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Abstract. This paper introduces new possibilities within 
two-dimensional reconstruction of internal conductivity 
distribution. A new algorithm for the conductivity recon-
struction was developed. This algorithm utilizes the inter-
nal current information with respect to corresponding 
boundary conditions and the induced magnetic field meas-
ured outside the object. A series of computer simulations 
has been conducted to assess the performance of the pro-
posed algorithm within the process of estimating electrical 
conductivity changes in the lungs, heart, and brain tissues 
captured in two-dimensional piecewise homogeneous chest 
and head models. The reconstructed conductivity distribu-
tion using the proposed method is compared with that 
using a conventional method based on Electrical Imped-
ance Tomography (EIT). The acquired experience is dis-
cussed and the direction of further research is proposed. 
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1. Introduction 
An image reconstruction technique based on imped-

ance tomography has been an active research topic since 
the early 1980s. Since this time, there have been significant 
efforts to produce cross-sectional images of impedivity 
(conductivity and permittivity) distribution inside the hu-
man body using boundary measurements of current-voltage 
data. This technique is commonly called Electrical Imped-
ance Tomography [1]. An interesting overview of different 
possibilities within general tomography techniques and 
their recent applications can be found in [2], [3].  

Based on many other published studies, it is possible 
to say that medical imaging has been one of the prominent 
applications of EIT. Biological tissues have different elec-
trical properties that change with cell concentration, cellu-
lar structure and density, molecular composition, mem-
brane characteristics, and other factors. Consequently, the 

properties reflect structural, functional and pathological 
conditions of the tissue and can provide valuable diagnos-
tic information. Many researchers have tested out the elec-
trical conductivity of tissues and shown that there is a dif-
ference in conductivity between a normal and a fatigued 
tissue and between a healthy and a pathologic tissue [4]. In 
[5], the author has used the degree of resistance of the 
brain tissue to an electric current as a means of differenti-
ating between the normal brain and a tumor tissue on the 
operating table. The conductivity of normal tissues has 
been measured experimentally; other details can be found 
e.g. in [6-8]. Further, we will focus on conductivity only 
since it constitutes an important physical index that can 
indicate conditions of tissues or organs.  

In recent years, numerous studies have attempted to 
develop algorithms which reconstruct cross-sectional con-
ductivity images from Magnetic Resonance Electrical 
Impedance Tomography (MREIT) [9-12]. The question of 
using the MREIT for recovering the interior object con-
ductivity  when the current is applied on its boundary is 
very often discussed. The injecting currents produce 
a magnetic field which has been used together with meas-
ured voltage-current data for recovering the conductivity 
distribution. While the EIT suffers from the ill-posed 
nature of the corresponding inverse problem, the MREIT 
has been presented as a conductivity imaging modality 
providing images with better spatial resolution and accu-
racy. Unfortunately, by injecting current through surface 
electrodes we measure only one component of the induced 
internal magnetic flux density using an MRI scanner. In 
order to reconstruct the conductivity distribution inside the 
imaging object, most algorithms in the MREIT have re-
quired multiple magnetic flux density data during the in-
jection of at least two independent currents [13].  

In this paper, one direct method for reconstructing the 
internal isotropic conductivity is proposed; it is necessary 
to know only one component of magnetic flux density data 
when injecting one current into the imaging object through 
a single pair of surface electrodes. Firstly, the proposed 
method reconstructs the density of a projected current, 
which is a uniquely determined current from the measured 
one component of the magnetic flux density outside the 
imaging object. Using the relation between the electric 
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field and the current density, based on Ohm’s law, the 
additional condition can be introduced to an implicit matrix 
system for the determination of internal conductivity dis-
tribution.  

Here, the described techniques utilize internal infor-
mation on the induced magnetic field in addition to the 
boundary current-voltage measurements to produce images 
of internal current density and conductivity distributions. 
In this paper, a new way to obtain these distributions with-
out the knowledge of voltage data on the boundary of the 
proposed testing object is presented. It is shown that this 
technique can be applied conveniently to identify the loca-
tion of regions with different conductivity values or to 
identify local changes of these values. 

