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Abstract. We briefly review Mason’s rule for the computa-
tion of RF-network problems and show its implementation
into the software package freeMASON. This tool solves sym-
bolically Mason’s rule for any wave quantity and allows to
derive analytical expressions as well as their functional eval-
uation. We demonstrate our approach studying the effect of
an unbalanced magictee on the RF power distribution to two
accelerating cavities.
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1. Introduction
Particle accelerators use RF-systems for the accelera-

tion of charged particles. The RF-system typically consists
of an RF amplifier, transmission lines, a power distribution
system, accelerating cavities, and a control and feed-back
system. The number of cavities depends on the accelera-
tor size and the required beam energy. In general we can
distinguish two different system topologies: one transmit-
ter/amplifier feeding a single cavity or one amplifier feeding
several cavities [1]. In the latter case the RF power is split
and distributed, e.g., by means of waveguide systems such
as magictees. The phase and amplitude of the accelerating
field in the cavities is controlled by an RF feed-back system.
Differences in the waveguide length to the cavities and es-
pecially unbalances in the power splitting have to be tightly
controlled. In addition, the cavities are never identical and
cause further variations in the field distribution. Phase differ-
ences can be adjusted using variable phase-shifters, compare
e.g. [2]. Differences in amplitude are more difficult to miti-
gate.

The design and optimization of power distribution sys-
tems by means of standard numerical tools such as FDTD
or FEM codes suffer from high computational effort, e.g.
for the description of many meters of conventional waveg-
uide, and the accurate resolution of the transmission phase
in electrical long structures, e.g., [3]. Numerical models of
the different components may not always be available.

An RF network problem can be conveniently described
and analyzed by means of scatter parameters [4] and flow
graphs [5]. The former allow for a description of the dif-
ferent devices only by means of measured or model S-
parameters, the latter can be calculated using, e.g., Mason’s
rule [6], [7]. Interconnecting waveguides and cables are sim-
plified as transmission lines. This way, the network problem
can be solved analytically, however laborious it may be.

In this paper we show how the network analysis can be
performed symbolically by a computer – without risk of any
arithmetic errors – yielding analytical expressions for any
of the transfer functions. Notice that a symbolic approach
performs mathematical operations on the symbols of the dif-
ferent quantities without assigning any values. This has the
following advantages in comparison to numerical computa-
tions:

• The effect of all parameters becomes evident as it can
be tracked in the formulae.

• The complexity of the problem can be reduced by tak-
ing out parameters while maintaining full control over
the model and its error.

• The analytical expressions for the transfer functions
can be solved for certain parameter in order to chose the
appropriate range or even prove mathematically that
some states can not be obtained (if no solution exists).

The aforementioned method is well suited for the op-
timization of complex RF networks such as the Linac4 RF
power distribution system [8], the identification of critical
network components, or drawing up parameters for compo-
nents within a multiple interconnected system.

2. RF Power Distribution System
Fig. 1 shows a simplified version of a power distribu-

tion problem. Two cavities are fed by an unbalanced, but
otherwise ideal magictee (see Appendix). The magictee is
fed by a klystron from the ∑-port (sum) and the ∆-port (dif-
ferential) is closed by a load of −30 dB reflection at an ar-
bitrary phase of zero degrees. The reflected phases of the
two cavities, φ1 and φ2, are depending on the power coupler,
tuner position and the tune state of the cavity, and considered
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Fig. 1. RF-Network problem: Two cavities are fed by an ideal,
but unbalanced magictee. The magictee is fed from the
sum port while the differential port is closed by a load.

as variable for this example. Effects such as beam loading
are disregarded and the magnitude of the reflection coeffi-
cient is assumed to be 1. The power splitting in the magictee
can be varied from all power at port 3, i.e., k = −1, to all
power at port 2 for k =

√
2− 1. For k = 0 the magictee is

perfectly balanced.

In the following we investigate how the amplitude and
phase of the waves fed to the two cavities, b2 and b3, change
with the unbalance k and the cavity reflection angles φ1 and
φ2. Furthermore we study the effect on the power reflected
to the klystron, b1, and the power deposited in the load b4.

