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Abstract. This paper presents a 6th-order tunable 
Butterworth low-pass active filter with Digitally Controlled 
Differential Difference Current Conveyor (DDCC). This 
active filter is synthesized using the systematic method of 
voltage-mode linear transformation (VMLT) which enables 
the filter to use fewer active components, grounded 
capacitors and grounded resistors to avoid the parasitical 
effects. The bandwidth of the filter can be tuned by digital 
switches to adjust the output current of the DDCC. The 
specifications of the filter are based on 3G standard, and 
the filter is controlled by 8-bit digital signals. The tunable 
bandwidth of the filter is from 12 kHz to 2.6 MHz. The 
filter chip layout is realized by TSMC 0.18 μm CMOS 
1P6M mixed-mode technology. The supply voltage is 1.8 V 
and the power consumption is 3.6 mW. 
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Differential difference current conveyor (DDCC), 
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1. Introduction 
In recent years, CMOS circuits have become the main 

building blocks of VLSI circuits. In analog IC design, 
active filters have been used for communication and RF 
front-end processing such as channel selection filter [1], [2]. 

There are many methods to synthesize high-order 
active filters [3], [4], [5]: Follow-the-leader feedback, cas-
cade synthesis, Bruton's transformation, active inductor 
approach, Leapfrog, Linear transformation, etc. Because 
the linear transformation method may be applied to prevent 
monolithic integrated filters from the effect of unpredict-
able variations of process parameters, it is applied in this 
study not only to simplify the design and to reduce the 
number of components but also to use grounded capacitors 
and resistors to avoid parasitical effects. The result is 
a simple but effective design of a high-order active filter. 

Section II discusses the basic theory of Voltage-Mode 
Linear Transformation (VMLT), and digitally controlled 
differential difference current conveyor (DDCC). The 

design of an active filter and the implementation of the 
proposed filter are given in Section III. The simulation 
results are shown in Section IV, and the conclusions are 
given in Section V. 

2. The VMLT and the Digitally 
Controlled DDCC 
This section explains the concepts of the VMLT and 

the digitally controlled DDCC.  

2.1 The VMLT 
A conventional cascaded two-port network is shown 

in Fig. 1. 
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Fig.1. A conventional two-port network. 

The variables of input and output are in the forms of 
voltage and current. The equation is shown in (1). 

 �
�

�
�
�

�
�
�

�
�
�

�
��

�

�
�
�

�
��

�

�
�
�

�

2i

2i

ii

ii

2i

2i
i

1i

1i

I
V

DC
BA

I
V

T
I
V  (1) 

where Ti is the transfer matrix. 

The variables can be changed into voltage variables 
(x1i, x2i, y1i, y2i) through the VMLT method by the transfer 
matrices S1i and S2i as shown in (2) and (3). 
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xji and yji are voltage variables, αji and γji are 
dimensionless, and the unit of βji and δji is mho; j = 1, 2 and 
i = 1 ... n, where n is the order of the two-port network. 
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(4) can be derived from (1)~(3):  
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The yji’s can be represented by the xji’s. If the xji’s 
represent the inputs and the yji’s represent the outputs, 
a new cascaded two-port ladder prototype network can be 
developed. Equations (5) and (6) are introduced to simply 
the interconnection between the two-ports: 
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These equations can be called the cross-cascaded 
interconnection which means that the connection is cross-
cascaded between every two of the new two-port networks 
as shown in Fig. 2. 

N1 N2

y11

Nn

y21 y12 y22 y1n y2n

x12 x22 x1n x2nx11 x21  
Fig. 2. The cross-cascaded two-port network after VMLT. 

2.2 The Digitally Controlled DDCC 
The symbol of the DDCC [6], [7], [8] is shown in 

Fig. 3. The DDCC is an active component that has four 
ports marked Y1, Y2, X and Z. The DDCC is an active 
component which is basically a second generation current 
conveyor combined with a differential difference amplifier. 
The small signal model of DDCC is shown in Fig. 4. There 
are two types of DDCC. The relationships among the 
variables are IY1 = IY2 = 0, VX = VY1 - VY2 and IZ = IX for 
the positive type of DDCC as expressed by (7), or 
IY1 = IY2 = 0, VX = VY1 - VY2 and IZ = -IX for the negative 
type of DDCC, 
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We use the DDCC configuration proposed in [9] and 
add four current-shunt transistors M1A, M2A, M3A and 
M4A at the input stage, as shown in Fig. 5. Such 
arrangement can improve the input common mode range as 
well as enhance the linearity of the DDCC. The component 
parameters of the proposed DDCC are listed in Tab. 1. 
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Fig. 3. Symbol of DDCC. 
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Fig. 4. Ideal model of DDCC. 
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Fig. 5. The schematic of the DDCC. 

 
Transistors (DDCC) Sizes (W/L), μm 

M5A, M5B, M5C, M5D 20/0.5 

M1, M2, M3, M4 48/0.5 

M1A, M2A, M3A, M4A 12/0.5 

M6, M7 6/0.5 

M8, M9 6.2/0.5, 30.4/0.5 

Resistor and Capacitor Value 

Resistor (RC) 2 kΩ 

Capacitor (CC) 0.25 pF 

Tab. 1. The component parameters of the proposed DDCC. 