2. Basic Theory 
The current density J in a linear medium with the 

interior electrical conductivity  can be obtained from 
the electric field E or the corresponding potential distribu-
tion U  

 gradU     J E . (1) 

The impedance tomography problem is a recovery of the 
conductivity distribution satisfying the continuity equation 

 div 0J . 

Now we consider the two-dimensional numerical model 
with NE linear triangle elements with NU nodes (see e.g. 
Fig. 1). We approximate (1) from nodal values Ui using 
linear approximation functions Ni(x, y) on a grid of linear 
triangular finite elements 
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Then we can describe the current density J(e)(x, y) on each 
element (e) by (3) 
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where σ(e) and Nj
(e)(x, y) are the conductivity and the linear 

approximation function on element (e). We now consider 
that the current is injected into a two-dimensional electri-
cally conductive object. The induced magnetic flux density 
B corresponding to J can be described using the Biot-
Savart law. If the magnetic flux density B due to the injec-
tion current is known from the measurements, an image of 
the corresponding internal current density distribution J 
can be obtained from, for example, Ampere´s law 

 0rot / J B .      

This method naturally requires the knowledge of all com-
ponents of a magnetic field; therefore, in the following 
text, we will propose a simpler procedure. The magnetic 

field Bi can be calculated numerically in the general point 
given by coordinates [xi, yi, zi] using the Biot-Savart law 
and the principle of superposition  
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where NE is the number of elements, Jj is the current den-
sity on element j, ∆Vj represents the volume of element j, 
and Rij represents the distance between the centre [xj, yj, zj] 
of element j and the point [xi, yi, zi]. The components of 
magnetic field can be expressed 
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It is obvious that, to obtain the NE pair of Jx and Jy compo-
nents of a current density, we have to know either the same 
number of Bx and By components or the double number of 
Bz component of a magnetic field. Let us suppose we know 
the 2 NE values of Bz; then, each of them is given  
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The matrix notation of 2NE algebraic equations is  
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From (5) we can obtain the source current density 
distribution very easily 

 1
R
 J K B . (6) 

 
Fig. 1. An arrangement for numerical simulations. 

The conductivity reconstruction process is usually 
presented as the minimization of the primal objective 
function U(), which can be based on the Method of 
Least Squares and the Tikhonov regularization method [1] 
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Here, UM, UFEMb are the measured and calculated voltages 
on the object boundary, α is a regularization parameter, L 
is a suitable regularization matrix,  is the unknown vector 
of conductivity distribution inside the object. After 
applying the Newton-Raphson method, the iteration 
procedure can be obtained 

T T 1 T T
1 ( ) ( )i i i i i i i  
    σ σ σJ J L L J U L L . 

Here, i is the i-th iteration and J is the Jacobian  

 FEMb ( )


i

U
J


. 

This way we look for such conductivity distribution which 
minimizes the difference between the measured and calcu-
lated voltages on the boundary UM, UFEMb. The size of UM 

depends on the number of measuring electrodes and the 
number of current patterns.  

However, the above-described solution is not the only 
one possible. We can also minimize the difference between 
current densities JM and JFEM on the elements. The JFEM 
vector corresponds to calculated voltage UFEM and it can be 
computed using UFEM and (3). The JM vector can be ob-
tained from the measured value of magnetic field using (6). 
Then, the object function K() can be described 
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The meaning of parameters α and L is the same as that 
mentioned above. If we apply the Newton-Raphson 
method, we obtain the iteration procedure  
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Here, i is the i-th iteration and JI is the corresponding 
Jacobian  
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In the following part, an example is shown of the 
magnetic field distribution, the corresponding surface cur-
rent density distribution, and the influence of nonhomoge-
neity inside the tested sample. From the difference of cur-
rent density J in the samples without nonhomogeneity and 
with nonhomogeneity, we can obtain the conductivity dis-
tribution using the conditions on the boundary between two 
media with different conductivities. The forward solution 
system equation can be described using the Finite Element 

Method  
 FEM( ) ( )  K U F . 

