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Abstract. Intelligent attackers in a collaborative spectrum
sensing system could act as honest users to conceal them-
selves and start malicious behavior abruptly since an unpre-
dictable time slot. Affected by honest behavior before attack-
ing time, traditional malicious behavior detection (MBD) al-
gorithms are not agile enough to identify the abrupt change
of behavior. To alleviate this challenge, in this paper, we pro-
pose the Rao test-based malicious behavior detection (RT-
MBD) algorithm, which could detect the malicious behavior
with unknown parameter and unknown starting time. The
proposed RT-MBD is not affected by honest behavior before
attacking time and has a shorter detection delay with con-
straint of a certain false alarm rate than conventional algo-
rithms. Performance of RT-MBD is validated by both math-
ematical proof and numerical experiments.
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1. Introduction

Spectrum sensing [1] is a fundamental technology of
cognitive radio networks (CRNs) [2], which guides the cog-
nitive radios (CRs) to access to the licensed spectrum bands
properly. In the CRNs, cognitive radios are allowed to ac-
cess to the licensed spectrum bands only when primary users
are absent. Because of the uncertainty of the wireless envi-
ronment such as shadowing and fading, sensing results from
a single CR may be unreliable [3]. Therefore, collaborative
spectrum sensing (CSS) [4], [5] is proposed to conquer the
unfavorable wireless channel effects. In a typical CSS sys-
tem, at each sensing slot, all the CRs perform local spectrum
sensing procedure individually and send the sensing results
to the fusion center (FC), where a global decision is derived
according to a certain fusion rule [6]. CSS improves sensing
performance by exploiting spatial diversity gain [7] when
all the CRs behave honestly. In contrast, when some CRs
turn to malicious behavior, the performance of CSS degrades

fiercely. In this paper, the term behavior specifies how a CR
deals with its sensing results. For honest users, the sensing
results are reported to the FC directly, while the malicious
users may falsify their sensing results to mislead the FC.

Security issues in CSS system, which deal with mali-
cious behavior, have attracted considerable attention of re-
search community. In [8], an attacker detection approach
bases on data mining is proposed. It calculates Hamming
distance between each pair of two CRs and declares the pres-
ence of attackers when the distance deviates from a normal
level. A method to learn the malicious behavior of attackers
is provided in [9]. The behavior is measured by probabil-
ity of sensing reports from CRs. In [10], the dissimilarity
of local sensing reports among CRs is applied as behavior
metric. All these studies base on the same assumption that
behavior of a CR is fixed and unchangeable. However, In
practical scenarios, after intruding into the CRN, attackers
may not take malicious behavior immediately. It is reason-
able that the attackers act as honest users (to lurk in the CRN
and to avoid being detected) and turn to malicious behav-
ior at an unknown time. In this circumstance, the behavior
metric applied in [8]-[10] cannot converge to the true value
regarding to malicious behavior after change-point (start of
malicious behavior), because honest reports before attacking
are included in calculation of malicious behavior. Although
a forgetting mechanism is adopted to eliminate the impact of
historical behavior in our previous work [11], the decay fac-
tor cannot be derived analytically, and the algorithm cannot
be optimized when the attacking time is unknown.

To alleviate this challenge, in this paper, we investi-
gate online malicious behavior detection schemes that ap-
plies change-point detection theory, and two scenarios are
considered. In the first scenario, parameters of malicious
behavior are assumed to be known to the FC. We utilize
the repeated sequential probability ratio test (RSPRT) [12]
as a malicious behavior detection algorithm to identify the
change of behavior. The RSPRT-MBD achieve a minimum
average detection delay subjects to a given false alarm level.
In the second scenario, which is more practical, the behav-
ior parameter is unknown. We use the generalized likeli-
hood ratio test (GLRT) [13], a traditional change-point de-
tection algorithm, as a MBD approach. Furthermore, to
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reduce computational complexity of GLRT-MBD, we sub-
stitute the GLRT statistic by the Rao test statistic [14] and
propose a Rao test-based malicious behavior detection (RT-
MBD) algorithm. The proposed algorithm achieves less de-
tection delay than GLRT-MBD does with constraint of the
same false alarm rate .

The remainder of this paper is organized as follows.
CSS system model and malicious behavior in CSS system is
introduced in Section 2. In Section 3, online malicious be-
havior detection algorithms for two scenarios are proposed.
In Section 4, the performance bounds of proposed MBD al-
gorithms are analyzed. The simulation results is presented
in Section 5, and the paper is concluded in Section 6.

2. System Model

In this section, CSS system of cognitive radio networks
is introduced. After that, we investigate the behavior of CRs
in the CSS system.