The chosen example is rather simple in order to facili-
tate the understanding of the presented method as well as to
allow for comparison with other ways of computation. Nev-
ertheless, the problem was triggered by work for the Linac4
high power RF distribution system [8].

3. Mason’s Rule
Mason’s rule is a technique to derive the transfer func-

tion of a given network or circuit problem from the flow
graph. The rule is also known as non-touching loop rule or
Mason’s gain formula [6], [7].

The transfer function T b
a is the mathematical repre-

sentation of the relation between an input quantity a and out-
put quantity b of a linear time-invariant system in frequency
domain, e.g., the reflection and transmission coefficients of
S-matrices.

A flow graph consists of nodes representing the net-
work quantities such as forward and backward traveling
waves, and branches, i.e. the directed, immediate and
weighted connection between two nodes. In our example, a1
and b1 are nodes and every S-parameter constitutes a branch.
Furthermore, the interconnection between two S-matrices by
means of identities, e.g. b3 = aC2, defines a branch with
weight 1. The flow graph of the network problem described
above is shown in Fig. 2.

For the explanation of Masons’s rule we introduce the
following terms: A path P is an indexed list of unique
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Fig. 2. Signal flow graph of the network problem in Fig. 1.

branches connecting two nodes. A path with identical start
and end node is called a loop L . Two paths/loops are denoted
as non-touching if they do not have any node or branch in
common. A set of n pair-wise non-touching loops is called
a multi-loop of n-th order, Ln. Loops are considered as
multi-loops of 1st order.

The product of the weights of all branches of the path
Pi is called the path product Pi. The product of the weights
of the n-th order multi-loop, Ln

j , is denoted as loop prod-
uct Ln

j . We further define L0 = 1. The transfer function T
between the nodes a and b reads,

T b
a =

#P
∑

i=1
Pi

N
∑

n=0
(−1)n

#Ln

∑
j=1

Ln
j |Pi

N
∑

n=0
(−1)n

#Ln

∑
j=1

Ln
j

(1)

where #P denotes the number of different paths Pi between
the two nodes, N the maximum order of multi-loops of the
network and #Ln the number of multi-loops of order n. For
a non-touching multi-loop Ln

j . The expression Ln
j |Pi returns

the loop product Ln
j if Pi and Ln

j are non-touching and zero
in all other cases.

4. freeMASON
Mason’s rule was implemented in the software pack-

age freeMASON [9] using the symbolic features of MATH-
EMATICA1. For a given flow graph freeMASON can con-
struct the analytical expressions for the transfer function be-
tween any two nodes. The result can be used for functional
analysis such as analytical minima determination, approxi-
mations and parametric plotting, or optimizations.

Based on user supplied sets of S-matrices and corre-
sponding forward/backward traveling wave quantities a list
of branches is created. The list is completed by identities

1WOLFRAM RESEARCH, INC., Mathematica Edition: Version 7.0, 2008.
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Fig. 3. Example file using freeMASON from top to bottom: 1.)
Defining a list of symbols for the S-Matrices and wave
quantities, 2.) connecting the ports of the different n-
ports by means of the in- and outgoing wave quantities,
3.) providing relative coordinates for all wave quantities
allowing for graphical display of the flow chart, 4.) defin-
ing labels for the graphical display, 5.) automatic anal-
ysis of the network creating all paths and multi-loops,
and 6.) determining of the transfer function between two
wave quantities.

providing the interconnections of the different S-matrices,
see Fig. 3. The input data can be verified by means of auto-
matically created labeled flow graphs as shown in Fig. 2.

Starting once from every node, the graph is recursively
traversed building a list of all possible paths. The recursion
stops when no branch can be added to the current path with-
out including a branch twice. It is worth mentioning that
all comparisons are performed symbolically and therefore it
can only be decided whether two symbols are identical, but
not whether they are different. From the list of paths a list
of loops can be extracted searching for all paths with iden-
tical start and end nodes. Every loop of m branches will be
found exactly m times due to the way the list of paths is gen-
erated. Therefore, the list of loops is reduced to a list of
unique loops.

The table of multi-loops is built from the list of unique
loops in an iterative way: The list of unique loops is iden-
tical with the multi-loops of order 1. By pair-wise compar-
ing multi-loop elements of order (n− 1) with elements of
order 1, the non-touching multi-loops of n-th order are gen-
erated.