Current division networks (CDNs) [10]-[14] are 
added in order to widen the range of the output current IZ 
of the proposed DDCC. The CDNs can modify the current 
relationship from IZ = IX to IZ = αIX for the positive type of 
DDCC and IZ = -αIX for the negative type of DDCC, where 
the digital control factor α is the digital value corre-
sponding to the CDN binary switches with 0 < α  1. 
Thus a positive type digitally controlled DDCC can be 
represented by (8), 
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The block diagram of a 4-bit digitally controlled CDN 
is shown in Fig. 6 which consists of 4 current division cells 
(CDCs). According to the current division principle, each 
CDC has one input current Iin and three output currents Io1, 
Io2 and Io3. Their relationships are expressed as follows: 
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where di is the digital control bit of the ith CDC. As also 
shown in Fig. 6, the two output currents Io1 and Io2 of the 4-
bit CDN are given by 
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Hence the current gain of the 4-bit CDN is controlled 
digitally. 

CDC3

d3 d2 d1 d0

Iin_3

Io1_3 Io2_3 Io1_2 Io1_1 Io1_0Io2_2 Io2_1 Io2_0

Io2Io1

CDC2 CDC1 CDC0

Io3_0(Io3_3) (Io3_2) (Io3_1)
(Iin_2=2Io3_2)

d3(Iin_3/2) d3(Iin_3/2)

Iin_2 Iin_1 Iin_0

(=16Io3_0)
(Iin_3=2Io3_3) (Iin_1=2Io3_1) (Iin_0=2Io3_0)

 
Fig. 6. The block diagram of a 4-bit digitally controlled CDN. 

In this study, an 8-bit digitally controlled CDN is 
divided into two such 4-bit CDNs, each capable of 
mirroring and shunting the currents in the ratios 16:8:4:1, 
which are determined by the W/L sizes of the MOS 
transistors.  

The schematic of the 8-bit digitally controlled CDN is 
shown in Fig. 7. The currents from the previous stage are 
mirrored by M13 and M18 which are controlled by the 
most significant (MSB) 4 bits and the least significant 
(LSB) 4 bits, respectively. As explained above, the currents 
are divided in the ratio 16:1 determined by the W/L sizes 
of M13 and M18, and each of M13 and M18 are connected 
to 8 MOS transistors with appropriate W/L sizes to shunt 

the current in the ratios 16:8:4:1. The two currents flow 
through M22 and M16 respectively and finally merge as 
the digitally controlled output current IZ. The operations of 
the NMOS network are complementary to those of the 
PMOS network, and the two currents flow through M25 
and M26 to merge as IZ. The component parameters of the 
CDN are listed in Tab. 2.  
 

Transistors (CDN) Sizes (W/L)μm 

M13a(b), M13c(d), M13e(f), M13g(h) 32/0.5, 16/0.5, 8/0.5, 4/0.5 

M19a(b), M19c(d), M19e(f), M19g(h) 20.8/2, 10.4/2, 5.2/2, 2.6/2 

M28a(b), M28c(d), M28e(f), M28g(h) 10.4/0.5, 5.2/0.5, 2.6/0.5, 1.3/0.5 

M34a(b), M34c(d), M34e(f), M34g(h) 3.2/2.4, 1.6/2.4, 0.8/2.4, 0.4/2.4 

Tab. 2. The component parameters of the CDN. 

Finally, the DDCC and the CDN are combined to 
form a digitally controlled 8-bit DDCC. The symbol of the 
digitally controlled 8-bit DDCC is shown in Fig. 8, and the 
full schematic is shown in Fig.9. In next section, we will 
describe how VMLT is applied to the design of a high 
order filter by the digitally controlled DDCC circuit. 

3. The Design of an Active Filter 
To demonstrate the effectiveness and the flexibility of 

the proposed design, a 6th-order tunable Butterworth low-
pass active filter using digitally controlled DDCCs is 
presented. The application of linear transformation and the 
realization of the filter using digitally controlled DDCCs 
are illustrated in this section.  

The passive part of the filter is divided into three 
different portions: input portion, output portion, and 
middle portion. The middle portion is further divided into 
L series with αji = δji = 0 and C shunt with βji = γji = 0 to 
reduce the complexities of transformation matrices. 
Furthermore, we can choose either αji or γji = ±1, and either 
βji or δji = ±R to reduce the number of the digitally 
controlled DDCCs. 