2.1 CSS System Model
CSS system

Primary
User

Fig. 1. Collaborative spectrum sensing system model.

As shown in Fig. 1, cognitive radios (CRs) coexist with
a primary user (PU). Both the PU and CRs are assumed to
use time slotted system with perfect time-synchronization
[15]. The PU has a priority to utilize the licensed spec-
trum band, while the CRs are allowed to access the band
only when the PU is idle. Let Py be the prior probability that
PU is absent and P; be the prior probability that the PU is
present. In addition, the prior probability of PU’s status is
assumed to be known, because it could be learned from his-
torical information. At the beginning of each time slot, there
is a short period of time for CRs to detect the status of the PU
in the licensed band. Without lost of generality, we assume
that all the CRs adopt energy-detection scheme [16] to de-
tect the PU, and they achieve the same sensing performance

[17]. The sensing performance of CRs could be depicted by
sensing matrix

1-Py, Py
S= o e 1
( Pina 1Pmd> M

where Py, = Pr(u = 1|#p) is false alarm probability of the
CR, and P,,; = Pr(u = 0| H;) is missed detection probability
of the CR. % is the hypothesis that PU is absent, and % is
that of PU is present.

After local sensing phase, the CRs report their sens-
ing results u = ("), 4 ... u™)) to the FC for data fusion,
where u') = {0,1}, i € {1,2,--- ,N}, denotes the i CR’s
sensing result. The distance between PU and CR is usually
much larger than that between CR and FC, then reporting
channels could be assumed error-free [4] and local results
are perfectly received by FC. Moreover, it is reasonable to
assume that S is known to the FC, because sensing perfor-
mance of CRs could be adjusted by the FC.

2.2 Malicious Behavior in CSS System

In a CSS system, security threats are generally raised
by two kinds of malicious users, i.e., intruded attackers and
compromised CRs [18]. Both the two types could falsify
their local sensing reports and mislead the FC. When the FC
executes malicious behavior detection (MBD), all the CRs
are regarded as potential malicious users.

We use the behavior matrix [10] to describe the behav-
ior (the way a CR deal with its sensing results) of the checked
CR. Take the i CR as an example, the behavior matrix of it
could be denoted by

(i) (i)

i 1-

Q( ) — (?)01 qu(l_) )
q10 1 —q

where qyk) =Pr(v\) = k|u) = j), j,k € {0,1}, is the condi-
tional probability, and it indicates the probability that the i
CR reports k to the FC while its sensing result is j. For con-
venient analysis, we omit the superscript “i” of the checked
CR in the remainder of this paper and denote the behavior
parameter by 6 = (q01,q10)T. Clearly, for malicious behav-
ior, 0 < go1,910 < 1, and for honest behavior, go; = g190 = 0.
Intuitively, that matrix of honest behavior could be written

as
QH((l) ?) @

In most existing works, behavior matrix of the checked
CR is time-invariant. In view of the FC, all the CRs act fol-
lowing their unchangeable behavior parameters. However,
in practical scenarios, a malicious user can disguise itself
by acting as an honest one and turns to malicious behavior
abruptly since an unknown time slot. An adequate MBD al-
gorithm has to be sensitive to the abrupt behavior change and
raise an alarm after it happens.

Because the exact status of PU is unknown at FC, the
only clue to detect malicious behavior is sensing reports of
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CRs. Suppose that the FC starts MBD at time slot 1, and
the behavior of the checked CR changes since time slot #,
(including time slot #.), then the probability mass function of
sensing report v, t = 1,2, -, could be presented as

v N{ f (vi;0n)
! f (vi;0m)

1<t <t
151 “4)
where Oy is the parameter of honest behavior of the CR
before the change, and 0y is behavior parameter after mali-
cious behavior occurs. In this paper, the process that a CR’s
behavior changes from honest behavior to malicious behav-
ior is assumed could be finished at once (without delay).

3. Malicious Behavior Detection

In this section, we provide malicious behavior detec-
tion (MBD) algorithms for two cases. In the first case, pa-
rameter of malicious behavior is known to the FC, and re-
peated sequential probability ratio test (RSPRT) algorithm
is adopted to solve the problem. In the other case, which
is more practical, the parameter of malicious behavior un-
known. We propose a Rao test-based malicious behavior de-
tection (RT-MBD) algorithm.

