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Abstract. The multiobjective optimization provides an ex-
traordinary opportunity for the finest design of electronic
circuits because it allows to mathematically balance con-
tradictory requirements together with possible constraints.
In this paper, an original and substantial improvement of an
existing method for the multiobjective optimization known as
GAM (Goal Attainment Method) is suggested. In our pro-
posal, the GAM algorithm itself is combined with a pro-
cedure that automatically provides a set of parameters –
weights, coordinates of the reference point – for which the
method generates noninferior solutions uniformly spread
over an appropriately selected part of the Pareto front.
Moreover, the resulting set of obtained solutions is then pre-
sented in a suitable graphic form so that the solution rep-
resenting the most satisfactory tradeoff can be easily cho-
sen by the designer. Our system generates various types of
plots that conveniently characterize results of up to four-
dimensional problems. Technically, the procedures of the
multiobjective optimization were created as a software add-
on to the CIA (Circuit Interactive Analyzer) program. This
way enabled us to utilize many powerful features of this
program, including the sensitivity analyses in time and fre-
quency domains. As a result, the system is also able to
perform the multiobjective optimization in the time domain
and even highly nonlinear circuits can be significantly im-
proved by our program. As a demonstration of this feature,
a multiobjective optimization of a C-class power amplifier in
the time domain is thoroughly described in the paper. Fur-
ther, a four-dimensional optimization of a video amplifier is
demonstrated with an original graphic representation of the
Pareto front, and also some comparison with the weighting
method is done. As an example of improving noise proper-
ties, a multiobjective optimization of a low-noise amplifier
is performed, and the results in the frequency domain are
shown. Finally, a necessity of a use of metaheuristic meth-
ods at least with a combination with the classical ones is
demonstrated.
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Fig. 1. Feasible region (S), feasible objective region (Z), and
Pareto front.

1. Introduction
The process of electronic circuit design usually

strongly relies on the use of computers. One class of meth-
ods for circuit design not only uses them as a circuit simu-
lation tool, but also uses numerical optimization algorithms
as a means of determining parameter values in order to bring
the designed circuit as close as possible to some prescribed
behavior or a set of characteristics. Multiobjective optimiza-
tion solves the situations in circuit design where there are
two or more possibly contradictory requirements on a cir-
cuit and thus a suitable tradeoff needs to be found. Such
a tradeoff solution should best belong to a set of noninferior
solutions, also called Pareto optimal set or Pareto front.

1.1 Multiobjective Optimization Problem

In practical designs, there are often multiple mutually
contradicting requirements on the designed circuit. In such
cases, our aim is to solve the corresponding multiobjective
optimization problem. This can be formally written as

minimize
x∈S

{ f1(x), f2(x), . . . , fk(x) } (1)

where we have k objective functions fi: <n → <, k > 2.
As in the case of the singleobjective optimization problem,
the decision vectors x = (x1, x2, . . . , xn)

T belong to the
(nonempty) feasible region S, S ⊆ <n, which can also
be defined by a number of equality constraints, inequal-
ity constraints, and/or bounds on the decision variables xi.
The vector of objective functions is denoted by f(x) =
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[f1(x), f2(x), . . . , fk(x)]
T and the image of the feasible re-

gion, also called the feasible objective region [1, 5], is de-
noted by Z = f(S), Z ⊆ <k. The elements of Z are
called objective vectors and are denoted by f(x) or z =

[z1, z2, . . . , zk]
T , where zi = fi(x) for all i = 1, 2, . . . , k

are objective values. The geometrical representation of both
sets S and Z and of the maping f(x) between them can
easily be illustrated on a two-dimensional case, as shown in
Fig. 1 for n = 2 and k = 2.

1.2 Pareto Optimality
The word “minimize” in (1) means that we want to

minimize all the objective functions simultaneously. How-
ever, because of the contradiction between the objective
functions, it is not possible to find a single solution that
would be optimal for all the objectives simultaneously. The
concept of noninferiority also called Pareto optimality must
be used to characterize the objective vectors. A noninferior
solution is the one in which an improvement in one objective
requires a deterioration of another. The set of all noninferior
solutions is also called the Pareto front. In Fig. 1 it is marked
by the thick curve segment between points zA and zB.

By solving the problem (1) we understand obtaining
a sufficient number of noninferior solutions covering parts of
the Pareto front that are of interest to the designer. This will
allow him or her to fully understand the available trade-offs
and to take a qualified decision based on this knowledge.

1.3 Ranges of the Pareto Front
For normalizing purposes we may need to know the

minimum and maximum values of the individual objectives
achieved over the Pareto Front. We will assume that indi-
vidual objective functions zi = fi(x) are bounded over the
feasible region S.

Ideal objective vector [1, 5] z∗ = [z∗1 , z
∗
2 , . . . , z

∗
k] is

the objective vector independently minimizing each objec-
tive function:

z∗ =

[
min
x∈S

f1(x),min
x∈S

f2(x), . . . ,min
x∈S

fk(x)

]
. (2)

It can easily be seen that if the ideal objective vector is
feasible (z∗ ∈ Z), it is a solution of the multiobjective opti-
mization problem and the Pareto front is reduced to it. But
even in the usual cases when ideal objective vector is not
feasible, it can still be considered a useful reference point.

Maximum objective function values achieved over the
Pareto front are represented by a nadir objective vector [1,5].
Because such maxima are difficult to find, an approximate
nadir vector znad is instead defined as

znad =
[
max
i

(z∗i )1, . . . ,max
i

(z∗i )k

]
, (3)

i.e., as the vector of the largest respective components (z∗i )j

found in all k ideal objective vectors. Nadir vector may and
may not be feasible.

1.4 A Posteriori Methods
A posteriori methods can be thought of as methods for

generating Pareto optimal solutions. After the Pareto front
(or a part of it) has been generated, it is presented to the
decision maker, who selects the most preferred among the
alternatives. The inconvenience here is that the generation
process is usually computationally expensive and sometimes
difficult. It may be hard for the decision maker to select from
a large set of alternatives, especially with higher numbers of
objective functions. Another important question is how to
present or display the alternatives to the decision maker in
an effective way.

1.4.1 Weighting Method
In the weighting method, the idea is to associate each

objective function with a weighting coefficient and minimize
the weighted sum of the objectives. We suppose that the
weighting coefficients wi are real numbers such that wi > 0
for all i = 1, . . . , k. It is also usually supposed the weights
are normalized so that

∑k
i=1 wi = 1. The multiobjective op-

timization problem is then modified into the following prob-
lem, to be called a weighting problem [1–4]:

minimize
x∈S

k∑
i=1

wifi(x). (4)

It can be shown that the solution of the weighting
method is always Pareto optimal if the weighting coefficients
are all positive or if the solution is unique [1, 3].

