the solutions and find the current best nest; 

end 
Post-process results and visualization; 

end 

In this case, the best nest is assumed to be as the most op-
timum decision variable (excitation location, x) of symmet-
ric linear antenna array elements. 

4. Simulation Results 
In the preliminary study, four internal parameters in 

both modified CS (MCS) and standard CS optimizers will 
be analyzed specifically on their implicit effects of the 
normalized pattern. The parameters were α, distribution 
type, number of host nest (size of population), and fraction 
probability, Pa (discovery rate). Firstly, we analyzed the 
characteristic of α. In this case, the CS-optimizer with 
nest = 30, Pa = 0.25, step size factor = L/100, along with 
both α = 1.0 (Cauchy) and α = 2.0 (Gaussian) were exam-
ined on the 2N = 10 array, respectively.  

Fig. 3 shows the four normalized patterns after run-
ning through 2000 iterations where the MCS (α = 2.0) out-
performed the MCS (α = 1.0) and the standard CS with 
both Gaussian and Cauchy distributions. On average, the 
MCS (α = 2.0) has the side lobes level (SLL) 2.0-3.0 dB 
lower than other three counterparts whereas the MCS 
(α = 1.0) has a similar performance with the standard CS 
(α = 2.0).  
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Fig. 3.  Normalized pattern vs. α 
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Secondly, we also examined the characteristic of three 
different stable distribution types (as mentioned earlier in 
section 3) particularly on their effects in the normalized 
array pattern for the broadside case (main beam at 90°). 
Fig. 4 clearly indicates the MCS with the Mantegna’s algo-
rithm has the best side lobes suppression with the peak of 
4.0-6.0 dB lower than other two MCS-optimizers and three 
standard CS-optimizers particularly within the direction 
angles domain of [20° 75°] and [105° 160°]. We also 
found that both MCS with the McCulloch’s and standard 
random walk (Lévy flights step, v = 1.0) algorithms had 
a similar performance with other three CS counterparts 
within the [0° 78°] and [102° 180°] suppression region. 

Thirdly, a simulation was also done to find out the 
effect of the number of population (host nest) on the array 
geometry synthesis. In this experiment, both the heuristic 
MCS and CS-optimizers with Pa = 0.25, Mantegna’s stable 
distribution, α = 2.0 (Gaussian), and step size fac-
tor = L/100 were simulated on 2N = 10 linear array using 
three different population sizes (host nest = 10, 20, and 
30), respectively. As shown in Fig. 5, the MCS optimizers 
(nest = 20 and 30) had approximately SLL of 5.0 dB lower 
than the MCS (nest = 10) optimizer and the three CS 
(nest = 10, 20, and 30) optimizers, within the predefined 
suppression region [0° 78°] and [102° 180°]. 
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Fig. 4.  Normalized pattern vs. distribution type. 
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Fig. 5.  Normalized pattern vs. nest. 

Fig. 6 shows all the MCS optimizers were identical in 
terms of fitness convergence level (fmin = 0.0125) regard-

less the number of nest. It happened for CS optimizers too 
(fmin = 0.0119). Moreover, we found that both MCS and 
CS optimizers had a faster convergence rate as the number 
of population (nest) bigger. This was due to the higher ca-
pability or greater probability to find global minimum val-
ues since larger number of population (nest) occupied in 
the fixed search space. Nevertheless, the fluctuations of the 
optimal excitation locations, x tends to be unwavering 
quicker as the number of nest smaller as can be seen on the 
three MCS-optimizers. 
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Fig. 6.  Location and fitness curve for nest = 10, 20, and 30. 

Fourthly, an investigation was done on 2N = 20 linear 
array elements using three different fraction probability, Pa 
values. As shown in Fig. 7, MCS with Pa = 0.05 had the 
best performance (SLL 1.0-2.0 dB relatively lower within 
the [30° 80°] and [100° 150°] suppression domain) fol-
lowed by CS-optimizer with Pa = 0.05. The competitors 
with Pa = 0.95 were the worst ones. Besides that, we also 
found the converged fitness for both MCS and CS-optimiz-
ers with Pa = 0.05 were the lowest ones (fmin= 0.0145 after 
about 250 iterations for MCS and fmin= 0.0134 after about 
400 iterations for CS), respectively.  
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Fig. 7.  Normalized pattern vs. fraction probability Pa. 