3.1 Detection of Known Malicious Behavior

Notice that the sensing reports have only two possible
values, and it follows Bernoulli distribution

fv:0)=p"(1—p)™ (5)

where v, € {0,1}, t > 1, and p = Pr(v, = 1;0). For mali-
cious behavior, parameter Oy = (qo; ,qlo)T, and we have

PM ZPI’(V,« = 1;9M)
= ((1="Pra)qo1 +Pra (1 —q10)) Po (6)
+ (1= Pua (1 —qo1) — (1 = Pua) q10) Pi

where 0 < go1,910 < 1. Similarly, for honest behavior,
0y = (0,0)7, and we have

pu = Pr(v, = 1;0y)

7
=P Po+ (1 —Puq) Pr. @

Based on analysis above, the log-likelihood ratio (LLR) be-
tween probabilities of sensing report v; comes from mali-
cious behavior and that comes from honest behavior could
be calculated and denoted as follows,

f(vi;0m)
J (v;0u)
If s, > 0, it has larger probability that v; is generated by mali-

cious behavior. In contrast, if s; < 0, it has larger probability
that v; comes from honest behavior.

St = In (8)

The detection algorithm will stop when the statistic ex-
ceeds a predetermined threshold. The stopping time (alarm-
ing time) could be presented as

ty=min{t: g >n} )

where

t
:mast,- (10)
J i=j

is the statistic of the algorithm, and it is the largest sum of the
LLR over time slots i to 7. 1 is the predetermined threshold.
Expressions of (9) and (10) formulate the cumulative sum-
type algorithm, and it could be implemented by repeated se-
quential probability ratio test (RSPRT) [12] of two hypothe-
ses,

r—1)+ 1)>0
grsPRT (1) = { gRSPRT( )+s:  grsprr(t) (11

grsprr(f) <0

where grsprr(0) = 0. The statistic grsprr(¢) could also be
presented in recursive form,

grsprr(t) = (grsprr(t — 1) +5)" (12)

where (x)" = sup (x,0).

If t, > t., we define detection delay by t; =t, —t.. On
the other hand, when #, < t., a false alarm comes up.

3.2 Detection of Unknown Malicious Behavior

In a practical system, not only the behavior change
time is unpredictable, but also the parameter of malicious
behavior is unknown. The statistic g; of the detection algo-
rithm cannot be calculated directly. Conventional approach
to solve hypothesis test with unknown parameter in change-
point detection theory is to substitute the statistic g; by &,
which is the most possible value of g; and is calculated
based on maximum likelihood estimation (MLE) of the un-
known parameter. This is the generalized likelihood ratio
test (GLRT) [13]. Based on GLRT, the GLRT-MBD could
be derived as follows.

When parameter of malicious behavior is unknown, we
cannot derive f (v;;0m) directly, and the log-likelihood ratio
sy is also unknown. The standard statistical approach is using
the MLE of 7. and Oy,

t{l
() o, go 00
. i» YH

1<tc<tq g

(13)

The statistic of GLRT-MBD at time slot ¢ is denoted by

gGLrr(t) = max InTgrrr(/,?) (14)
1<j<t
where
. f(x;0 f
ToLrr(j,1) = Sup ———— = sup (15)
oy /(X GH Oy 111
is the statistic of GLRT', and x = (VjsVjgts - ,vt)T is the

vector of sensing reports from time slot j to 7.
gGLrr(J,1) in (9), the GLRT-MBD is derived.

Applying

INotice that the statistic of GLRT and statistic of GLRT-MBD are different. The relation of the two kinds of statistics is revealed in (14).
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We notice that statistic of GLRT is maximum value
of likelihood ratio and should be computed for each i =
jyj+1,--- t respectively. The GLRT-MBD is computation-
ally complex and sometime unavailable. If Tgirr(j,f) is
substituted, the GLRT-MBD could be simplified. In the fol-
lowing of this subsection, we substitute the GLRT statistic
by Rao test (RT) [14] statistic, which is calculated without
MLE of behavior parameter, and propose the RT-MBD algo-
rithm.

According to (6) and (7), we find the probability that
the checked CR reports a certain value (i.e., 0 and 1) is
a function of the behavior parameter 0. Then we substi-
tute behavior parameter 8 by parameter p and derive the RT
statistic as follows

of (x;p)

Trr (j,t) = —=——

T
a .
ap 171 (PH) f(X’p)

9 (16)

p=pH p=pu
where X = (vj, V41, v)", and py is value of p under hy-
pothesis that the observed sensing reports come from honest
behavior. I(-) is the Fisher information matrix [19]. Because

there is only one unknown parameter in (16), then we have

2
I(pu) = —E <aapzlnf(x;p))
v
(1—pu)pu

where W =1t — j+ 1 is the length of sensing reports x. The
RT statistic could be further simplified as follows,