The forward operator UFEM  

 1
FEM ( ) ( )  U K F  

can be calculated more effectively if we know the conduc-
tivities on all boundary elements. In this case, we can 
recalculate very easily, using (3), the potential Ub at the 
corresponding Nb boundary nodes, see Fig. 1. This means 
that the number of equations NU for the forward solution 
can be reduced to (NU – Nb) equations and that we can save 
the computational time. 

3. Numerical Simulations 
The basic arrangements of the average conductivity 

distribution of healthy tissues in the slice of a chest and 
a head can be seen in Fig. 2 (NE = 300, NU = 167) and 
Fig. 3 (NE = 2360, NU = 1237). The finite element mesh for 
each simulation model was created by using program 
Ansys 12.0; then regions representing the different types of 
biological tissues were chosen. The chest model has 20 cm 
diameter. The width of head model is 14.40 cm and its 
height is 19.95 cm. 

 
Fig. 2. A chest model for the reconstruction of conductivity 

changes in heart or lungs. 

 
Fig. 3. A head model for the reconstructions of conductivity 

changes. 
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In Fig. 2, the simplified model represents the chest 
with just three homogeneous isotropic layers: lung (dark 
blue color), heart (brown color) and body tissue (blue 
color). The next simulation model presented in Fig. 3 is 
a simplified model of the human head, which consists of 
four homogeneous isotropic layers: gray and white matters 
(orange and blue colors), the skull (dark blue color), and 
the scalp (brown color). Therefore, it is necessary to know 
only values of average regional conductivities of chest 
tissues and head tissues of corresponding models for reali-
zation of image reconstruction. 

The knowledge and the easy monitoring of tissue 
conductivity changes are very useful and crucial in clinical 
medicine for diagnostics and during the therapy. The con-
ductivity values of different biological tissues used for the 
following simulations are presented in Tab. 1; these values 
were taken from previously published literature on this 
topic, see [14].  
 

Tissue Conductivity [S/m] 
Heart 0.667 
Lung 0.100 

Body tissue 0.333 
Gray matter 0.352 
White matter 0.147 

Skull 0.087 
Scalp 0.435 
Blood 0.900 

Blood clot 0.300 
Tumor 0.956 

Tab. 1. The electrical conductivity of human tissues. 

 
Fig. 4. The detection of blood clots in lungs. 

 
Fig. 5. The detection of a blood clot in a heart. 

The first reconstruction results of conductivity 
changes detection are presented in the Fig. 4 and 5. The 
final conductivity image with the detection of blood clot 
regions in lungs is shown in Fig. 4; original blood clot 
regions are represented by three triangle elements inside 
lungs with conductivity 0.3 S/m.  

The result in Fig. 5 demonstrates the detection of a 
blood clot in a heart; in this case the original blood clot 
region is represented by three elements inside a heart with 
conductivity 0.3 S/m.  

It is well known that the conductivity of a tumor tis-
sue is significantly greater than that of a normal tissue. The 
conductivity imaging techniques could be potentially use-
ful also for early diagnosis of tumors. However, in order to 
visualize any tumor at its early stage, the reconstructed 
conductivity image must be accurate with a high spatial 
resolution of any arbitrary tumor size and locations. 

Fig. 6 presents two different reconstruction results 
related to the detection of several small brain tumors. The 
original brain tumor distribution is represented by six ele-
ments with conductivity 0.956 S/m. In the figure, the left 
section shows the final conductivity distribution when the 
object function U given by (7) was optimized (old way), 
and the right section contains the same result when the K 
given by (8) was optimized (new way). The behavior of 
both object functions during the iteration process is shown 
in Fig. 7. 