The transfer function between any two nodes is con-
structed by selecting the corresponding paths and multi-
loops and building the symbolical expression according
to (1). The result can be further reduced by replacing
branches by their numerical values or using the powerful
MATHEMATICA feature FullSimplify[ ]. For a full nu-
merical evaluation of the obtained expressions, e.g for plot-
ting, the user has to provide values for the S-parameters from
measurements, specification documents or numerical simu-
lations.

Alternatively to the approach with Mason’s rule, prob-
lems of concatenated S-matrices can be solved by means of
the MATHEMATICA application CSC [10]. This approach
is based on the analytical derivation of the S-matrix for the
complete system taking into account the singularities of in-
ternal resonances. While CSC provides the full system ma-
trix of the network problem, freeMASON returns only the
transfer functions for beforehand selected nodes - at the in-
terface, but also on the inside of the system.

5. Study of the Network Problem
We are now using Mason’s rule and its implementation

to solve the network problem. For a given input from the
sum port a1 we determine the transfer functions to the two
cavities, T b2

a1 and T b3
a1 , and to the load, T b4

a1 , as well as the re-
flection to the klystron, T b1

a1 . In the first case, T b2
a1 , we show

all intermediate steps illustrating Mason’s rule.

5.1 Transfer Function between Klystron
and Cavities
Fig. 4 shows the table of multi-loops detected for the

network shown in Fig. 2. The number of unique loops or
first order multi-loops is 8. The maximum order of multi-
loops is 3, i.e. the combination of loop number 1, 6 and 8.
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Fig. 4. Multi-Loops L for the network in Fig. 2.

Between the nodes a1 and bC1 we can identify 5 dif-
ferent paths, see Fig. 5. Here path P1 does not touch the
1st order multi-loops L1

6 , L1
7 and L1

8 , and the multi-loop of
2nd order L2

6 . The path P2 does not touch L1
8 and path P4 is

non-touching to L1
6 (see Figs. 4 and 5).
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Fig. 5. All paths P between the input from the klystron to cavity
1, i.e. between the nodes a1 and b2.

The complete and symbolic expression for the transfer
function T b2

a1 is bulky and shown only for educational inter-
est in Fig. 6 (next page). Using, however, the values for the
unbalanced magictee SMT from (9), the transfer function can
be greatly simplified,

T b2
a1 =

SMT
12 (1−SL((SMT

12 )2 +(SMT
13 )2)SC2)

1−SL(SMT
13 )2SC1−SL(SMT

12 )2SC2 . (2)

Fig. 7 shows the power transmitted to cavity 1 (mod-
ulus square of the transfer function) versus the unbalance k
while varying the phase of the reflection of the cavity. In
the same figure we show the power transmitted to cavity 2.
For both, the phase of the reflection of cavity 2 is assumed
to be constant 0o. Notice, that even in the case of an ideal
and balanced magictee (k = 0), the output to the two cavities
shows different values depending on the phase difference of
the reflected waves. This is due to the finite reflection of the
load at the differential port.
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Fig. 7. (top) Power transfer to the two cavities versus unbalance
k for different values of reflected phase from cavity 1,
φ1 = −180o...180o. The phase of the reflection from
cavity 2 is assumed to be constant 0o. The dashed black
lines indicate the transmission coefficients of the mag-
ictee, |SMT

12 |2 and |SMT
13 |2, respectively. (bottom) Contour

plot for the difference between the power fed to cavity 1
and 2. The gray lines represent an increase of the differ-
ence of 2% starting at 0 (red line). The arrow signifies
the maximum range over which k can be used to com-
pensate for power differences stemming from the phase-
difference.