Moreover, the converged was higher as the Pa values 
bigger as shown in Fig. 8. This agrees with the CS 
algorithm assumption: Whenever Pa or discovery rate 
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greater, the possibility of egg laid by a cuckoo to be 
discovered by the host bird of other species becomes 
higher. As a result, the cuckoo’s egg (candidate solution) 
could be abandoned or thrown away leading to a new host 
nest searching or replacement done by cuckoo. 
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Fig. 8. Location and fitness curve for Pa=0.05, 0.25, and 0.95. 

Fifthly, there was also a more rigid experimental 
simulation done on the non-broadside case (main beam 
steered to 135°) on 2N = 20 array with three prescribed 
nulls at 20°, 50° and 155°. Both MCS and CS-optimizers 
with three distribution types, nest = 20, Pa = 0.25, α = 2.0 
(Gaussian) and the step size factor = L/100 were run for 
1000 iterations. Fig. 9 generally shows the MCS-based 
arrays with the Mantegna’ algorithm outperformed other 
rivals with the SLL of 2.0-8.0 dB relatively lower than the 
conventional array within the [20° 130°] suppression 
region. It was then followed by MCS with the standard ran-
dom walk algorithm. The CS with the random walk algo-
rithm was the worst one. The CS with the McCulloch’s 
algorithm had the best nulls mitigation at 20° with SLL of  
-69.9 dB, the MCS with the McCulloch’s algorithm at 50° 
with SLL of -59.8 dB, and MCS with random walk at 155° 
with SLL of -49.5 dB, respectively. This also indicated that 
regardless stable distribution type, the MCS and CS opti-
mizers are capable to diminish the side lobes beam while 
maintaining the gain of the steered main beam and control-
ling the prescribed interferers, simultaneously. 
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Fig. 9.  Normalized pattern for 2N=20 array with mean beam 

at 135° and three prescribed nulls at 20°, 50°and 155°. 
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±0.500 ±1.500 ±2.500 ±3.500 ±4.500 

MCS 
Mantegna 

±0.547 ±1.642 ±2.737 ±3.832 ±4.927 

CS 
Mantegna 

±0.538 ±1.615 ±2.693 ±3.772 ±4.847 

MCS 
McCulloch 

±0.542 ±1.629 ±2.714 ±3.800 ±4.883 

CS 
McCulloch 

±0.541 ±1.616 ±2.691 ±3.774 ±4.853 

MCS 
RandWalk 

±0.544 ±1.633 ±2.726 ±3.818 ±4.908 

CS 
RandWalk 

±0.537 ±1.612 ±2.686 ±3.768 ±4.834 

Element 6 7 8 9 10 
Xn 

[λ/2] 
±5.500 ±6.500 ±7.500 ±8.500 ±9.500  

MCS 
Mantegna 

±6.022 ±7.117 ±8.201 ±9.294 ±10.39 

CS 
Mantegna 

±5.922 ±6.995 ±8.065 ±9.246 ±10.32 

MCS 
McCulloch 

±5.969 ±7.046 ±8.140 ±9.224 ±10.30 

CS 
McCulloch 

±5.918 ±6.989 ±8.064 ±9.132 ±10.18 

MCS 
RandWalk 

±5.998 ±7.085 ±8.160 ±9.272 ±10.36 

CS 
RandWalk 

±5.909 ±6.983 ±8.050 ±9.226 ±10.30 

Tab. 1.  Optimal locations for 2N=20 array with mean beam at 
135° and three prescribed nulls at 20°, 50° and 155°. 

Fig. 10 shows the convergence of the location and the 
fitness obtained for all the three distribution types. MCS 
with the Mantegna’s algorithm clearly had the lowest con-
verged fitness (fmin = 0.2713), followed by MCS with the 
standard random walk (fmin = 0.2733), and CS with the 
Mantegna’s algorithm (fmin = 0.2740), accordingly. The 
optimal locations with respect to λ/2 for both MCS and CS 
with three different α-stable distributions versus the con-
ventional ones can be seen in Tab. 1. 
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Fig. 10.  Location and fitness curve for 2N = 20 elements with 

mean beam at 135° and two prescribed nulls at 20°, 
50°and 155°. 

Sixthly, there was also an experimental simulation 
done on using the MCS to optimize the 20-symmetric ele-
ments to generate the Dolph-Chebyshev radiation pattern. 
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In this experiment, the 2N = 20 fixed excitation Dolph-
Chebyshev amplitude, In equals to [1.0000   0.8771 
1.2009   1.5497   1.9052   2.2465   2.5522   2.8022   2.9793 
3.0712] as shown in Fig. 11 was used whereas the excita-
tion phase, φn was set to 0°. Based on Fig. 12, MCS with 
the Mantegna’s algorithm had the best equiripple side lobes 
suppression with the gain relatively 32.1 dB below than the 
main beam followed by both MCS with the McCulloch’s 
and the standard random walk algorithms with 31.9 dB be-
low, respectively. The CS with the McCulloch’s algorithm 
was the worst one with 31.6 dB below the main beam. 
Please refer Tab. 2 for optimal locations with respect to 
λ/2.  
 