The weakness of the weighting method is that not all of
the Pareto optimal solutions can be found unless the problem
is convex. This feature can be relaxed to some extent by con-
vexifying the nonconvex Pareto front by raising the objective
functions to a high enough power under certain assumptions.

Geometrical representations of the problems character-
ized the weighting method are shown in Figs. 2 and 3.
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Fig. 2. Geometrical representation of weighting method.
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Fig. 3. Nonconvex feasible objective region.

Another weakness of the weighting method is the fact
that it may be difficult to control the location of found solu-
tions by the weighting coefficients.

1.4.2ε-Constraint Method
In the ε-constraint method [2, 4], one of the objective

functions is selected to be optimized and all the other ob-
jective functions are converted into constraints by setting an
upper bound to them. The problem to be solved is now of
the form

minimize
x∈S′

f`(x)

S′ = {x | x ∈ S, fj(x) 6 εj for all j = 1, . . . , k, j 6= `}
(5)

where ` ∈ {1, . . . , k}. Problem (5) is called an ε-constraint
problem.

It can be proved that it is possible to find every Pareto
optimal solution of any multiobjective optimization problem
by the ε-constraint method (regardless of the convexity of
the problem) [5].

To ensure that a solution produced by the ε-constraint
method is Pareto optimal, we have to either solve k dif-
ferent problems or make sure that the obtained solution is
unique. In general, uniqueness is not necessarily easy to ver-
ify. However, if for example, the problem is convex and the
function f` to be minimized is strictly convex, we know that
the solution is unique without further checking.

z1
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ε1

zS2

Fig. 4. Geometrical representation of ε-constraint method.
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Fig. 5. Geometrical representation of GAM.

1.4.3 Goal Attainment Method
Typically used approaches to the multiobjective opti-

mization are either a method based on a weighted sum or
optimization of a single objective function while the oth-
ers serve as constraints (here shown as ε-constraint method)
[1, 5]. The goal attainment method [3, 6–8] provides a bet-
ter control over obtained solutions. It is defined as a scalar
constrained optimization problem of the form

minimize
γ∈<, x∈S

γ

subject to fi(x)− wiγ 6 z̄i,

i = 1, . . . , k,

(6)

where fi are the k objective functions to be minimized (de-
sign goals), S is the set of acceptable solutions (the feasi-
ble region), z̄i are predefined reference goal values associ-
ated with the objective functions fi, wi ∈ < are predefined
weighting coefficients, and γ is an auxiliary variable making
the new single objective function. The method requires 2k
input parameters, but only uses 2k−1 degrees of freedom as
shown in Fig. 5. Any solution of this optimization problem is
noninferior. Its location on the Pareto front can be controlled
by the weighting vector w and/or by the reference vector z̄.

2. Semiautomatic A Posteriori Method
The goal is to arrange a reliable general-purpose mul-

tiobjective optimization tool that could be used in circuit de-
sign.

Requirements on the multiobjective optimization
method will include:

• Arbitrary number of objectives,

• arbitrary number of inequality constraints (but no need
for equality constraints),

• provisions for maximizing some functions while min-
imizing others,

• possibility of non-differentiable objectives,

• automatic generation of Pareto optimal solutions,
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• automatic determining of what the covered part of the
whole Pareto front will be,

• even density of coverage of selected part of the Pareto
front,

• possibility of monitoring and user interference during
computation run,

• support for graphical presentation of the solutions.

These requirements clearly suggest the use of an a pos-
teriori method or a method of another class converted into
an a posteriori method to be able to automatically generate
Pareto optimal solutions.

The authors’ choice is the Goal Attainment Method
(GAM), which is also one of the Achievement Scalarizing
Function approaches and a variety of Goal Programming [1].

Its advantages as opposed to Weighted Method or
Method of Weighted Metrics [1] are that all Pareto optimal
solutions are accessible even for non-convex problems and
that it works for both feasible as well as infeasible reference
points. The need for a subroutine for constrained optimiza-
tion could be seen as a disadvantage, but we want to be able
to work with constraints, anyhow.

There are two possible ways of controlling the location
of the Pareto optimal solutions found by GAM: either (a)
by the choice of the reference point or (b) by the choice of
the weighting vector (or (c) a combination of both). Our ap-
proach uses (a) because this seems to have a better chance of
even coverage of the Pareto front.

Here is the implemented equivalent form of the GAM,
also with the used normalization:

minimize
x∈S

max
i=1,...,k

fi(x)− z̄i
znadi − z∗i

. (7)

Note that this very formula works for both the minimized as
well as maximized objective functions: for the maximized
ones we have znadi − z∗i < 0 and the denominator thus au-
tomatically provides the correct sign. Also, as a result of the
choice (a) mentioned above, there are no explicit weighting
coefficients wi used in (6). Note that the missing weight-
ing coefficients in (7) which are a result of the choice (a)
above also exclude the possibility to introduce hard con-
straints simply by setting the particular weight to zero, but
this really poses no practical limitation in our implementa-
tion as any goal can easily be switched to directly play the
role of an objective, a constraint, or even both of them simul-
taneously.

Now let us consider the choice of a set A in the k di-
mensional objective space from which the reference points
are be taken. We will call it the reference set.

It should not be too far away from the Pareto front (in
Euclidian sense) so that it is not too complicated for the user

to predict where the corresponding Pareto optimal solution
will be from the knowledge of the reference point.

If the feasible objective set is bounded, the Pareto
front P will usually be a subset of the k-dimensional interval
B =

∏k
i=1[z∗i , z

nad
i ], where the product operator represents

the Cartesian product.

We could put A = B and simply randomly generate
the coordinates from the intervals [z∗i , z

nad
i ]. However, this

approach would lead to many reference points that have no
projection on the Pareto front. Such points could still pro-
vide Pareto optimal solutions but those would be concen-
trated along the border of Pareto front and not evenly spread
over the interior. Also many points would be quite far from
the Pareto front.

Therefore, we try to limit the size of the setA and select
it such that it is likely to be not very far from Pareto front.

One such a choice of the reference set A, that has
actually been implemented in the proposed method, is the
k-dimensional convex body with k vertices (segment of
straight line, triangle, tetrahedron, etc.) whose vertices are
composed of one component of the ideal vector z∗i and the
rest are corresponding components of the nadir vector znad:

zvertl =
[
znad1 , . . . , znadl−1 , z

∗
l , z

nad
l+1 , . . . , z

nad
k

]T∀ l = 1, . . . , k.
(8)

This setA is randomly sampled with the uniform distribution
all over its (k − 1)-dimensional volume. This is done with
the intent to uniformly cover the corresponding part of the
Pareto front. Fig. 6 illustrates the location of this reference
set in the two- and three-dimensional objective space.

