
518 C. SANCHEZ-LOPEZ, ET AL., SYMBOLIC NODAL ANALYSIS OF ANALOG CIRCUITS 

Symbolic Nodal Analysis of Analog Circuits with Modern 
Multiport Functional Blocks 

Carlos SANCHEZ-LOPEZ, Adriana RUIZ-PASTOR, Rocio OCHOA-MONTIEL, 
Miguel Ángel CARRASCO-AGUILAR 

Dept. of Electronics, Autonomous University of Tlaxcala, Apizaquito km. 1.5, 90300 Apizaco-Tlaxcala, Mexico 

carlsanmx@yahoo.com.mx, adruizp@gmail.com, rocio730@hotmail.com, macarras2010@gmail.com 

 
Abstract. This paper proposes admittance matrix models 
to approach the behavior of six modern multiport func-
tional blocks called: differential difference amplifier, 
differential difference operational floating amplifier, dif-
ferential difference operational mirror amplifier, differen-
tial difference current conveyor, current backward trans-
conductance amplifier and current differencing trans-
conductance amplifier. The novelty is that the behavior of 
any active device mentioned above can immediately be 
introduced in the nodal admittance matrix by using the 
proposed admittance matrix models and without requiring 
the use of extra variables. Therefore, a standard nodal 
analysis is applied to compute fully-symbolic small-signal 
performance parameters of analog circuits containing any 
active devices mentioned above. This means that not only 
the size of the admittance matrix is smaller than those 
generated by applying modified nodal analysis method, for 
instance, but also, the number of nonzero elements and the 
generations of cancellation-terms are both reduced. An 
analysis example for each amplifier is provided in order to 
show the useful of the proposed stamps.  
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1. Introduction 
During the last few years, various active devices have 

been proposed to be used in the analog signal processing 
[1], such as the Differential Difference Amplifier (DDA) 
[1], the Differential Difference Operational Floating 
Amplifier (DDOFA) [2], the Differential Difference 
Operational Mirror Amplifier (DDOMA) [3], the 
Differential Difference Current Conveyor (DDCC) [5], the 
Current Backward Transconductance Amplifier (CBTA) 
[6] and the Current Differencing Transconductance 
Amplifier (CDTA) [7], among others [1], [8], [9]. In most 
applications, the electronic circuit behavior can be pre-
dicted by means of numerical simulations or symbolic 
expressions [10]-[16]. In the former case, numerical simu-

lations do not give any information about which com-
ponent plays the most important role in the transfer 
function behavior, since numerical simulations are used to 
verify the circuit behavior on an isolated point of the 
design space. In the latter, symbolic analysis techniques are 
very useful to compute symbolic transfer functions, since 
a symbolic expression provides direct insight on the 
influence of each circuit component over the circuit 
behavior and at all the design space. Therefore, symbolic 
analysis is an essential complement to numerical 
simulations. In any case, formulation methods based on 
graphs or matrices are required to formulate the system of 
equations and later on, recursive determinant-expansion 
techniques are applied in order to compute either numeric 
or symbolic small-signal performance parameters of the 
circuit [10]-[16]. 

On the other hand, among all the formulation methods 
based on graphs or matrices, the modified nodal analysis 
method (MNA) was adopted for the development of 
numerical simulators like Hspice, and also on the 
development of symbolic analyzers like ISAAC and 
SNAP, where the element stamp is used to fill the 
admittance matrix [11], [12], [15]. In this context, 
controlled sources are used to model the behavior of 
voltage-, current- and hybrid-mode active devices and each 
of them is included in the admittance matrix by using 
stamps [10]-[15]. Unfortunately, only the behavior of 
voltage-controlled current sources (VCCS) and current-
controlled current sources (CCCS) can immediately be 
introduced in the nodal admittance matrix (NAM) by 
applying a nodal analysis (NA) only. For the other two 
controlled sources, i.e., the current-controlled voltage 
source (CCVS) and the voltage-controlled voltage source 
(VCVS), a column and row along with six nonzero 
elements must be added to the admittance matrix by each 
controlled source used [13]-[15]. That means that the 
system of equations of analog circuits whose behavior is 
modeled with controlled sources becomes large and dense. 
But, even the computational complexity and memory 
consumption are both increased when recursive 
determinant-expansion techniques are applied in order to 
compute fully-symbolic transfer functions. Therefore, the 
introduction of reduction techniques on the size of the 
admittance matrix becomes mandatory. 
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(a)                                                (b) 

Fig. 1. (a) Symbol of the DDA, (b) equivalent model. 

