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Abstract. This paper deals with a prospective approach of 
modeling, design evaluation and error determination 
applied to pipelined A/D converter architecture. This is in 
contrast with conventional ADC modeling algorithms tar-
geted to extract the maximum ADC non-linearity error. 
Our innovative approach presented in this paper allows 
decomposing magnitudes of individual error sources from 
a measured or simulated response of an ADC device. De-
sign Evaluation methodology was successfully applied to 
Nyquist rate cyclic converters in our works [13]. Now, we 
extend its principles to pipelined architecture. This quali-
tative decomposition can significantly contribute to the 
ADC calibration procedure performed on the production 
line. This is backgrounded by the fact that the knowledge of 
ADC performance contributors provided by the proposed 
method helps to adjust the values of on-chip converter 
components so as to equalize (and possibly minimize) the 
total non-linearity error. In this paper, the design evalua-
tion procedure is demonstrated on a system design example 
of pipelined A/D converter. Significant simulation results of 
each stage of the design evaluation process are given, 
starting from the INL performance extraction proceeded in 
a powerful Virtual Testing Environment implemented in 
Maple™ software and finishing by an error source simula-
tion, modeling of pipelined ADC structure and determina-
tion of error source contribution, suitable for a generic 
process flow. 

Keywords 
Pipelined A/D converter, ADC modeling, design 
evaluation, integral and differential non-linearity, 
error determination. 

1. Introduction 

1.1 Novel Design Evaluation Approach 
Verification of design performance and subsequent 

device calibration of an A/D converter is a challenging 
task. This is backgrounded by the fact that the ADC per-
formance depends on many parameters of the analog 

design part. This becomes apparent especially in complex 
design structures, such as pipelined A/D converters where 
the number of circuit components is high due to partition-
ing into several stages. Therefore, it is very uneasy to de-
velop an explicit expression of the ADC performance con-
tributors, represented in this case by the error sources of 
underlying circuit instances. Prior works were focused 
predominantly on a classical ADC modeling and design 
approach [1], [2] providing only the information about the 
maximum INL and DNL values, with no subsequent search 
for the root-cause error contributors. Interesting approach 
of pipeline ADC calibration was described in [3], [4]. Un-
fortunately, its application in our work is difficult as the 
method is dedicated for the post-fabrication measurement 
rather than design evaluation focused in this paper. 

In contrast to this, the innovative approach of design 
evaluation presented in this article is capable to extract the 
magnitudes of individual error sources contributing to the 
ADC performance. Assigning an error mechanism to 
a specific circuit component or a group of instances, effi-
cient ADC device calibration is possible. At this point, it 
should be emphasized that the design evaluation approach 
developed throughout our article represents an efficient 
tool for design optimization as an inherent part of the inte-
grated circuit design flow. 

1.2 Modeling and Parameter Extraction of 
Pipelined ADCs 
The basic building blocks of pipelined ADCs [6] are 

organized into consecutive stages, each containing a sam-
ple&hold (S&H), a low-resolution ADC and DAC, and 
a summing circuit that includes an inter-stage amplifier. In 
our work, a combination of the pipelined architecture with 
a flash converter type is implemented into converter stages. 
The combined pipelined-flash ADC provides an optimum 
balance of speed and resolution, with respect to the power 
dissipation and the chip size. Therefore, this ADC type 
becomes increasingly attractive in data conversion. To 
optimize the pipelined ADC design, performance extrac-
tion is necessary as the first step of the evaluation proce-
dure. For this purpose, we developed a powerful Virtual 
Testing Environment (VTE) [13]. The VTE proposed is 
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From the simulated patterns [12] it is obvious that the 
ADC system response to the error mechanisms can be 
classified into two basic groups. In the first error group, the 
principle of linear scaling and superposition is valid, i.e. the 
magnitude of the INL and DNL characteristic is directly 
proportional to the error level [5]. In the second group of 
error sources represented by the inter-stage gain error, the 
linear superposition principle is violated. This is back-
grounded by the quantization of INL contributions from the 
ADC stages, induced by a set of specific threshold values 
of error sources. Particularly, if the error source magnitude 
exceeds a specific value, a significant change of the corre-
sponding INL contribution is invoked.  