The random generation of reference points belonging
to A can be performed in this way: starting with k ver-
tices z0,1, z0,2, . . . ,z0,k and a (k − 1)-tuple of uniformly
distributed and mutually independent random numbers ri ∈
[ 0, 1) for i = 1, . . . , k − 1, we perform the following se-
quence of assignments to calculate a point zk−1,1 ∈ A:

t1 = k−1
√
r1

z1,1 = (1− t1)z0,1 + t1z0,2

z1,2 = (1− t1)z0,1 + t1z0,3
...

z1,k−1 = (1− t1)z0,1 + t1z0,k

t2 = k−2
√
r2

z2,1 = (1− t2)z1,1 + t2z1,2

z2,2 = (1− t2)z1,1 + t2z1,3
...

z2,k−2 = (1− t2)z1,1 + t2z1,k−1

...

tk−1 = 1
√
rk−1

zk−1,1 = (1− tk−1)zk−2,1 + tk−1zk−2,2,

(9)
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Fig. 6. Location of the reference set A in the two-dimensional and three-dimensional objective spaces.
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Fig. 7. Obtaining a point from the reference set for k = 4.

which can also be written in the more “algorithmic” notation

for i← 1 to k − 1 do

begin ti ← k−i
√
ri

for j ← 1 to k − i do
zi,j ← (1− ti)zi−1,1 + tizi−1,j+1

end

(10)

This procedure therefore calculates a total of N =∑k−1
i=1 i = k(k − 1)/2 points zi,j in the k-dimensional ob-

jective space (i.e., N = 1, 3 and 6 points for k = 2, 3 and 4)
from k initially known vertices of the reference set. An ex-
ample of generation of a point (z3,1) from a reference set
in the shape of a tetrahedron (i.e., when k = 4) is shown
in Fig. 7.

3. Application Examples

3.1 RF C-Class Power Amplifier Design
As a sophisticated example, let us try to design the last

stage of an RF power amplifier for a narrow-band signal with
an analog modulation at the frequency f1 = 300 MHz. The
source and load impedances should be both 50 Ω and supply
voltage VDD = 12 V. Our goal will be to explore the trade-
offs between achievable output power, power efficiency and
total harmonic distortion.

3.1.1 Schematic
We use an RF N-channel LDMOS as an active compo-

nent and a topology that is typical for C-class mode of oper-
ation, see Fig. 8. The transistor is followed by an LC filter
to suppress harmonic distortion and provide good impedance
matching. (Even though impedance matching at the output is
not directly required, it is enforced indirectly by maximizing
output power.) The combination of elements L1, C1 and C2

can also be seen as a tapped resonant circuit. As for the
transistor, our choice will be LP821 (Polyfet RF Devices),
a silicon LDMOS device for frequencies of up to 500 MHz,
with a maximal total dissipated power of 50 W.

As our goal is exploration of the output trade-offs
rather than obtaining a complete design, no input impedance
matching circuit is considered, and no stability-ensuring
measures are taken (other than rather small reactance of the
capacitance between gate and source of the transistor itself).

Vinp
Vbias

VDDZgen

Zload

M1

C1

C2 C3

L1

L2

inp

out

Fig. 8. C-class amplifier with optimized steady-state period.

3.1.2 Design Variables
As design variables we have two kinds of parameters:

(A) parameters of the gate voltage that directly determine the
operating mode of the transistor, and (B) all LC-component
values of the filter.

A simple way to define the design variables of the for-
mer group would be the combination of the input AC volt-
age Vinp and its DC offset Vbias. That, however, would not
provide direct control over the voltage between gate and
source, which must not exceed 20 V (as given by maximum
ratings of the device). This requirement would have to be
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enforced by means of a special constraint, which would in-
crease simulation time. In order to avoid this need, an es-
timated peak Vgs voltage, denoted by Vgsmax, was chosen
as one design variable and the amplitude of its AC compo-
nent as another one. The gate voltage estimate is defined us-
ing the equation of the voltage divider formed by the driver
output resistance Rd and input capacitive reactance of the
gate Xi ≈ 10 Ω

VgsACm = VinpACm
Xi√

X2
i +R2

d

(11)

where VinpACm is the amplitude of the input AC volt-
age component from the preceeding driver stage (open-
circuited). From given values of design variables Vgsmax

and VgsACm we then obtain

Vbias = Vgsmax−VgsACm, VinpACm = VgsACm

√
X2

i +R2
d

Xi
.

(12)

Table 1 gives a summary of all design variables includ-
ing their ranges and types of coverage.

Bound Coverage
No. Symbol Lower Upper Unit Type

1 Vgsmax 2 20 V lin.
2 VgsACm 0.4 12 V lin.
3 L1 3 n 30 n H log.
4 C1 10 p 300 p F log.
5 C2 3 p 300 p F log.
6 L2 3 n 100 n H log.
7 C3 3 p 100 p F log.

Tab. 1. Design variables for the power amplifier.

3.1.3 Design Goals
There is a total of five design goals, three of which

are the three objective functions to be optimized and two
constraints representing maximum ratings of the LDMOS.
All goals are defined in terms of waveforms of voltages and
currents in the periodic steady state, which was obtained by
the steady-state analysis of the simulator CIA [9] (necessary
time-domain sensitivity analysis is also described in [10]).
Table 2 gives a complete summary of all design goals. The
individual design goal definitions are as follows:

Optimum/
No. Symbol Type Direction Bound Unit

1 Pout1 obj. max. 31.1 W
2 η obj. max. 83.0 %
3 THD obj. min. 0.0783 %
4 Id avg constr. 6 5 A
5 Pdiss constr. 6 50 W

Tab. 2. Design goals for the power amplifier.

a) Average output power at the first harmonic frequency
Pout1.

Pout1 =
|v̂out1|2

2RL
=
a21 + b21

2RL
(13)

where v̂out1 is the phasor of the output voltage vout(t), ak
and bk are generally the coefficients of the k-th cosine and
sine harmonic (Fourier) components of the periodic steady-
state output voltage vout(t) of the period T , respectively:

ak=
2

T

∫
T

vout(t) cos
2πk

T
t dt, bk=

2

T

∫
T

vout(t) sin
2πk

T
t dt.

Here the integrals over period T were computed using the
trapezoidal method of numeric integration.

b) Power efficiency η. It is defined as the ratio between
the output power at the first harmonic frequency and the total
average power from power supply and from the input driver.
Such a form of definition encourages not only lower power
dissipation on the transistor, but also lower input power and
thus higher power gain1:

η =
Pout1

VDD

T

∫
T

iDD dt+ 1
T

∫
T

vinp(t)iinp(t) dt
× 100 %. (14)

c) Total harmonic distortion THD .