In order to reduce the complexity of the solution 
method, not only the admittance matrix must be as sparse 
as possible, but also the size of the system of equations 
must be kept as low as possible. In this scenario, new 
element stamps for the two non-NA compatible controlled 
sources have been reported, which are based on the 
concept of matrix port-equivalence and limit-variables 
[17]-[20]. However, although the behavior of the two 
controlled sources can immediately be introduced in the 
NAM, they present several drawbacks. The major draw-
back is that each proposed stamp introduces limit-variables 
and they must be taken as a limit to infinity once symbolic 
transfer functions are computed [8], [20], [21]. Therefore, 
valuable computer resources will be wasted in generating 
symbolic terms that will be pruned when the limits are 
applied on the symbolic expressions computed. On the 
other hand, following the same concept of limit-variables, 
the behavior of each controlled source in their fully-
differential and single-ended versions can be modeled as 
VCCSs, as have already been reported in [21]-[24]. The 
difference of these stamps with those reported in [17]-[20], 
is that input-output impedances associated to each 
controlled source are taken into account. As a result, the 
behavior of any active device modeled with controlled 
sources can directly be introduced into NAM, including 
input-output impedances, and symbolic transfer functions 
are computed without loss of accuracy. The contribution of 
this paper is along the same line on the deduction of 
element stamps for those active devices mentioned above 
and as an extension of the works reported in [21]-[24]; 
thereby they can be used to directly fill the NAM, 
improving the CPU-time and memory consumption used 
during the compute of the symbolic transfer functions. 

2. DDA Stamp 
The DDA was proposed in [2] as a new active device. 

The symbolic representation is depicted in Fig. 1(a) and its 
equivalent model by using a VCVS is shown in Fig. 1(b). 
This amplifier handles voltage signals on its input 
terminals and a voltage difference on its output terminals. 
According to [23], [24], the stamp of the DDA is obtained 
as 

    
(a)                                                (b) 

Fig. 2. (a) Symbol of the DDOFA, (b) equivalent model. 
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where Y1 and Y2 are the input admittances, Yo is the output 
admittance (ideally, Yo = ) and Av is the finite open-loop 
voltage gain. As one can see, (1) can be used to formulate 
the system of equations of analog circuits containing DDA 
by using standard NA. On the other hand, whether input 
admittances are considered as ideals (i.e., Y1 = Y2 = 0), (1) 
is simplified to 
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3. DDOFA Stamp 
The DDOFA, whose symbol is shown in Fig. 2(a), 

has two differential input ports and provides two balanced 
output currents [3]. The equivalent model by using two 
VCCS is depicted in Fig. 2(b). This active device handles 
voltage signals on its input terminals and current signals on 
its output-terminals. According to [21], the stamp of the 
DDOFA can be deduced as 

          a             b          c           d   
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      a           b         c           d          e 

   a             b          c              d          e 
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(a)                                                (b) 

Fig. 3. (a) Symbol of the DDOMA, (b) equivalent model. 

where Y1 and Y2 are the input admittances and gm is the 
finite open-loop transconductance gain. As one see, (3) can 
immediately be used to formulate the NAM of analog 
circuits containing DDOFA. By considering ideal input 
admittances (i.e., Y1 = Y2 = 0), (3) is reduced to 
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4. DDOMA Stamp 
The DDOMA has emerged as an alternate analog 

building block which inherits all the advantages of current 
mode techniques [4]. Basically, the behavior of the 
DDOMA is similar to the DDOFA, only that here, two 
current sources with the same direction are used on the 
output terminals. Note that the DDOFA and DDOMA are 
extended versions of the operational floating amplifier. The 
symbolic representation is depicted in Fig. 3(a) and its 
equivalent model by using two VCCS is shown in 
Fig. 3(b). Simple analysis of Fig. 3(b) allows obtaining 
a set of equations given by 

          a           b         c          d   
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where Y1 and Y2 are the input admittances and gm is the 
finite open-loop transconductance gain. Similarly as in 
previous section (i.e., Y1 = Y2 = 0), (5) can be reduced to 
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Therefore, (5) and (6) can be used to compute 
symbolic small-signal characteristics of analog circuits 
containing DDOMA by applying standard NA only. 

     
(a)                                                (b) 

Fig. 4. (a) Symbol of the DDCC, (b) equivalent model. 

 

    
(a)                                                (b) 

Fig. 5. (a) Symbol of the CBTA, (b) equivalent model. 
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Fig. 6. (a) Symbol of the CDTA, (b) equivalent model. 