P=PH (17)

(x"x— WpH)2

. 18
Wpn (1 - pn) (18)

Trr (j,1) =
Comparing with the GLRT statistic TgLrr(j,#) in (15),
Trr(j,t) need not MLE of any parameters and is com-
putationally convenient.  Moreover, Tgrr(j,z) has the
same asymptotic (W — oo) probability mass function as
2InTgrrr (X), that is

. I Hiy
Trr (j,t) ~2InTgrrr (/1) { 2O Hu (19)
where Hy denotes the observed sensing reports come from
honest behavior, Hy indicates that come from malicious be-
havior, %2 denotes a chi-squared probability mass function
(pmf) with r degrees of freedom, and *>(A) denotes a non-
central chi-squared pmf with r degrees of freedom and non-

2
centrality parameter A = %. The statistic of RT-
MBD could be denoted by
t)= TrT(J,1). 20
grr(?) max Rr(/,1) (20)

Therefore, proposed Rao test-based malicious behavior de-
tection algorithm is summarized as follows,

Algorithm 1: RT-MBD

Check the behavior of a given CR via its current and histori-
cal sensing reports:

1: do (before the algorithm is terminated)

2: Receive sensing report of the checked CR at time slot ¢,
i.e., vr.

for j=1,2,--- ¢

4:  Derive the historical sensing reports vector,

(O8]

i.e., X; = (Vj7Vj+1, tee ,Vt)T.
5:  Calculate Trr(j,?) according to (18).
6: end for

~

ingT(l‘) . max{TRT(j,t)} >N, j= 1,2,--- .t

8:  Declare that the checked CR has been a malicious
user and starting time of malicious behavior is . = j.
End the algorithm.

9: end if

10: Wait for the sensing report of the next time slot.

11: end do

4. Performance Analysis

In this section, we introduce the performance index of
malicious behavior detection (MBD), i.e., average run length
(ARL) function. Then we provide properties and perfor-
mance bounds of investigated MBD algorithms.

4.1 The ARL Function

The goal of malicious behavior detection is to raise an
alarm as quickly as possible after malicious action starts with
constraint of a certain level of false alarm. To evaluate per-
formance of detection algorithm, we introduce the average
run length (ARL) function [13], which is denoted as follows,

T, 6-0
Lz<9)—{7fi 6= 6y

where the subscript “z” of ARL function L,(-) means the
statistic of detection algorithm starts from z, i.e., g(0) = z.
Specifically, the ARL functions could be denoted by the
worst mean detection delay

2y

L.(8m) =T} = supesssupEg,, (t4|ta > 1c,y) (22)

1e>1
where the notation “esssup” indicates essential supremum,
y = (vi,va,--- ,v,c,l)T is the vector of sensing reports of
checked CR from the first sensing slot to sensing slot #. (not
including the time slot #.), and the mean time between false

alarm _
L.(8n) =To = Egy, () - (23)

4.2 Performance of RSPRT-MBD

In this subsection, we investigate detection perfor-
mance of optimal algorithm, i.e., RSPRT-MBD, which could
be applied in circumstance that behavior parameter Oy is
known. Let 0 < o < 1 be the predetermined false alarm rate,
then B = a~! > 1 is the mean time between false alarms. We
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have the lower bound for mean time between the false alarms

[20] _
TO Z en = Ba (24)

and the upper bound for the worst mean delay

Ty < Lo (8m) = M+ B (Bm)) /Eoys: (25)

where B (0y) = supEg,, (s; —Als; >A>0). When the
A>0

threshold 1 — oo, the asymptomatic upper bound of 7;* could
be denoted by

Tl* S n/EeM St. (26)
Furthermore, we have
T} ~nB/K (foy: foy), B— @7)
where
K(feM7f9H) = EeMsf (28)

is Kullback information between f (v;;0p) and f(vi;0n).
The conclusion above shows optimality of the RSPRT-MBD
from an asymptotic point of view. More precisely, RSPRT-
MBD is optimal, with respect to the worst mean delay, when
the mean time between false alarms goes to infinity. This
asymptotic point of view is convenient in practice because
a low false alarm rate is always desirable. The performance
bounds are significant in design of malicious behavior detec-
tion algorithm. When the threshold is determined to achieve
a specific false alarm rate according to (24), the bound of
detection delay is derived by (25).

Although in many practical scenarios the RSPRT-MBD
is unavailable (because of the unknown malicious behavior
OM), the performance bounds of it are also useful to compare
different algorithms respects to its asymptotic optimal prop-
erty. The difference between RSPRT-MBD and other MBD
algorithms is how much prior information of malicious be-
havior they have. The uncertainty of parameter generates the
performance gap between detection algorithms. When Oy is
substituted by its true value, GLRT-MBD achieves the same
performance as RSPRT-MBD does.