Element 1 2 3 4 5 
Xn   

[λ/2] 
±0.500 ±1.500 ±2.500 ±3.500 ±4.500 

MCS 
Mantegna ±0.743 ±2.230 ±3.716 ±5.203 ±6.689 

CS 
Mantegna ±0.526 ±1.578 ±2.629 ±3.681 ±4.733 

MCS 
McCulloch ±0.538 ±1.615 ±2.691 ±3.767 ±4.844 

CS 
McCulloch ±0.500 ±1.500 ±2.500 ±3.499 ±4.499 

MCS 
RandWalk 

±0.584 ±1.751 ±2.918 ±4.085 ±5.252 

CS 
RandWalk 

±0.526 ±1.578 ±2.630 ±3.682 ±4.734 

Element 6 7 8 9 10 
Xn 

[λ/2] 
±5.500 ±6.500 ±7.500 ±8.500 ±9.500  

MCS 
Mantegna ±8.176 ±9.662 ±11.15 ±12.64 ±14.12 

CS 
Mantegna ±5.785 ±6.836 ±7.888 ±8.940 ±9.992 

MCS 
McCulloch ±5.920 ±6.996 ±8.073 ±9.149 ±10.23 

CS 
McCulloch 

±5.498 ±6.498 ±7.498 ±8.498 ±9.500 

MCS 
RandWalk 

±6.419 ±7.586 ±8.753 ±9.920 ±11.09 

CS 
RandWalk 

±5.787 ±6.840 ±7.893 ±8.942 ±9.995 

Tab. 2.  Optimal locations for 2N = 20 Dolph-Chebyshev array. 
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Fig. 11. The Dolph-Chebyshev excitation amplitude for 2N=20 

Fig. 13 shows the MCS with Mantegna’s algorithm 
had the biggest optimal location, x fluctuations before sta-
bilizing after about 800 iterations. Furthermore, we could 
see all the MCS-based optimizers (e.g. fmin = 0.0111 for 
Mantegna, fmin = 0.0114 for McCulloch and fmin = 0.0121 

for standard random walk) had the relatively lower con-
verged fitness compared to CS rivals. This proves that the 
MCS algorithms are capable to enhance the existing origi-
nal CS optimization process through minimizing the global 
fitness at the lowest possible values. 
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Fig. 12. Normalized Dolph-Chebyshev pattern for 2N=20 array 
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Fig. 13.  Location and fitness for 2N=20 Dolph-Chebyshev 

array. 

Seventhly, we performed an experiment on 2N = 30 
symmetric Dolph-Chebyshev array in which the modified 
cuckoo search (MCS) algorithm based array was relatively 
compared with normal CS, genetic algorithms (GA), and 
particle swarm optimization (PSO) based arrays. Both 
MCS and CS optimizers were run for 1000 iterations with 
parameters, e.g. nest = 30, Pa = 0.25, step size factor = 
L/100, and α = 2.0 (Gaussian). The fixed excitation Dolph-
Chebyshev envelope as illustrated in Fig. 14 was used 
whereas for a simplification, the excitation phase, φn was 
set to 0° for all 30 elements. Precisely, the respective 
amplitude, In applied was [0.4235  0.2477  0.3127  0.3827   
0.4564  0.5322  0.6083  0.6826  0.7532  0.8182  0.8756   
0.9238  0.9613  0.9870  1.0000]. The conventional and the 
optimal locations generated by four nature-inspired optimi-
zers with respect to λ/2 of 2N = 30 array are shown in 
Tab. 3. 
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Element 1 2 3 4 5 