5. DDCC stamp 
The DDCC, whose symbol is depicted in Fig. 4(a), is 

a six-terminal network and its equivalent model by using 
controlled sources is shown in Fig. 4(b) [5]. This hybrid 
active device handles voltage and current signals on its 
input terminals and only current signals on its output-
terminals. According to [21], [23]-[24] and analyzing each 
terminal of Fig. 4(b), the system of equations can be 
written as a general admittance matrix given by 

   a             b          c           d   

   a        b        c        d  
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where Y1, Y2, Y3 and Yx (ideally, Yx = ) are the input 
admittances, Av and Ai are the finite open-loop voltage and 
current gains, respectively. By considering ideal input 
admittances (i.e., Y1 = Y2 = Y3 = 0), (7) is reduced to 
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6. CBTA Stamp 
The CBTA handles current signals at the input 

terminals and both voltage and current signals at its output 
terminals [6]. The circuit symbol of the CBTA is shown in 
Fig. 5(a) and its equivalent model by using controlled 
sources is depicted in Fig. 5(b). According to [21], [23], 
[24], the stamp of the CBTA can be deduced as 

                  a        b         c             d 
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where Yo is the output admittance (ideally, Yo = ), Ap, An 
and Av are the finite open-loop positive-negative current 
and voltage gains, respectively; and gm is the finite open-
loop transconductance gain. As a consequence, (9) can 
directly be used to formulate the NAM of analog circuits 
containing CBTA. 

7. CDTA Stamp 
The CDTA handles currents in both input-output 

terminals [7]. Basically, it is a current operational amplifier 
with a complementary version on the z-terminal. The 
circuit symbol of the CDTA is shown in Fig. 6(a) and its 
equivalent model is depicted in Fig. 6(b). Again, according 
to [21], [23], [24], the stamp of the CDTA is given by 

 

         
(a)                                                     (b) 

Fig. 7. (a) Voltage inverter, (b) equivalent circuit. 
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where Y1, Y2 are the input admittances (ideally, 
Y1 = Y2 = ), Ai is the finite open-loop current gain and gm 
is the finite open-loop transconductance gain.  

8. Illustrative Examples 

In this section, examples are described to demonstrate 
the use of the proposed stamps in order to compute fully-
symbolic small-signal characteristics of analog circuits 
containing DDA, DDOFA, DDOMA, DDCC, CBTA and 
CDTA. Let us begin with the simple topology show in 
Fig. 7(a) [2]. Its equivalent circuit by using Fig. 1(b) is 
depicted in Fig. 7(b). According to Fig. 7(b) and (2), 
a standard NA is applied and the system of equations is 
given by  
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where Y1 = Y2 = 0 are considered. From (11) the symbolic 
transfer function is computed as 
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As a second example, let us consider the DDOFA-based 
lossy differential integrator taken from [3] which is shown 
in Fig. 8(a). Its equivalent circuit is illustrated in Fig. 8(b). 
According to Fig. 8(b) and by applying (4), the NAM is 
given by 
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where Y1 = Y2 = 0 are considered. From (13) the output 
voltage is computed as 
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Let us now study the DDOMA-based differential 
voltage amplifier taken from [4] which is illustrated in 
Fig. 9(a) along with its equivalent model by using 
controlled sources shown in Fig. 9(b). According to 
Fig. 9(b), the NAM can be formulated using the stamp 
given by (6) as 
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where Y1 = Y2  = 0 are again considered. Therefore, the 
output voltage is computed from (15) and given by 
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A DDCC-based voltage-mode biquad filter taken from [5] 
is depicted in Fig. 10(a). Its equivalent circuit is illustrated 
in Fig. 10(b). By applying (8) in Fig. 10(b), the NAM is 
built as  
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Assuming Y1 = Y2 = 0, Zx1 = 1/Yx1 = 0 and Zx2 = 1/Yx2 =0, 
the symbolic transfer functions for band- and low-pass 
responses are given by 
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(a)                                                (b) 

Fig. 8. (a) DDOFA-based differential integrator, (b) equiva-
lent circuit. 

 

    
(a)                                                (b) 

Fig. 9. (a) DDOMA-based differential voltage amplifier, 
(b) equivalent circuit. 
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(b) 

Fig. 10. (a) DDCC-based voltage-mode biquad filter, (b) equi-
valent circuit. 
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As a fifth example, we consider the CBTA-based oscillator 
taken from [25] which is shown in Fig. 11(a). Its 
equivalent circuit is illustrated in Fig. 11(b) with V5 as 
output node. According to Fig. 11(b) and by applying (9), 
the NAM is given by 

 





















































5

4

3

2

1

111

2

3

11

1

000

00

000

0

00

V

V

V

V

V

sCgg

sCgg

YAYg

gYAAYAg

YAAYAg

mm

ovo

ovnon

ovpop

. (20) 

Therefore, the characteristic equation for the oscillator 
circuit is given by 
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where Zo = 1/Yo has been considered. From (21), the 
condition and frequency oscillation are computed as  