4.3 Performance of RT-MBD

In this subsection, we derive performance of RT-MBD
via analyzing performance of GLRT-MBD. Substituting pa-
rameter p by r = In £, the pmf of sensing report v; (pro-
vided in (5)) could be written in exponential form as

fvir) =er=d0 (29)

where d (r) =1In(1+¢").
Given unknown parameter ryv € [ro,r1], when the
threshold 1 is set to be
o

n
3o (1+ 1/K (fry, fr))?

n=-lI (30)

where rg = lnlfﬁ, fr, is the pmf of v, when r = rg, and
Jfry 1s that of v, when r = ry. Then the lower bound of mean

time between false alarms of GLRT-MBD could be given by
[21] _
To>a'=p 31)

and the upper bound of worst mean delay could be presented
as [21]

-, _InTy+1InInTy r3d (rm)

Iy < 2
K(fmafm) K (f"M’f"H)

2In (32 (14 1/K (fry, fr)))

(32)
+1

where d (ry) = %d(rw{).

Now we discuss the performance RT-MBD and GLRT-
MBD by comparing them with the optimal algorithm, i.e.,
RSPRT-MBD. When the checked CR acts as honest user, we
have K ( Soys feH) = 0. In this circumstance, because pa-

rameter Oy maximizes ggLrr(?), the expectation of statis-
tic goLrr(#) has a large deviation from that of grsprr(?).
On the contrary, ggrr(?) is calculated based on sensing re-
ports wihtout procedure of maximization, and its expectation
has small deviation from that of grsprr(¢). Consequently,
grr(t) has a lower probability of exceeding a given thresh-
old than ggLrr(#) does, and mean time between false alarms
of RT-MBD is larger than thant of GLRT-MBD under the
same threshold. In the other hand, the difference between
the two statistics is not significant when K ( Soys feH) > 0.
It means the mean time of detection delay of RT-MBD is
close to that of GLRT-MBD. Based on these analyses, the
performance bounds of RT-MBD can be derived via perfor-
mance bounds of GLRT-MBD. Specifically, the lower bound
of Ty of GLRT-MBD could be used as a loose lower bound of
mean time between false alarms of RT-BMD, and the mean
times of delay of the two algorithms share the same upper
bound which is given by (32). When p — oo, we have

T InB+InlnP
b K (g fr)

20(3 (11K 1y )
— + 1. As a result, RT-
K(fryg o)

MBD achieves better performance (a shorter mean time of
detection delay with constraint of the same false alarm rate)
than GLRT-MBD. The performance of the two algorithms is
further discussed by numerical experiments in the following
section.

+C (33)

where C =

5. Simulation Results

In this section, we evaluate the performance of pro-
posed RT-MBD algorithm by extensive numerical experi-
ments. First, the performance of RT-MBD is measured by
ARL functions, i.e., mean time between false alarms and
mean time of detection delay. Then we compare the perfor-
mance of proposed RT-MBD with existing algorithms under
abrupt malicious behavior by operation characteristic curves.
In the following numerical experiments, the prior probabil-
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ity of PU’s absence is set to be Py = 0.7, and the sensing

. 0.8 0.2
performance of CRsis S = ( 02 08 )

5.1 The ARL Functions of RT-MBD

0.16 ;
—— GLRT L=30
0.141 ===GLRT L=50 |4
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* RT L=50
0.1 O RT L=100
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o
o
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0.06;

0.047

0 20 40 60 80
Value of statistics

Fig. 2. Empirical probability mass function RT statistic.

In Fig. 2, the empirical probability mass functions
(pmfs) of RT statistic and modified GLRT statistic (i.e.,
2InTgirr) based on 10* individual experiments are pre-
sented. The length of sensing reports are set to be L =
30, 50, 100, and behavior parameter 8y = (1,1)7. As shown
in the figure, the empirical pmfs of the two statistics are very
close. It verifies the statement in Section 3 that the statistics
has a same asymptotic distribution, and it is an important
premise to substitute Tgprt by Trt to simplify GLRT-MBD.

500

—A—RT-MBD (fa) \
- A-GLRT-MBD (fa)
—%—RT-MBD (dd)

- © - GLRT-MBD (dd)

4001

Average run length

4 6
Threshold

Fig. 3. Average run length functions of RT-MBD and GLRT-
MBD (fa: mean time between false alarms; dd: mean
time of detection delay).