The INL response of the tanh-shaped distortion of the 
inter-stage gain block belongs to a special category in the 
error mechanism simulation. Since this error mechanism 
describes a non-linear process, the particular influence of 
other error sources has also to be taken into account; in our 
case, we consider two values of the inter-stage gain error 
[12]. Apparently, the non-linear distortion creates a mask-
ing effect, breaking down the dependency of INL response 
on the ig_error level. However, for the tanh-shaped error 
level being sufficiently low, the ig_error influence is still 
well observable. Because of the masking effect, the tanh-
shaped distortion has to be kept at a sufficiently low level 
in practical design considerations. In such a case, the non-
linear effects can be separated in a systematical way so as 
to allow further decomposition process. 

4. Design Decomposition and 
Performance Fitting 

4.1 Decomposition Algorithm Background 
This section introduces the innovative design decom-

position flow carried out to the end of this article. Based on 
the simulated INL contribution of particular error sources 
present in the ADC model, we will demonstrate how the 
error sources and their combination will affect the total 
INL error. Specifically, the design decomposition will be 
understood in the sense of identification of the major com-
ponents and their magnitudes in a simulated ADC device 
characteristic. As the “real” measured or simulated INL 
characteristic of a transistor-level ADC device was not 
available at the time of writing this article, a set of 
“pseudo-real” characteristics generated by the ADC model 
was used instead. Despite this fact, the decomposition pro-
cedure described below provides a valuable feedback to the 
modeling procedure. 

Applying the linear superposition principle (proven 
for an ADC response e.g. in [9], [10]), the resulting INL 
characteristic can be decomposed into a weighted sum of 
INL characteristics associated with individual error mecha-
nisms. It is important to note that in our work, we demon-
strate a suitable extent of the superposition principle to the 
set of linearly independent INL contributors which are 

generated by magnitude variation of a single error source. 
Particularly, it is the case of the ig_error source which 
clearly violates the linearity assumption, but nevertheless 
can be attached into the decomposition flow. Fulfilling the 
conditions defined in Section 3.2, we arrange the remaining 
error contributors into the model matrix Bmod: 
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Apparently from (3), the model matrix contains one 
column per each error source contributor. Note that INLg1 
to INLg6 correspond to the INL contribution generated by 
various magnitudes (100 ppm, 200 ppm, 500 ppm, 
1000 ppm, 2000 ppm, 5000 ppm) of the inter-stage gain 
error in the first stage, as it is defined by (1c). Analogously, 
INLt1 to INLt3 correspond to the INL contribution generated 
by various magnitudes (500 ppm, 2000 ppm, 8000 ppm) of 
the tanh-shaped error, as it is defined by (2) and INLoff 
denotes the offset error contribution as it is defined by (1b). 
The decomposition of the device characteristic INLmod is 
given by:  

 LACKINL ��� x�modmod  (4) 

where N
mod RINL 2�  is the total characteristic of the pipelined 

ADC model, x is the vector of weights of individual error 
sources, N

LACK R2��  denotes the lack-of-fit underlying error 
mechanisms not captured by the model matrix Bmod. As the 
first design decomposition step, we estimate the vector of 
weights as:  

 � � ,~
modmod INLesLeastSquar Bx � . (5) 

Subsequently, the lack-of-fit is calculated as follows: 

  ~
modmod xB��� INLLACK . (6) 

4.2 Practical Algorithm Implementation 
For practical use with pipelined ADC, the design de-

composition procedure established by (3)-(5) needs to be 
enhanced by determination of error source magnitudes 
from the components of the vector x~ . With respect to the 
simulation result, the offset error fulfills the linear superpo-
sition principle with respect to the INL response. 

For the gain error source, the situation is a bit more 
complicated, as we need an iteration search procedure to 
find the error source magnitude. This can be done by the 
following algorithm: 

 )}.(: modBesLeastSquarx �  (7) 

The algorithm body (7) described above is repeated in 
a loop until x([iiter]-1)2 < �. Here, Bmod is the model matrix 
with selected INL components INLgain, INLoffset and INLtanh.  

The concrete asset of the practical algorithm imple-
mentation is apparent from Fig. 5 (reduced for IG error to 
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