      21 RARA pn  ,   
)(2
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 . (22) 

From (22), one can see that the condition oscillation can be 
controlled by R1 or R2, meanwhile the frequency oscillation 
is controlled by gm or R3. As a last example, let us consider 
the CDTA-based Kerwin-Huelsman-Newcomb (KHN) 
biquad taken from [26] and depicted in Fig. 12(a). Its 
equivalent circuit is illustrated in Fig. 12(b). By applying 
(10) in Fig. 12(b), the system of equations is given by 
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Symbolic transfer functions for low-, band- and high-pass 
responses are given by 

 

21

2121

1

112

21

2121

CC

ggAA

C

gA
ss

CC

ggAA

I

I

mmiimi

mmii

in

Lp


 , (24) 

 

21

2121

1

112

1

121

CC

ggAA

C

gA
ss

C

gAA
s

I

I

mmiimi

mii

in

Bp


 , (25) 

 

21

2121

1

112

1
2

CC

ggAA

C

gA
ss

As

I

I

mmiimi

i

in

Hp


 . (26) 

 

   
(a)                                                (b) 

Fig. 11. (a) Sinusoidal oscillator using CBTA, (b) equivalent 
circuit. 
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Fig. 12. (a) CDTA-based KHN filter, (b) equivalent circuit. 

9. Summary and Conclusions 
Symbolic analysis is a powerful tool which 

accelerates the electronic design process, since a symbolic 
expression that describes the behavior of a circuit gives 
information that is complementary to information supplied 
by numerical simulations [10]-[15]. In the past, several 
symbolic analyzers were proposed in order to compute 
symbolic performance parameters of electronic circuits 
[11], [12], [15]. In these analyzers, the MNA method was 
principally used to formulate the system of equations. 
However, the size of the admittance matrix and the number 
of nonzero elements increases by each controlled source 
used. For instance, whether the MNA formulation is 
applied in Fig. 10(b), the size of the matrix is 9×9 with 
19 nonzero elements, which is larger and denser than (17). 
Therefore, the computational complexity and memory 
consumption is increased when recursive determinant-
expansion techniques are applied in order to compute 
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performance parameters [14]. For the above reasons, other 
approaches to reduce the size of the system of equations 
have been reported in [13] and [15] and they are known as 
dead row and V/I methods. In the former method, the 
number of equations is equal to the number of independent 
nodes, similarly as NA. However, according to [15], the 
method is only useful for ideal active devices. In the latter, 
ideal active devices are again considered, and for the case 
of analog circuits containing ideal amplifiers, the number 
of equations is reduced by each amplifier. That is, the 
number of equations is equal or less than the number of 
independent nodes [13], [15]. In both methods, although 
the size of the system of equations is equal or less at 
comparison with the NAM by using the proposed method 
herein, only ideal active devices can be used. It is a serious 
drawback, since from the point of view of an analog 
designer, input-output impedances along with the gain 
must be included into the symbolic expressions to be 
computed, in order to obtain a behavioral model more 
realistic and accurate. Furthermore, one should be careful 
not only in the selection of the rows and columns to be 
omitted, but also in how to identify the signs of signed 
minors, when the determinant is computed [13], [15]. 
Moreover, new stamps for the CCCS and VCVS were 
recently proposed and they can be used to immediately 
include the behavior of any active device into the NAM 
[22]-[24]. As a consequence, not only smaller and less 
dense matrices can be obtained, as has already been 
demonstrated throughout the paper, but also the CPU-time 
and memory consumption used during the solution of the 
NAM are improved [8], [9]. It is worth mentioning that in 
the previous examples, a Norton equivalent was applied to 
transform the independent voltage sources to current 
sources. It is great advantage since this permits reducing 
the admittance matrix in one order. Furthermore, 
pathological equivalents of active devices have also been 
proposed at the literature [8], [9], [22], [27]-[31] with the 
target of reducing the size of the system of equations and 
improve the computation of symbolic expressions of 
a circuit. Even pathological elements have also been used 
in synthesis methods [20], [27], [28]. In addition, either the 
element stamp method or pathological elements can be 
used to reduce not only the size the NAM and the number 
of nonzero elements, but also the generation of cancelling-
terms. Finally, the proposed stamps for modeling the 
behavior of active devices can easily be included in a CAD 
tool and, as result, symbolic performance parameters can 
be computed by applying a standard NA only. In this 
context, all the proposed stamps and those reported in [21], 
[23], [24], along with all the pathological equivalents of 
active devices reported in [8], [9], [22], are already 
implemented into a software called: Symbolic Analyzer 
and Design of Analog Integrated Circuits (SA2IC), 
developed at the Autonomous University of Tlaxcala, 
Mexico. 
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