Fig. 3 demonstrates the values of average run length
functions of RT-MBD and GLRT-MBD with different
threshold N1 = 0,1,---,10. The statistic of GLRT-MBD is
doubled in the experiment to compare the ALR functions
with that of RT-MBD in the same scale of thresholds. The
true value of behavior parameter 8y = (1,1)”. Tt can be
seen that mean time of detection delay (the curve with circles

and the curve with crosses) of the two algorithms are almost
overlapped. Whereas the mean time between false alarms of
RT-MBD (the solid curve with triangles) is larger than that
of GLRT-MBD (the dashed curve with triangles). It is be-
cause that the expectation of statistic grr(#) is smaller than
that of ggLrr(¢) when 8 = (0,0)7. With the same thresh-
old, statistic goLrr () tends to exceed the threshold within
shorter sensing slots than ggrr(¢) after the algorithm starts.
Therefore, mean time between false alarms of RT-MBD is
larger than that of GLRT-MBD, and this conclusion has been
discussed in Subsection 4.3.

5.2 Operating Characteristic Curves

In this subsection, to evaluate performance of RT-MBD
and other algorithms, the operating characteristic curves are
presented.

180 i
—&— 9,=9,,=0.3
160 oL o K=0.0156
—A— q01: q10:0-5
1401 —q =
2 0 —6— ;= 4,707
8 1201 | —A— A= 9571
c
2 100+
(8]
0}
o 80
©
c
s 601 S
=
401 ]
20+ 1
K=0.1695
0 100 200 300 400 500

Mean time between false alarms

Fig. 4. Operating characteristic curves of RT-MBD under mali-
cious behavior with various parameters.

Fig. 4 shows operating characteristic curves of RT-
MBD, where the x-axis denotes mean time between false
alarms and y-axis denotes mean time of detection de-
lay. In this experiment, we reveal the relation between
the performance of RT-MBD and the Kullback informa-
tion of behavior parameter. Therefore, it is unneces-
sary to test the performance under all the possible val-
ues of behavior parameter Oy, and several values, i.e.,
Op = (0.3,0.3)7,(0.5,0.5)7,(0.7,0.7)T, (1,1)7, are tested
as examples. According to (28), corresponding Kull-
back information of the parameter is derived as K =
0.0156, 0.0428, 0.0834, 0.1695 (bits). By analyzing the sim-
ulation results, we have the conclusion that malicious behav-
ior with larger Kullback information is more different from
honest behavior than others, and it can be detected more
quickly with constraint of a certain false alarm. For example,
when mean time between false alarms is fixed, the curve of
0y = (1,1)7 (the curve with stars) has the best performance,
i.e., the lowest mean time of detection delay. Simulation re-
sults in Fig. 4 validate the analysis of (27).



542 J. YAO, Q. WU, S. FENG, J. WANG, ONLINE MALICIOUS BEHAVIOR DETECTION IN COLLABORATIVE SPECTRUM SENSING...

30t

> 25+

=

[0}

©

c 20f

S

g

@ 15F

©

&

210
—6— RSPRT-MBD
—A— GLRT-MBD
—A— RT-MBD

0 200 400 600 800

Mean time between false alarms

Fig. 5. Operating characteristic curves of different online MBD

algorithms.

Fig. 5 provides operating characteristic curves of sev-
eral online MBD algorithms including proposed RT-MBD.
The behavior parameter is 8y = (1,1)7. Tt can be seen that
RSPRT-MBD (the curve with circles) achieves the lowest
detection delay with constraint of a certain mean time of
false alarms among these algorithms, because RSPRT-MBD
is assumed have complete prior information of malicious be-
havior. Unlike RSPRT-MBD, both of GLRT-MBD and RT-
MBD operate under unknown behavior parameter, and they
do not perform as well as the complete prior information al-
gorithm. Moreover, as analyzed in Subsection 4.3, statistic
grr(t) of RT-MBD has lower expectation under honest be-
havior than that of GLRT-MBD. It has larger mean time be-
tween false alarms under a given threshold (see Fig. 3). Then
the mean time of detection delay of RT-MBD is lower than
that of GLRT-MBD with constraint of the same false alarm
rate. This conclusion is also validated by simulation result in
the figure, i.e., the curve of RT-MBD (the curve with stars)
is lower than that of GLRT-MBD.