THD =

√
Pout higher

Pout
× 100 % (15)

where Pout higher is the output power at higher harmonics up
to nh

Pout higher =
1

2RL

nh∑
k=2

a2k + b2k, (16)

with nh = 10, and where Pout is the total output power com-
puted with the formula

Pout =
1

RL

 1

T

∫
T

v2out(t) dt−

 1

T

∫
T

vout(t) dt

2
 .
(17)

The second term here cancels the contribution by a possible
false DC component that could emerge as a result of the fail-
ure to fully achieve the periodic steady state within the cho-
sen maximum number of iterations. (We know that in reality
the DC component of the output voltage must be zero due to
the capacitive coupling by C1 and the load being linear.)

1This is true also for so called Power-Added Efficiency (PAE), defined as the ratio (Pout − Pin)/PDC. PAE, however, has the disadvantage of not
correctly describing the essence of amplification, which really consists in multiplying the signal power (at the expense of power supply) rather than adding
to it. Consequently, it has a negative value when Pout < Pin, which can also be inconvenient in some cases.
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d) The maximum ratings of the transistor are applied
as constraints. Maximum average drain current Id avg and
the maximum average dissipated power by the transistor
Pdiss

Id avg =
1

T

∫
T

id(t) dt (18)

and

Pdiss =
1

T

∫
T

[vgs(t) ig(t) + vds(t)id(t)] dt, (19)

respectively, where ig(t), id(t) are the instantaneous gate
and drain currents, and vgs(t), vds(t) are the instantaneous
voltages between gate and source and drain and source.

3.1.4 Transistor Model
The model used for simulations is based on a SPICE-

like one structured as shown in Fig. 9.

The original manufacturer’s model is actually only the
simple Level 1 SPICE MOSFET one (i.e., Shichman and
Hodges). Therefore, its parameters were recalculated for us-
ing the semiempirical Level 3 model. They became VTO =
2.4 V, φS = 0.6 V, φO = 0.8 V, W = 0.04 m, L = 1 µm,
XJ = 1 µm, XJL = 0 µm, tox = 100 nm, NFS = 0 m−2,
NA = 1021 m−3, vmax = 5×104 m/s, µO = 0.06 m2/(Vs),
κ = 0.22, EP = 5 × 105 V/m, KP = 1.8 × 10−5 A/V2,
γ = 0

√
V, δ = η = ι = 0, θ = 0 V−1, rD = 0.16 Ω,

and rS = 0.16 Ω – the manufacturer’s value of W (for the
composed devices like LDMOS, this number represents the
element as a whole) clearly indicates that LP821 is really
a power transistor. The manufacturer’s values of the JFET
and PN diode parameters were λ = 0.8 V−1, β = 6 AV−2,
VTO = −5.25 V, CJOD = CJOS = 0 F, IS = 10−14 A,
n = 1, VB = 45 V, IB = 10−7 A, CJO = 60 pF,
φO = 0.6 V, and m = 0.25.

The RLC component values are the following: LGATE

= 0.867 nH, RGATE = 0.01 Ω, CG = 3.5 pF, CRSS = 4.5 pF,
CISS = 22.1 pF, LS = 0.108 nH, CS = 0.43 pF, LD = 0.51 nH,
CD = 0.01 pF, RRC = 1989 Ω, and CRC = 0.381 nF.

RGATE

RRC

CG

CISS CRSS

CS CRC

CD

LGATE

LS LDMOS JFET DBODY

G

S D

Fig. 9. Model configuration of LDMOS LP821.

3.1.5 Models of LC Components
Most design methods in network theory use idealized

circuit elements, especially the passive ones. However, real-
life elements have always parasitics attached to them that
often substantially modify the circuit behavior at higher fre-
quencies. Therefore, the parasitics should be somehow con-
sidered within used design procedures. One approach would
be to first assume ideal elements without the parasitics, and
after determining their values (e.g., by using optimization)
and adding the parasitics afterwards to apply a correction to
each component value so that its impedance at a chosen fre-
quency is close to that of the ideal element in the design.

A more thorough and correct approach, however, is to
introduce the parasitics already before the optimization by
using parametrized RF models instead of simple ideal ele-
ments. Such a procedure is called parasitic-aware optimiza-
tion [11]. It was chosen to be applied to all LC components
in the present example. Fig. 10 shows used model structures
for inductors and capacitors.

RLi

RCi

CLi

Ci Ci

Li Li

LC

Fig. 10. Modeled parasitics of passive components.

Only rough estimates of parasitics and their depen-
dences on the main component values have been introduced,
as real parameters and functions strongly depend on types
and spatial configuration of the real components, their lead
lengths, etc. Each inductor Li, i = 1 and 2 has a series re-
sistance RLi representing all kinds of power losses (due to
skin effect, eddy currents and/or coil core hysteresis, etc.)
and a parallel capacitance CLi modeling the collective stray
capacitance (between the coil’s winding turns, leads, etc.),
whose values are obtained using formulas

RLi =
2πf1Li
QLmax

+RL0 and CLi = Li pCL +CL0. (20)

Here the frequency f1 = 300 MHz; the maximum quality
factor QLmax = 100, achievable only when the constant
term RL0 = 10 mΩ is negligible; the stray capacitance coef-
ficient pCL = 1 pF/µH and the constant term CL0 = 100 fF.

Similarly, each capacitorCi, i = 1, 2, and 3 has a series
resistance RCi (also known as ESR)

RCi =
1

2πf1CiQCmax
+RC0 (21)

where QCmax = 1000 and RC0 = 10 mΩ; and a stray series
inductance LC (ESL) estimated by a constant value of 3 nH.

Even though those formulas and parameter values are
very approximate, they still represent a significant improve-
ment to the whole method, at least, by helping to keep the
component values in the design after optimization in realis-
tic proportions. For example, inductances will not tend to
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be too large, as their own resonant frequencies need to stay
above the basic signal frequency f1 (and probably also above
some higher harmonic frequencies).

3.1.6 Results
Fig. 11 shows a total of 84 obtained solutions cover-

ing the three-dimensional Pareto front. There is obviously
a large trade-off between harmonic distortion and power ef-
ficiency at the highest output power levels, but it diminishes
with decreasing the output power, and for Pout1 6 14 W
the requirement of low distortion can be met with almost no
penalty on power efficiency.

Instead of by type of points, the different THD bounds
can be distinguished by separating the particular cases into
an array of graphs. Such an alternative format is presented
in Fig. 13.

Fig. 11. Obtained Pareto front in the space Pout1, η, THD .