Take the 6th-order Butterworth low-pass ladder filter 
shown in Fig. 10 for example. The transformation matrix 
of its input portion (the R-C shunt arm connected to the 
voltage source) can be expressed as 

 �
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Its output variables x21 and y21 can be expressed as 
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The transfer functions can be derived for the digitally 
controlled DDCC circuits (DCDDCC-based circuits) and 
are also shown in Tab. 3 by 
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Fig. 7. The schematic of the 8-bit digitally controlled CDN. 
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Fig. 8. The symbol of the digitally controlled 8-bit DDCC. 
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Fig. 9. The full schematic of the digitally controlled 8-bit DDCC. 
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The transformation matrix of the L series arm of the 
middle portion is  
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It can be shown that 
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Its corresponding digitally controlled DDCC lossless 
integrator circuit can also be listed in Tab. 3 with its 
transfer function 
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The transformation matrix of the C shunt arm of the 
middle portion is 

  �
�

�
�
�

�

1212

1212

	

��

�
�

�
�
�

�

2222

2222

	

��

= �
�

�
�
�

�
�

�
01

0 R
�
�

�
�
�

�
�

�
01

0 R
.  (21) 

It can be shown that 
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Its corresponding digitally controlled DDCC lossless 
integrator circuit can also be listed in Tab. 3 with its 
transfer function  
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The transformation matrix of the output portion (the 
R-L series arm) can be expressed as 
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It can be shown that 

 O
6

61
61 V

1
R
Ls

xy �
�

�
�� . (25) 

Its corresponding digitally controlled DDCC lossless 
integrator circuit can be presented in Tab. 3 with its transfer 
function 
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In summary, we can divide the filter prototype into 
six sections and choose appropriate transformation 
matrices to obtain their x-y domain transfer functions. 
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Fig. 10. The  6th-order Butterworth low-pass ladder filter. 
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Tab. 3. The transformation blocks. 
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Fig. 11. A digitally controlled DDCC-based 6th-order tunable 
Butterworth low-pass active filter. 

Then, we can cross-cascade their corresponding digitally 
controlled DDCC circuits to construct the filter. A 6th-order 
tunable Butterworth low-pass active filter using digitally 
controlled DDCCs, grounded resistors and grounded 
capacitors is presented as an example in this study. In this 
filter, VDD = 1.8 V, Ra1 =Rf1 5.3 kΩ, Ra2 = Rf2 =  
5.3 k�/α, Rb1 = Re1 7.3 k�, Rc1 = Rd1 9.9 k�,  
Ca1 = Ca6 = 6pF, and Ca2 = Ca3 = Ca4 = Ca5 = 12 pF [15], 
[16]. Its configuration with six digitally controlled DDCCs 
is shown in Fig. 11. 
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CDN 8-bit SW 
(α) Bandwidth  Output voltage 

(VP-P) 
THD 
(%) 

11111111 
(1) 2.6 MHz 206 mV 1.09 

01111111 
(0.5) 1.25 MHz 218 mV 0.74 

00111111 
(0.25) 680 kHz 236 mV 0.69 

00011111 
(0.125) 363 kHz 261 mV 1.58 

00001111 
(0.0625) 187 kHz 225 mV 1.57 

00000111 
(0.03125) 93.2 kHz 235 mV 1.51 

00000011 
(0.015625) 48.4 kHz 265 mV 0.99 

00000001 
(0.0078125) 25.4 kHz 302 mV 5.35 

00000000 
(0.00390625) 12 kHz 326 mV 8.80 

Tab. 4. The simulation results at an input voltage of 
600 mV(VP-P). 

 
Filter type Butterworth active low-pass filter 

Order 6 
Frequency Range 12 kHz ~ 2.6 MHz 

Ripple 0 dB 
THD 1.09 % @ 2.6 MHz 

Voltage Supply 1.8 V 
Power Consumption 3.6 mW 

Chip Size 0.482×0.435 mm2 (without PAD) 
Technology TSMC 0.18μm 1P6M mixed-mode process 

Tab. 5. The specifications of the proposed filter. 

4. Simulation Results 
The proposed filter is tuned by a 8-bit CDN switch 

(the digital control factor α). Nine simulations with 
different values of α are conducted at an input voltage of 
600 mV (peak-to-peak), and the range of the tuned 
frequencies is from 12 kHz to 2.6 MHz. The simulation 
results are shown in Tab. 4 and the frequency responses are 
shown in Fig. 12. 

The filter is implemented in TSMC 0.18 �m 1P6M 
process with supply voltage VDD = 1.8 V. The chip layout 
is shown in Fig. 13, and the specifications of the filter are 
shown in Tab. 5. The chip area without PAD is 0.482 × 
0.435 mm2.

5. Conclusions 
The design of a tunable differential difference current 

conveyor (DDCC) active filter using voltage-mode linear 
transformation (VMLT) method is presented. The 
bandwidth of such a filter can be tuned by the α factor (the 
digital value corresponding to the CDN binary switches) to 
adjust the output current value of the DDCC. A 6th-order 
tunable  Butterworth  low-pass  active  filter  with  digitally 

 

12KHz~2.62MHz 

-6.02dB 
1111 1111 

0000 0000 

 
Fig. 12. The simulation frequency responses. 

 
Fig. 13. The chip layout of the proposed filter. 

controlled DDCC is fabricated using 6 digitally controlled 
DDCCs along with 6 grounded capacitors and 8 grounded 
resistors. Its CDN circuits allows the bandwidth of the 
filter to be tuned by adjusting the α factor. The proposed 
filter has the following merits: easy and systematic design 
procedures are available, all capacitors and resistors are 
grounded, and the equations are simple. Furthermore, the 
design and circuits can be extended and applied to other 
applications.
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