To evaluate performance of proposed RT-MBD under
abrupt malicious behavior, we compare RT-MBD with ex-
isting MBD algorithm. In Fig. 6, malicious behavior with
unknown starting time is considered, and DSND algorithm?
[8] is tested as an example. In this numerical experiment, the
mean time between false alarms is set to be p = 180 sens-
ing slots (corresponding false alarm rate is o = 0.0056) for
all the tested algorithms, and behavior parameter is Oy =
(1,1)T. Before malicious behavior starts, the checked CR
acts as an honest user. As shown in the figure, the proposed
RT-MBD (the curve with stars) achieves a mean time of de-
tection delay about 18 sensing slots, and it is hardly affected
by honest behavior before malicious behavior starts. Be-
cause of complete prior information, RSPRT-MBD achieves
a lower mean time of detection delay than RT-MBD, which
is about 16 sensing slots. However, the DSND is interfered
by the honest behavior before attacking time, and detection
delay grows with increasing of starting time of malicious be-
havior. It indicates that traditional MBD algorithms such as

w
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—A— RSPRT-MBD
—4— RT-MBD
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Fig. 6. Performance of different detection algorithms under
abrupt malicious behavior.

DSND are not fit for detecting malicious behavior with un-
known staring time.

Furthermore, we notice that when starting time of ma-
licious behavior is earlier than 80 sensing slots, DSND per-
forms better than RT-MBD. It is because that Kullback in-
formation between honest behavior and malicious behavior
in DSND is larger than that of RT-BMD. But this Kullback
information bonus is canceled out when malicious behavior
occurs after the MBD starts for a certain length of sensing
slots, i.e., 80 sensing slots.

6. Conclusions

In this paper, we investigate the malicious behavior de-
tection in collaborative spectrum sensing of cognitive radio
networks. The more practical malicious behavior with un-
known parameter and unknown starting time is considered.
To alleviate impacts of honest behavior before malicious
behavior starts, we propose a Rao test-based malicious be-
havior detection (RT-MBD) algorithm, based on change de-
tection theory. The performance of the proposed algorithm
is analyzed mathematically, and the performance bounds of
mean time between false alarms and mean detection delay
are provided. In the simulation section, we test the perfor-
mance of RT-MBD and have the conclusion that malicious
behavior with larger Kullback information can be detected
more quickly after it starts with constraint of a fixed mean
time of false alarms. Moreover, the simulation results prove
that the proposed RT-MBD is not interfered by honest be-
havior before attack starts, and it is more agile than existing
MBD algorithms.

Acknowledgements

This work is supported by the national basic research
program (973) of China (2009CB320400), the national nat-

2DSND is a typical one of the algorithms that detect malicious behavior based on historical sensing reports of CRs ignoring honest behavior before
attacking time. Algorithms proposed in [9] and [10] have the same property as DSND. Similar results for these algorithms could be derived.



RADIOENGINEERING, VOL. 22, NO. 2, JUNE 2013

543

ural science fund of China (60932002 and 61172062), and
the natural science fund of Jiangsu, China (BK2011116).

References

[1] HAYKIN, S. Cogniteive radio: brain-empowered wireless communi-
cations. IEEE Journal on Selected Areas in Communications, 2005,
vol. 23, no. 2, p. 201 - 220.

[2] MITOLA, J. Software radio architecture. John Wiley & Sons, 2000.

[3] MA,J., ZHAO, G., LI, Y. Soft combination and detection for coop-
erative spectrum sensing in cognitive radio networks. IEEE Transac-
tions on Wireless Communications, 2008, vol. 7, no. 11, p. 4502 -
4507.

[4] GHASEMI, A., SOUSA, E. Collaborative spectrum sensing for op-
portunistic access in fading environments. In First IEEE Interna-
tional Symposium on New Frontiers in Dynamic Spectrum Access
Networks (DySPAN). Baltimore (USA), 2005, p. 131 - 136.

[51 MISHRA, S. M., SAHAI, A., BRODERSEN, R. W. Cooperative
sensing among cognitive radios. In IEEE International Conference
on Communications. Istanbul (Turkey), 2006, p. 1658 - 1663.

[6] BALDINI, G., STURMAN, T., BISWAS, A, R.,, LESCHHORN, R.,
G()DOR, G., STREET, M. Security aspects in software defined ra-
dio and cognitive radio networks: a survey and a way ahead. IEEE
Communications Surveys & Tutorials, 2012, vol. 14, no. 2, p. 355 -
379.

[7]1 JEONG, S. S., JEON, W. S., JEONG, D. G. Collaborative spectrum
sensing for multiuser cognitive radio systems. IEEE Transactions on
Vehicular Technology, 2009, vol. 58, no. 5, p. 2564 - 2569.