A selection of five distinctly different solutions is given
in Tab. 6: number 1 has the lowest distortion THD , 4 has one
of the highest values of Pout1, and 5 the highest efficiency η;
solutions 2 and 3 are located in the middle area at different
levels of THD .

Instead of trying to uniformly cover the three-
dimensional Pareto front, it may be preferable to cover only
a set of its two-dimensional contours. This can be done
by having THD as a constraint (instead of as objective
function) and by repeating the optimizations for different
THD bound values. Alternately, if we already have a set
of solutions such as of Fig. 11, we can obtain the solution
covering the contours by reoptimizing them to the new set
of constraints that includes THD , i.e., by running a new op-
timization with each already available solution as a starting
point. A result of such a procedure is shown in Fig. 12.

Fig. 12. The 3D Pareto front obtained in the form of contours.

Solution Number
No. Symbol 1 2 3 4 5 Unit

1 Vgsmax 9.97 15.9 20.0 19.2 18.9 V
2 VgsACm 4.03 8.05 10.7 9.24 12.0 V
3 L1 7.86 n 11.3 n 4.23 n 3.97 n 5.03 n H
4 C1 294 p 133 p 299 p 51.6 p 166 p F
5 C2 22.6 p 5.09 p 27.0 p 300 p 3.41 p F
6 L2 6.84 n 7.00 n 7.97 n 7.32 n 9.89 n H
7 C3 20.1 p 2.35 p 18.4 p 22.6 p 17.0 p F

1 Pout1 15.3 18.8 22.8 28.4 11.2 W
2 η 49.7 63.7 72.9 58.4 81.7 %
3 THD 0.163 0.239 0.512 0.394 3.03 %
4 Id avg 2.56 2.44 2.59 4.01 1.15 A
5 Pdiss 13.6 8.42 6.65 16.0 1.84 W

Tab. 3. Selected five solutions from the various parts of the Pareto front with respective values of the design goals.
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Fig. 13. An alternative way of displaying the three-dimensional Pareto front by the sequence of plots for various THD .

3.2 Four-Dimensional Task – Video Amplifier
We are to optimize a video amplifier [12] in Fig. 14

with an input matched to a source impedance 75 Ω, with its
output able to drive a 75 Ω load, and with 1 Vpp output capa-
bility. The 3 dB roll-off frequency fm should be as high as
possible, the low-frequency voltage gain Av should be posi-
tive and of the biggest possible value, and the total DC sup-
ply current Icc should be as low as possible. As the decision
variables, we will use the resistances R1–R5 (only a range
of positive values is allowed). We assume that the capacitors
C1–C3 have sufficiently large capacitances not to influence
the low frequency gain. All high-frequency gain character-
istics are thus determined only by inner capacitances of the
transistors. The type 2N5179 was prescribed for both Q1

and Q2, and the Gummel-Poon model was used.

Q1

Q2

R1

R2

R3

R4

R5

RL

75 Ω

C1

C2

C3

inp

out

+Vcc 5 V

Fig. 14. Video amplifier schematic.

As a measure of the impedance matching, a low-
frequency voltage standing wave ratio SWR was used:

SWR =
1 + |%|
1− |%|

, % =
Ri − 75 Ω

Ri + 75 Ω
. (22)

The multiobjective optimization task is then following:

minimize SWR, Icc

maximize Av, fm

subject to Vout 6 3.5 V
(23)

where the constraint condition concerning the output voltage
Vout ensures the required 1 Vpp output capability.

Before we start the proper multi-objective optimiza-
tion, it is a good idea to examine the best values zoi attain-
able by the four optimized characteristics if they are opti-
mized alone. We a priori know that SWRo = 1, because
with a suitable value of R1, the input resistance Ri can be
made exactly equal to 75 Ω. It is also clear that Iocc → 0 mA.
For Av, the independent maximum value was found to be
Ao

v = 40.72 dB, for which Ri = 18.41 Ω, SWR = 4.073,
Icc = 1.346 mA and fm = 350.7 MHz; and the maximum
fm is found fom = 860.3 MHz, for which Ri = 546.1 Ω,
SWR = 7.282, Av = 4.281 dB, and Icc = 7.532 mA.

3.2.1 Usage of the Goal Attainment Method
The following choice of the four objective functions

was naturally created first:

f1 = 10(SWR− 1),

f2 = Ao
v −Av,

f3 =
Icc

1 mA
,

f4 = log
fom
fm

.

(24)

A simple penalty function method is used to convert the con-
strained optimization problem into an unconstrained one.
In this method, constraints are enforced by means of addi-
tive components called penalty functions, increasing the re-
sulting objective function, and which are progressively de-
pendent on the amount of the violation of the constraints.
Only one constraint applies in our case, and is expressed by
a penalty function

c1 = max

(
Vout − 3.5 V

3.5 V
, 0

)
× q (25)

where q is a coefficient controlling how much the constraint
component is emphasized over the usual minimized compo-
nents in the objective function.

The functions f1 through f4 defined above can be di-
rectly used in some other multi-objective methods, e.g., in
NSGA-II [7] or Weighted Sum Method (WSM) [8]. How-
ever, for a usage of the Goal Attainment Method, we created
four new penalty functions related to the functions fi where
q = 100 is used in a standard way:
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Fig. 15. A quasi 4-dimensional graph of Pareto front. One objective was chosen as a graph parameter (fm, SWR, Av, and Icc in the
first, second, third, and fourth rows, respectively), and five equidistant sampling levels of it were chosen to cover a significant
part of its range. The curves in the first row represent non-inferior points for the currents Icc 0.45, 0.75, 1.05, 1.35, and 1.65 mA,
respectively. The curves in the second row represent non-inferior points for the frequencies fm 250, 325, 400, 475, and 550 MHz,
respectively. The curves in the third row represent non-inferior points for the standing wave ratios SWR 1.1, 1.4, 1.7, 2.0, and 2.3,
respectively. The curves in the fourth row represent non-inferior points for the amplifications Av 30, 32, 34, 36, and 38 dB,
respectively. The first part (aggregate graph) represents the case when the values of one dimension are ignored, which is another
way to decrease the plot dimensionality; see the explanation below.

g1 = max

(
10(SWR− 1)− w1γ − P

P
, 0

)
× q,

g2 = max

(
Ao

v −Av − w2γ − P
P

, 0

)
× q,

g3 = max

(
Icc/1 mA− w3γ − P

P
, 0

)
× q,

g4 = max

(
log (fom/fm)− w4γ − P

P
, 0

)
× q

(26)

with the single objective function to be minimized, i.e.,
f(x) = γ. The constraint penalty function c1 (25) remains
in action.