      

Fig. 6. The detection of tumors in the brain (U used on the 
left, K on the right). 

 
Fig. 7. Objective functions during the detection of tumors. 
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The next example shows another possible method of 
brain tumors detection. In this case, the filter reducing the 
number of unknowns was introduced to both tested algo-
rithms. Fig. 8 presents a comparison between results 
obtained through a reconstruction based on the U optimi-
zation (left) and results achieved by means of the K 
optimization (right). The behavior of object functions U 
and K is, during the reconstruction, similar to the de-
scription shown in Fig. 7. The algorithm run time was in 
both cases significantly reduced by the application of 
a suitable filter during the reconstruction process [15]; it 
was reduced three times for an old algorithm and fifteen 
times for a proposed algorithm. 

 

Fig. 8. The detection of three brain tumors (U used on the 
left, K on the right). 

The last example demonstrates the applicability of the 
new algorithm for detection of brain blood clot. In this 
case, the defect represents the simplified model of blood 
clot. Fig. 9 presents a comparison between results obtained 
through a reconstruction based on the U optimization 
(left) and results achieved by means of the K optimization 
(right). In Fig. 10, the object functions U and K are 
compared during the reconstruction. All obtained recon-
struction results show that the proposed algorithm stably 
and reliably determines the conductivity changes in 
an imaging slice. 

       

Fig. 9. The detection of a blood clot in the brain (U used on 
the left, K on the right ). 

 
Fig. 10. Objective functions during the detection of a blood 

clot.  

All above-presented simulations were obtained under 
the condition that the size of UM was 380 and size of JM 
was 789.  

The high degree of accuracy was achieved by apply-
ing the new algorithm, namely the same conductivity dis-
tribution as original ones was obtained as a result of imag-
ing by this algorithm in all these cases. 

4. Conclusion 
A new approach to the two-dimensional reconstruc-

tion of conductivity distribution based on using one com-
ponent of magnetic flux density data was proposed. The 
magnetic field required was created by injecting a current 
into the imaging object through a single pair of surface 
electrodes. Then, the modified object function K was used 
for the optimization instead of the usual object function 
U.  

We can also express the object function as follows: 

     2 2

B M FEM

1 1
.

2 2
    B B L    

Here, BM, BFEM are the measured and calculated values of 
magnetic flux density outside the given object. The algo-
rithm based on the minimization of the object function B 
was also tested. In comparison with the case when the 
object function K is minimized, the quality of obtained 
reconstruction results was somewhat worse and this tech-
nique was more time-consuming.  

Finally, the reduction of the number of unknowns (in 
accordance with a suitable filter based on, for example, the 
knowledge of conductivity on some elements) was intro-
duced to the forward solution of the basic iteration process.  

The applicability of this new feasible algorithm was 
verified on different numerical examples. The representa-
tive results were presented in this paper; they confirm that 
the proposed algorithm can stably and effectively deter-
mine the internal conductivity distribution and also con 
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ductivity changes in an imaging slice. The new approach is 
based on the use of magnetic field data, which can be 
obtained by a wireless measurement. This is the main 
advantage compared to the EIT approach.  

The resolution of new method depends on the density 
of mesh, namely the number of unknown σ(e). Therefore, 
stability and convergence of the reconstruction process will 
be ensured, if the number of measured values (voltage or 
components of magnetic field) is equal to or greater than 
the number of unknown. Unfortunately, the proposed way 
is not applicable to 3D image reconstruction of conductiv-
ity distribution. 

The electrical properties of healthy and ill tissues 
have been studied for a long time. It is possible to say that 
e.g. the dielectric properties of the tumor cells showed 
higher permittivity and conductivity values than a homolo-
gous healthy tissue [16]. Further investigation will be 
therefore focused on the main goal - to introduce in the 
proposed algorithm the possibility of permittivity image 
reconstructions. 
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