Xn[λ/2] ±0.5000 ±1.5000 ±2.5000 ±3.5000 ±4.5000 

MCS 
Mantegna 

±0.7269 ±2.1807 ±3.6344 ±5.0882 ±6.5420 

CS 
Mantegna 

±0.5000 ±1.5002 ±2.5004 ±3.5005 ±4.5007 

PSO ±0.4996 ±1.4996 ±2.4996 ±3.4996 ±4.4996 

GA ±0.5417 ±1.6251 ±2.7085 ±3.7918 ±4.8752 

Element 6 7 8 9 10 

Xn[λ/2] ±5.5000 ±6.5000 ±7.5000 ±8.5000 ±9.5000   

MCS 
Mantegna 

±7.9958 ±9.4495 ±10.903
3 

±12.357
1 

±13.8109 

CS 
Mantegna 

±5.5009 ±6.5010 ±7.5012 ±8.5013 ±9.5015 

PSO ±5.4996 ±6.4996 ±7.4996 ±8.4996 ±9.4996 

GA ±5.9586 ±7.0420 ±8.1254 ±9.2087 ±10.2921 

Element 11 12 13 14 15 

Xn[λ/2] ±10.5000 ±11.500
0 

±12.500
0 

±13.500
0 

±14.5000   

MCS 
Mantegna 

±15.2646 ±16.718
4 

±18.172
2 

±19.625
9 

±21.0797 

CS 
Mantegna 

±10.5013 ±11.501
8 

±12.502
0 

±13.502
1 

±14.5018 

PSO ±10.4996 ±11.499
6 

±12.499
6 

±13.499
6 

±14.4996 

GA ±11.3755 ±12.458
9 

±13.542
3 

±14.625
6 

±15.7090 

Tab. 3. Optimal locations for 2N= 30 Dolph-Chebyshev array. 

The PSO optimizer was constructed with the popula-
tion (particle) equals to 30, max/min velocity of ±0.1 and 
both the individuality and sociality accelerators set to 1.0, 
respectively. The GA optimizer with the Roulette wheel 
selection operators also had a population (chromosome) of 
30, crossover probability of 0.9, and mutation probability 
of 0.1. Based on Fig. 15, all the MCS with the Mantegna’s 
algorithm had the identical highest peak of equiripple side 
lobes gain relatively about 33.35 dB below the main beam 
and relatively 20.10 dB below the highest SLL peak of the 
uniform (conventional) pattern, respectively due to the 
average fitness convergence attainment with the lowest 
value of 0.0023 after about 400 iterations as shown in 
Fig. 16. The highest SLL peak of the uniform pattern pro-
duced by the conventional array was comparatively 
13.26 dB below the main beam. On the other hand, the 
standard CS with the Mantegna’s algorithm had the 
equiripple SLL of relatively about 33.11 dB below the 
main beam or 19.85 dB below the uniform pattern highest 
SLL peak. The GA counterparts had the equiripple SLL of 
33.06 dB, which was 19.80 dB below the uniform highest 
SLL peak. Moreover, we found the PSO based array had 
the equiripple SLL of approximately 32.97 dB below the 
main beam, which was 19.71 dB below the uniform highest 
SLL peak. 
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Fig. 14. The Dolph-Chebyshev excitation amplitude for 2N=30. 
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Fig. 15.  Normalized pattern for 2N = 30 Dolph-Chebyshev 

array. 
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Fig. 16.  Location and fitness for 2N = 30 Dolph-Chebyshev 

array. 

5. Conclusions 
It is important to identify and understand the impera-

tive characteristics of the entire internal modified cuckoo 
search (MCS) and standard CS parameters and fine-tune 
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them before running with a sufficient maximum number of 
iterations to achieve the utmost convergence of optimal 
locations (solutions) and fitness. This can be made through 
the analysis of the internal parameters values and their ef-
fects on the array performances. As a matter of fact, vari-
ous MATLAB™ simulations showed that the MCS meta-
heuristic algorithm with the appropriate internal parameter 
settings was proven can optimize the locations of linear 
array symmetric elements or isotropic radiators in the xy-
plane to exhibit radiation patterns with clear suppressed 
side lobes and/or nulls mitigation in certain direction of 
arrivals while maintaining the gain of the main beam. This 
includes either for broadside case or non-broadside case 
(where the main beam steered to directions other than 90°) 
as required. In all cases, the MCS algorithm outperformed 
the normal CS counterparts due to its unique features, 
which are the Roulette wheel selection operator to obtain 
the “fittest” host nests and the dynamic inertia weight, w 
coefficient which controls the global search ability. The 
MCS algorithm was also proven slightly better than other 
evolutionary algorithm (EA) techniques, e.g. PSO and GA 
in suppressing side lobes at the minimum possible value 
below the main beam. Perhaps, more extensive study on 
symmetric linear array with N-elements will be made in the 
future to use the multiobjective MCS algorithm to optimize 
more than one decision variables simultaneously includes 
the excitation amplitudes and phases along with locations 
under the uniform and Dolph-Chebyshev environment. 
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