Note that, for simplicity, we have set all the design
goals z∗i equal to the same scalar value P . This is allowed
by the special choice of the objective functions fi in their
definition. The single minimized objective function is then

formed as follows:

fGAM
P (x) = γ2 +

4∑
i=1

g2i (x) + c21(x). (27)

The objective function fP is minimized using our orig-
inal modification of the Levenberg-Marquardt method [13],
which consists in normalizing the Jacobian matrix for sup-
pressing numerical instability. The Levenberg-Marquardt
method is used to obtain solutions for chosen values of wi
and P in (26). The iterations typically end when the maxi-
mum relative change in the decision variables between itera-
tions is less than 10−4 or after reaching a maximum allowed
number of iterations. For circuit simulations, our original
software tool was used for the analysis with large efficiency
enhancement by fill-in suppression.

3.2.2 Graphical Presentation of Results
As the objective region is a certain subset of a four-
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dimensional space, its direct graphical presentation in two
dimensions is impossible. However, the indirect way of plot-
ting is possible, and it can be a useful tool in the stage of
assessment of the available trade-offs. Fig. 15 shows in-
dependent rows of plots, each representing a different set
of choices of individual objectives being placed at different
axes or used as parameters.

The plots were obtained under the assumption of con-
vex Pareto front and the exact procedure used is as follows.
A total of 78 obtained solution points was gathered. Ten de-
tected inferior points were removed thus leaving 68 points
for further processing. One objective was chosen as a plot
parameter (e.g., fm in the first row) and five equidistant sam-
pling levels of it were chosen to cover a significant part of its
range. For each of the five sampling levels, the 68 points
were then divided into two groups based on whether they
are located below or above the sampling level. Then for all
pairs of points such that the first point belongs to the first
group and the second point belongs to the second group, in-
terpolation points corresponding to the sampling levels were
determined. As all the interpolation points have one coordi-
nate of the same value, they can be considered to belong to
the same three-dimensional space. We are not interested in
the whole 3D body but only in the part of its surface repre-
senting the Pareto front. Therefore, the inferior points of this
new set were also removed. In this way we have reduced the
four-dimensional problem to three dimensions and the next
step is to apply the same procedure further to obtain sets of
two-dimensional curves.

Another way of creating plots of smaller dimensional-
ity is simply to ignore the values of one dimension. (This
is also done by the same program.) In this case, we do not
produce the three-dimensional bodies by interpolation, but
simply by using the original set of points. These aggregate
graphs were added in Fig. 15 at the beginning of each row
with the same configuration of axes, separated by a wider
gap.

3.2.3 Comparing With Weighting Method
We have also compared the properties of our modifica-

tion of the GAM procedure with the simpler WSM one [8].
In this case, the four objective functions (24) remain in ac-
tion as well as the penalty function (25). However, the re-
sulting single objective function is simpler

fWSM
P (x) =

4∑
i=1

wif
2
i (x) + c21(x), (28)

and with the usual normalizing condition
∑4
i=1 wi = 1.

We have found that the objective values can be well
controlled by the choice of wi. However, even in the best
case observed, about 20 % of changes in wi have the oppo-
site effect on the related goal than expected. Also, in few
cases, the obtained solutions were found to be inferior to the
ones with a different weighting vector.

3.3 Low-Noise Antenna Amplifier Design
in the Frequency Domain
Let us consider a design of a low-noise antenna pream-

plifier for the frequency range of 50 MHz to 500 MHz. The
nominal antenna as well as load impedances are 75 Ω, sup-
ply voltage Vsupp = 12 V. We will assume that linearity is
not a concern as the levels of received signals will be small.
Our requirements on the design are to maximize the ampli-
fier power gain while minimizing its noise figure. It will be
a two-dimensional task with four constraints.

3.3.1 Schematic
For simplicity, we choose a single stage topology, us-

ing the bipolar transistor BFR90A in the common emitter
configuration shown in Fig. 16. In this schematic, in fact,
various elements of several similar designs found in the lit-
erature are combined:

• input impedance matching network,

• emitter degeneration network,

• DC biasing network, possibly introducing frequency-
dependent feedback,

• output impedance matching network and linearity
matching.

Even though some of these provisions (impedance
matching, linearity) are not directly part of the initial set
of requirements (min. noise, max. gain), all components
present can have an impact on them (positive or negative).
Therefore the strategy applied here is to let the optimization
process choose which components are really necessary, de-
spite the fact that some of them could have been dropped
already at the beginning.

Q1

R1

R2

R3

R4

C1

C2

C3

C4

C5
C6

C7

L1

L2

L3

L4

inp

out

+12 V

Fig. 16. Low-noise amplifier schematic.
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3.3.2 Design Variables
The values of all passive components are to be deter-

mined by the optimization, therefore we have a design vari-
able for each of them, as shown in Table 4. They are mostly
restricted to ranges of two decades, covered logarithmically.

Bound Coverage
No. Symbol Lower Upper Unit Type

1 C1 10 p 10 n F log.
2 C2 1 f 10 p F log.
3 L1 1 n 100 n H log.
4 C3 1 f 10 n F log.
5 L3 100 p 100 n H log.
6 R3 1 m 100∗ Ω log.
7 C4 100 f 10 p F log.
8 R2 1 m 100 Ω log.
9 L2 1 p 1µ H log.

10 C7 1 f 100 n F log.
11 R1 10 1 k Ω log.
12 R4 10 k 1 M Ω log.
13 C6 1 f 1 n F log.
14 L4 1 f 1µ H log.
15 C5 10 p 10 n F log.

∗ (R3 was later fixed at its lower bound 1 mΩ)

Tab. 4. Design variables for the low-noise amplifier.

3.3.3 Design Goals
The set of design goals used for optimization consists

of the two explicit requirements given in the assignment
used as objective functions and some additional constraints
to help to ensure a feasible design. See Table 5 for a com-
plete summary of all design goals.

All frequency-dependent results are determined as the
worst-case values over the full frequency range 50 MHz to
500 MHz. Most of those objective functions were evalu-
ated using the amplifier s-parameters with the characteristic
impedance Zc = 75 Ω = RS1 = RS2 = RL1 = RL2 =
RNS, obtained by AC analysis applied to the network shown
in Figure 17. Two instances of the amplifier sub-circuit were
analyzed simultaneously so that all four s-parameters could
be determined in a single simulator run.