5.2 Compensating Amplitude Differences
with the Magictee Unbalance

The unbalance of the magictee, if deliberately intro-
duced, could be used to compensate for the aforementioned
effect. Assuming a reflected phase φ2 = 0 and using the pa-
rameters from (7) and (8), the ratio of the two transfer func-
tions to the two cavities yields:

T b2
a1

T b3
a1

=
SMT

12
(−1+SL ((SMT

12 )2 +(SMT
13 )2

)
SC2)

SMT
13
(−1+SL ((SMT

12 )2 +(SMT
13 )2

)
SC1)

=

√
1− k(2+ k)

1+ k
γ (3)

where j is the imaginary unit and γ(φ1) = −1+e jφ1 SL

−1+SL . For an
equal power distribution we solve the modulus of (3) to be 1:

k =
√

2

∣∣∣γ∣∣∣√
1+
∣∣∣γ∣∣∣2 −1. (4)

For the presented example the power can be balanced be-
tween the two cavities for any value of φ1 with values of k
between 0 and −0.0321, see Fig. 7. Aiming for equal power
and identical phase, (3) k becomes complex,

k =
√

2
γ√

1+ γ2
−1, (5)

and only returns real values for k(φ1 = 0) = 0 and k(φ1 =
2.8241 6= 0) = 0.1047. This means only for an ideal mag-
ictee and confirms the findings in the last paragraph. Notice,
that only by means of the analytical approach we obtained
the conditions for equal power splitting in magnitude and
phase as well as the proof that the solution is unique.

5.3 Reflection and Load Deposition
Fig. 8 shows the reflection to the klystron as well as

the transfer function from the klystron to the load. As could
be expected from the high isolation of an ideal magictee fed
from the sum port, the reflection decreases with increasing
phase difference while the transfer to the differential port
(load) increases. This characteristic weakens with increas-
ing values of |k|. Notice that for k = 0 and |φ1−φ2|= 180o

the reflection to the klystron remains finite depending on the
load properties.

6. Conclusion
Implementing the graphical Mason’s rule into the

symbolical environment of Mathematica allows to perform
fully analytical evaluations of generic RF-network problems.
Transfer functions are accessible for parametric studies, ap-
proximations and optimization. The influence of any prop-
erty of the interconnected devices on the transfer function
through the RF network can be analytically determined and
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Fig. 6. Symbolical expression for the transfer function T b2
a1 between the input from the klystron to cavity 1. Notice that the squared brackets

[...] are used to structure the expression. The different terms in the sums are sorted by the respective order of the multi-loop. The first
summand on the numerator consists of the path P1 and all multi-loops (L0 = 1,L1

6 ,L1
7 ,L1

8 ,L2
1 ) with sign according to their order.

evaluated. This can significantly reduce the computational
effort compared to numerical parametric scans, especially
for problems with many parameters. Furthermore, the an-
alytical expression for the transfer function allows for the
identification of internal resonant loops.

A magictee with a small, yet controlled unbalance can
be used to compensate for power deviations due to phase dif-
ferences. The power splitting between sum and differential
port with phase difference of the signals from the two output
ports changes with increasing unbalance in favor of the sum
port.

Fig. 8. (left) Reflected power to the klystron for different values
of k = −1...

√
2− 1 and |φ1 − φ2|. (right) Power trans-

mission to the load for for the same input parameters.
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Appendix

We define an magictee as ideal, if it is symmetric, loss-free
and reciprocal. The ports 1 and 4 are also denoted as sum
and differential port, respectively. The S-matrix is given by

Sideal =
1√
2


0 1 1 0
1 0 0 1
1 0 0 −1
0 1 −1 0

 . (6)

The S-matrix for the ideal magictee, (6), can be mod-
ified in order to include an unbalance between the ports 2
and 3. We arbitrarily add a term k√

2
to Sideal

12 ,

SMT
12 = Sideal

12 +
k√
2

=
1+ k√

2
(7)

with k between 0 for balanced output and
√

2−1 for output
only to port 2. For a loss-free network the S-matrix fulfills
the condition SMT((SMT)T )∗ = 1. This results in
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SMT
13 =±

√
1− (SMT

12 )2 =−
√

1−2k− k2

2
, (8)

deciding for the negative sign in the second term. Both co-
efficients are displayed in Fig. 7. Alternately applying the
loss-free and reciprocity condition, SMT

i j = SMT
ji , we obtain:

SMT =


0 SMT

12 SMT
13 0

SMT
12 0 0 SMT

13
SMT

13 0 0 −SMT
12

0 SMT
13 −SMT

12 0

 . (9)
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