[8] LI, H., HAN, Z. Catch me if you can: an abnormality detection
approach for collaborative spectrum sensing in cognitive radio net-
works. IEEE Transactions on Wireless Communications, 2010, vol.
9, no. 11, p. 3554 - 3565.

[9] VEMPATY, A., AGRAWAL, K., CHEN, H., VARSHNEY, P. Adap-
tive learning of Byzantines’ behavior in cooperative spectrum sens-
ing. In IEEE Wireless Communications and Networking Conference
(WCNC). Cancun (Mexico), 2011, p. 1310 - 1315.

[10] YAO,J., WU, Q., WANG, J. Attacker detection based on dissimilar-
ity of local sensing reports in collaborative spectrum sensing. /EICE
Transactions on Communications, 2012, vol. E95-B, no. 9, p. 3024 -
3027.

[11] FENG, S., ZHENG, X., YAO, J., DING, G. Seeking justice: lapsed
reputation-based cooperative spectrum sensing with lasting trusted
nodes assistance. Proceedings of IEEE WCSP, 2012.

[12] PAGE, E. Continuous inspection schemes. Biometika, 1954, vol. 41,
p- 100 - 115.

[13] LORDEN, G. Procedures for reacting to a change in distribution. An-
nals of Mathematical Statistics, 1971, vol. 42, no. 6, p. 1897 - 1908.

[14] KAY, S., M. Fundamentals of Statistical Signal Processing: Detec-
tion Theory. Prentice Hall, 1998.

[15] KHAN, Z., LEHTOMAKI, J., UMEBAYASHI, K., VARTIAINEN,
J. On the selection of the best detection performance sensors for
cognitive radio networks. IEEE Letters on Signal Processing, 2010,
vol. 17, no. 4, p. 359 - 362.

[16] DIGHAM, E. E.,, ALOUINIL M. S., SIMON, M. K. On the energy de-
tection of unknown signals over fading channels. IEEE Transactions
on Communications, 2007, vol. 55, no. 1, p. 21 - 24.

[17] LETAIEF, K. B., ZHANG, W. Cooperative communications for cog-
nitive radio networks. Proceedings of the IEEE, 2009, vol. 97, no. 5,
p- 878 - 893.

[18] MIN, A. W., KIM, K., SHIN, K. G. Robust cooperative sensing via
state estimation in cognitive radio networks. IEEE Symposium on
New Frontiers in Dynamic Spectrum Access Networks (DySPAN).
Aachen (Germany), 2011, p. 185 - 196.

[19] KAY, S. M. Fundamentals of Statistical Signal Processing: Estima-
tion Theory. Prentice Hall, 1998.

[20] LORDEN, G. On excess over the boundary. Annals of Mathematical
Statistics, 1970, vol. 41, no. 2, p. 520 - 527.

[21] LORDEN, G. Open-ended tests for Koopman-Darmois families. An-
nals of Mathematical Statistics, 1973, vol. 1, no. 4, p. 633 - 643.

About Authors...

Junnan YAO was born in 1983. He received his B.S. and
M.S degrees from Institute of Communications Engineering,
PLA University of Science and Technology, Nanjing, China,
in 2005 and 2009. He is currently pursuing the Ph.D. de-
gree in communications and information system at the PLA
University of Science and Technology, Nanjing, China. His
research interests are in wireless communications and signal
processing. He is particularly interested in security issues in
spectrum sensing.

Qihui WU was born in 1970. He received his B.S. degree in
communications engineering, M.S. degree and Ph.D. degree
in communications and information system from Institute
of Communications Engineering, Nanjing, China, in 1994,
1997 and 2000, respectively. He is currently professor at the
PLA University of Science and Technology, China. His cur-
rent research interests are algorithms and optimization for
cognitive wireless networks and soft-defined radio.

Shuo FENG received his B.S. degree (with honors) in elec-
tronic engineering from University of Electronic Science and
Technology of China, Chengdu, China, in 2011. He is cur-
rently pursuing his M.S. degree in communications and in-
formation system in Institute of Communications Engineer-
ing, PLA University of Science and Technology, Nanjing,
China. His research interests focus on cognitive radio net-
works, wireless communications and security.

Jinlong WANG was born in 1963. He received his B.S.
degree in wireless communications, M.S.degree and Ph.D.
degree in communications and electronic systems from In-
stitute of Communications Engineering, Nanjing, China, in
1983, 1986 and 1992, respectively. He is currently profes-
sor at the PLA University of Science and Technology, China.
He is also the cochairman of IEEE Nanjing Section. He has
published widely in the areas of signal processing for com-
munications, information theory, and wireless networks. His
current research interests include wireless communication,
cognitive radio and soft-defined radio.