Optimum/
No. Symbol Type Direction Bound Unit

1 Apt obj. max. 17.5 dB
2 NF obj. min. 1.10 dB
3 Ic constr. 6 20 mA
4 Pdiss constr. 6 150 mW
5 kRs constr. > 1.1 —
6 ∆ constr. 6 0.9 —

Tab. 5. Design goals for the low-noise amplifier.

a) Transistor Maximum Ratings For the amplifier to stay
operable, all maximum ratings of the transistor must be met.
Therefore the following constraints on the collector current
Ic and total dissipated power Pdiss have been introduced into
the optimization: Ic 6 20 mA, and Pdiss 6 150 mW.

b) Transducer Power Gain Apt, defined as the ratio, ex-
pressed in dB, of the actual power entering the load and the
available power of the source of the input signal. It was com-
puted using the formula

Apt = 20 log
2|v̂21|
|v̂S0|

= 20 log |ŝ21| (29)

where |v̂21| is the amplitude of the output voltage and |v̂S0|
is the amplitude of the input signal source (open circuited).
(If the amplitude |v̂S0| is chosen equal to 2, the value of |v̂21|
is directly equal to the gain.)

c) Noise Figure NF , defined as the ratio (in dB) of the
total spectral noise power density available at the amplifier
output and of its part obtained by (noiseless) amplification of
the input power spectral density, assumed to be thermal noise
at a reference temperature T0. This definition was fulfilled
by the formula

NF = 20 log
vNout |v̂S0|
vNS0 |2v̂21|

(30)

where v̂S0 and v̂21 have the same meaning as in the previous
formula, vNout is the narrow-band noise voltage in V/

√
Hz

on the load (where the load itself is noise-free) and vNS0 is
the noise voltage measured on an separate unloaded noisy re-
sistor at T0 = 300 K of the same resistance as has the input
signal source, i.e., 75 Ω.

d) Stability Another necessary condition for the amplifier
to be useful is the requirement of stability. One way of deal-
ing with this issue typically used in RF circuits is ensuring
that the amplifier is absolutely stable, i.e., stable not only
for the typical source and load impedances but also for any
combination of (passive) impedances terminating both ports.
Absolute stability can be easily tested using Rollet Stability
Factor kRs:

kRs =
1 + |∆|2 − |ŝ11|2 − |ŝ22|2

2|ŝ12ŝ21|
> 1

and
∆ = det s = |ŝ11ŝ22 − ŝ12ŝ21| < 1.

For practical design, these theoretical thresholds were pro-
vided with 10 % margins, yielding 1.1 and 0.9, as shown in
Tab. 5.

All four s-parameters are computed from the voltage
phasors of Fig. 17 using the formula

s =

(
ŝ11 ŝ12

ŝ21 ŝ22

)
=

(
2v̂11
v̂S0
− 1 2v̂12

v̂S0
2v̂21
v̂S0

2v̂22
v̂S0
− 1

)
which simplifies to(

v̂11 − 1 v̂12

v̂21 v̂22 − 1

)
if we choose v̂S0 = 2.
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Fig. 17. Auxiliary network used for computing S parameters
and noise figure.

3.3.4 Results
A total of 187 solutions has been obtained, uniformly

covering the Pareto front as shown in Fig. 18. In this graph,
we can distinguish three typical areas:

1. low gain area, Apt < approx. 17 dB, where noise figure
is good, but gain Apt is too small,

2. middle area, where with increasing gain the noise figure
starts to increase significantly, and

3. high noise figure area, NF > 2 dB, where the noise fig-
ure increases with such a rate that in no longer justifies
the corresponding increases in gain.

Fig. 18. Obtained Pareto front in the objective space Apt and
NF.

Obviously a reasonable tradeoff between the two ob-
jectives can only be found in the middle area.

Table 6 presents a selection of five solutions ordered by
ascending transducer gainApt, spanning over all of the three
areas. Solutions 2, 3 or 4 would be good candidates for a fi-
nal choice of a single solution, depending on the designer’s
(or the decision maker’s) preferences.

Solution Number
No. Symbol 1 2 3 4 5 Unit

1 C1 10.0 n 10.0 n 10.0 n 7.78 n 182 p F
2 C2 20.3 f 1.00 f 2.90 p 3.17 p 5.37 p F
3 L1 21.3 n 14.9 n 22.5 n 18.5 n 19.2 n H
4 C3 2.45 f 1.71 f 4.70 p 37.0 f 1.00 f F
5 L3 3.57 n 1.07 n 615 p 422 p 295 p H
6 R3 1.00 m 1.00 m 1.00 m 1.00 m 1.00 m Ω
7 C4 2.07 p 2.55 p 2.42 p 2.53 p 1.09 p F
8 R2 9.51 m 1.00 m 14.7 m 3.16 m 7.62 m Ω
9 L2 168 n 51.2 n 40.1 n 36.9 n 60.6 n H

10 C7 3.20 p 5.33 p 5.85 p 6.88 p 2.50 p F
11 R1 293 80.3 50.9 43.9 136 Ω
12 R4 331 k 260 k 145 k 87.6 k 55.1 k Ω
13 C6 1.34 p 404 f 987 f 1.35 f 76.9 f F
14 L4 1.00 f 1.00 f 1.00 f 1.00 f 1.00µ H
15 C5 100 p 3.98 n 4.91 n 5.01 n 10.0 n F

1 Apt 14.8 18.0 20.0 21.5 22.5 dB
2 NF 1.09 1.21 1.47 1.80 2.36 dB
3 Ic 2.96 4.00 7.09 11.5 15.1 mA
4 Pdiss 32.9 46.7 82.5 132 150 mW
5 kRs 1.06 1.10 1.10 1.10 1.09 —
6 ∆ 0.467 0.302 0.335 0.351 0.404 —

Tab. 6. Five selected solutions from the Pareto front with the results shown in Fig. 19.
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Fig. 19. Low-noise amplifier Apt and NF plots for the five selected solutions from Tab. 6.

From the results in the table we can see that, as ex-
pected, some components have (almost) zero values and thus
can be omitted from the schematic. This is especially true
for resistors R2 and R3, corresponding with the fact that no
linearity requirements were present in the used set of design
goals. We can also see that not all constraints became active:
only Pdiss and kRs did, the former only for solution No. 5.

Figure 19 presents the frequency plots for both of the
objective functions and for all five selected solutions. From
the plots it is obvious that the higher end of the frequency
range tends to be the most critical for both gain and noise
figure.

We may conclude stating that the applied multiobjec-
tive optimization method succeeded in finding both the loca-
tion as well as shape of the Pareto front even for such a rel-
atively high number of design variables and wide ranges of
their values.

4. Using Metaheuristics in Mono-
and Multiobjective Methods

4.1 Characterization of the Metaheuristics
This new kind of methods – which are sometimes based

on ideas of everyday life – has been developed to solve diffi-
cult optimization problems. These methods include genetic
algorithms (GA), simulated annealing (SA), ant colony al-

gorithms, or particle swarm optimization (PSO). They have
been created to overcome frequent serious problems of “clas-
sical” iteration algorithms. For example, an escape from
a local minimum is possible in “distributed” metaheuristics
such as genetic algorithms [3]. On the other hand, the effi-
ciency of these methods is often unpredictable. Therefore,
the current tendency is towards the use of hybrid methods.

The use of metaheuristic methods for the analog circuit
design has been described in a comprehensive way in [14,15]
– [14] considers merging GA/SA, [15] exploits non-sorting
genetic algorithm (NSGA-II) and multiobjective evolution-
ary algorithm based on decomposition (MOEA/D). Some
state-of-the-art hybrid methods are defined in [4] and [16].

In [17], a novel Pareto frontier covering strategy for
the functional-specialization multiobjective genetic algo-
rithm (FS-MOGA) has been presented, and the FS-MOGA
method has been compared with the conventional NSGA-II
one. In [18], a novel two-step searching method based on
particle swarm optimization has been suggested for many-
objective optimization problems, and the proposed algorithm
has been compared with the NSGA-II, Sigma (PSO), and
Sierra (PSO) ones. Moreover, a new hybrid method between
differential evolution and genetic algorithm has been sug-
gested in [19], i.e., coupling the genetic algorithm (GA),
differential evolution (DE), and particle swarm optimization
(PSO), and a comprehensive comparison of the hybrid algo-
rithms (GA/PSO, DE/PSO, GA/DE, and GA/DE/PSO) with
the pure ones (pure GA, DE, and PSO) has been performed.
Another efficient way for the circuit synthesis consists in
coupling the design rules with single optimization steps [20].
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Fig. 20. Equivalent twelve-parameter linear circuit of pHEMT.

4.2 Comparing Metaheuristic Methods
with the Classical Ones
For solving the examples in subsections 3.1, 3.2, and

3.3, the “classical” optimization methods were reliable and
effective. The only problem has emerged with the numerical
stability of the algorithm for solving systems of nonlinear
differential-algebraic equations of the C-class amplifier in
Fig. 8. Although the maximal order of polynomial interpola-
tion could theoretically be six, we had to decrease it for some
points of the Pareto front in Fig. 13 to a lower value, even to
one in some critical cases. (TheA-stability of the algorithms
for the numerical integration is still under research [21].)

However, for certain more complex tasks, the meta-
heuristic methods must be used at least with a combination
with the classical ones. Such a problem has been a determi-
nation of both static and dynamic model parameters of a 110-
GHz pHEMT using measured multi-bias s-parameters [22].
Solving this problem, four methods have been compared:
Levenberg-Marquardt (LM), genetic algorithm (GA), simu-
lated annealing (SA), and Nelder-Mead (NM) simplex ones.

For a statistical comparison of these four optimization
methods, twelve parameters of the model in Fig. 20 have
been looked for. The goal functions are defined as multi-sum
of differences between measured and identified s-parameters

rms` =

√√√√ 1

4m

m∑
k=1

2∑
j=1

2∑
i=1

(
smeas
ij,` (ωk)− sidentij,` (ωk)∣∣smeas
ij,` (ωk)

∣∣+ nulls

)2

(31)
where ` = 1, . . . , n denotes operating points for which the s-
parameters have been measured (for identifying a nonlinear
model [22], multi-operating-point data is always necessary,
and n � 1), m is a number of frequencies at which they
have been measured, and a tiny value nulls was set to 10−6.

Let us now suppose that we know a vector x∗ for which
(31) is minimal, and the lower and upper boundary vectors
xL and xH of permitted parameter space are assigned with
a variable factor as xH = x∗ × factor, xL = x∗/ factor,
respectively. The factor has been sequentially set to 1.2,
1.5, 2, 5, 10, 20, 50, 100, 200, and 500, and for each of
these values, thirty optimizations have been performed with
a starting point x0 chosen randomly (uniform distribution in

the allowed interval has been used). In this way, thirty var-
ious root-mean-square values have been obtained by (31),
and minimal, mean, and standard deviations for them have
been determined with the results shown in Figs. 21–23.

Fig. 21 (minimal deviations) shows that only SA has
achieved rmsmin < 0.1 for all the factor values, whereas
LM has achieved the same results with the exception of the
last value of factor. The other two methods have been con-
siderably worse. Furthermore, Fig. 22 (mean deviations)
shows that for the locally convergent methods LM and NM,
rmsmean has grown in the similar way. On the contrary,
for SA, rmsmean > 0.1 only for factor > 200. Finally,
Fig. 23 (standard deviations) shows that the globally conver-
gent methods have had very small dispersion at the end of
the task, which means low dependence on the choice of x0.

For this particular circuit, SA is the most robust method
reaching the minimum regularly even with higher factor. On
the other hand, LM is very efficient method when the starting
vector is sufficiently near the optimum. Therefore, we have
finally suggested a three-step hybrid method SA/LM that is
described in a detailed way in [22] together with the results.

5. Conclusions
A novel reliable semiautomatic algorithm has been cre-

ated and successfully implemented for the multiobjective op-
timization in both time and frequency domains. The proce-
dure is based on an asymptotically uniform coverage of the
reference set in a combination with modified goal attainment
method with intention to cover the Pareto front uniformly.
Generally, the success rate of yielding the sets of noninferior
solutions is very high, and the developed algorithms are eas-
ily usable for obtaining technically valuable results. More-
over, suggested graphical technique consisting in up to quasi
four-dimensional multiplots and aggregate ones enables eas-
ier assessments of available trade-offs. The method was suc-
cessfully tested on more examples, and three of them were
presented. The first demonstrates a sophisticated optimiza-
tion of the highly nonlinear circuit in the time domain, the
second performs a sophisticated four-dimensional nonlinear
optimization of a video amplifier, and the third represents
a two-dimensional design of a low-noise amplifier. Finally,
the necessity of a combination of a metaheuristic method
with a classical one for solving more complex tasks is dis-
cussed.
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Fig. 21. Minimal root-mean-square values obtained for various widths of parameter space during optimization for chosen operating point.

Fig. 22. Mean root-mean-square values obtained for various widths of parameter space during optimization for chosen operating point.

Fig. 23. Standard root-mean-square values obtained for various widths of parameter space during optimization for chosen operating point.
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and time domains. AEÜ – International Journal of Electronics and
Communications, 2009, vol. 63, no. 1, p. 52 - 64.

[11] ALLSTOT, D., CHOI, K., PARK, J. Parasitic-Aware Optimization of
CMOS RF Circuits. New York (USA): Kluwer Academic Publishers,
2003.

[12] HOROWITZ, P., HILL, W. The Art of Electronics. Cambridge (UK):
Cambridge University Press, 1989.
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