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Abstract. Common techniques for position-velocity-time es-
timation in satellite navigation, iterative least squares and
the extended Kalman filter, involve matrix operations. The
matrix inversion and inclusion of a matrix library pose re-
quirements on a computational power and operating plat-
form of the navigation processor. In this paper, we introduce
a novel distributed algorithm suitable for implementation in
simple parallel processing units each for a tracked satellite.
Such a unit performs only scalar sum, subtraction, multipli-
cation, and division. The algorithm can be efficiently imple-
mented in hardware logic. Given the fast position-velocity-
time estimator, frequent estimates can foster dynamic per-
formance of a vector tracking receiver. The algorithm has
been designed from a factor graph representing the extended
Kalman filter by splitting vector nodes into scalar ones re-
sulting in a cyclic graph with few iterations needed. Monte
Carlo simulations have been conducted to investigate con-
vergence and accuracy. Simulation case studies for a vector
tracking architecture and experimental measurements with
a real-time software receiver developed at CTU in Prague
were conducted. The algorithm offers compromises in sta-
bility, accuracy, and complexity depending on the number
of iterations. In scenarios with a large number of tracked
satellites, it can outperform the traditional methods at low
complexity.
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1. Introduction
The global navigation satellite systems (GNSS) are be-

ing developed by many countries nowadays. In 2013, there
are more than 60 operational GNSS satellites in orbit. This
number is expected to reach 90 within three years. The con-
stantly increasing number of visible space vehicles (SV) and
other radio beacons (RB), such as pseudolites and cellular
mobile stations, challenges not only the design of a digi-
tal signal processor providing standard outputs of pseudo-

ranges, pseudorange rates and navigation data [1–6], but
also the design of the position-velocity-time (PVT) fusion
algorithm handling large vector data, various coordinate sys-
tems and time references. The operations of the PVT estima-
tion/filtering algorithms used in practice involve matrix ma-
nipulations whose complexity grows significantly with the
increasing number of measurements [7, 27]. These algo-
rithms, including least squares (LS), weighted least squares
(WLS), extended Kalman Filter (EKF), strictly rely on first
order Taylor linearization of the pseudorange measurement
model. The linearization works well for distant SVs and low
user dynamics. If distances to narrow RBs are measured or
the user maneuvers quickly, the geometry changes rapidly
with respect to the time step of PVT estimation and the basic
assumptions of the model simplification are violated.

The algorithms such as unscented Kalman Filter
(UKF), grid-based filter (GF), and particle filter (PF) can
model the nonlinearity based on the representation of the
probability density function (PDF) by a finite number of
samples [8–12]. These methods are mostly of quadratic or
linear dependency on the number of visible RBs, although
they work on vector data. However, a large number of par-
ticles and frequent resampling are necessary for these algo-
rithms to first converge and second provide estimates with
expected precision.

In this study, we focus on facilitating the requirements
on the navigation processor. We introduce a novel dis-
tributed algorithm suitable for implementation in simple par-
allel processing units each for a tracked satellite. Such a unit
performs only scalar sum, subtraction, multiplication, and
division. The algorithm can be efficiently implemented in
hardware logic. Given the fast position-velocity-time esti-
mator, frequent estimates can be obtained to generate code
and carrier replicas and hence foster dynamic performance
of so called vector tracking receiver [13–15].

The algorithm has been designed using factor graph
(FG) framework and the sum-product algorithm (SPA) [16,
17]. First, a FG has been created to intentionally derive the
EKF using the SPA relying on known methodology [18]. By
splitting vector nodes into scalar ones, we derive a cyclic
FG on which we define initialization and iteration routines
likewise the SPA in a tree factor graph. A similiar approach
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has been adopted by [19, 20] for a one-shot localization of
a mobile station in wireless communication systems. Here,
we generalize the algorithm and show that it is equivalent
to the proposed algorithm when variances of the prediciton
messages are set to infinity.

In the study, we further analyse convergence and ac-
curacy using Monte Carlo simulations of the EKF and the
proposed method, compare the number of floating point op-
erations, deliver a simulation case study for a vector track-
ing architecture and experimental measurements with a real-
time software receiver developed at CTU in Prague [3].

1.1 Notation
We denote vectors and matrices with bold emphasize

throughout the text. All vectors are column vectors. All esti-
mates of values are denoted with hat - an estimate of vector
a is denoted as â. Prediction of vector a is denoted with
tilde ã. The mean value of random vector a is denoted as
E [a] , µa, the covariance matrix as Ca ,

E
[
(a−µa)(a−µa)

T
]
. Diagonal matrices with elements

a1,1, . . . , aN,N , N ∈ N on the main diagonal are denoted
as A , diag(a1,1, . . . , aN,N) . If vector a represents a mea-
surement in additive noise w, then asterisk denotes the
noiseless value a∗ , a−w. With notation Na (µa, Ca) we
mean that random vector a has multivariate Gaussian (nor-
mal) distribution with mean µa and covariance matrix Ca.
The first partial derivative of M-dimensional vector func-
tion g(θ) = [g1 . . .gM] with respect to p-dimensional vector
θ = [θ1 . . .θp], Jacobian matrix, is denoted as follows

∂g(θ)
∂θ

,


∂g1
∂θ1

. . . ∂g1
∂θp

...
. . .

...
∂gM
∂θ1

. . . ∂gM
∂θp

 . (1)

If g(x1, . . .xK) is a scalar function of variables x1, . . . , xK , we
denote the integral over all the variables except for xk where
1≤ k ≤ K as∫
∼xk

g(x1, . . . ,xK)dx1 . . .dxK ,∫
. . .

∫
g(x1, . . . ,xK)dx1 . . .dxK︸ ︷︷ ︸

except for xk

. (2)

In the factor graph theory, we denote a message from vari-
able node v to factor node F as λv→F , and a message from
factor node F to variable node v as µF→v.

1.2 Document Structure
In Section 2, we address the problem of PVT estima-

tion in GNSS. In Section 3, we discuss three existing GNSS
receiver architectures - scalar (conventional), vector track-
ing, and direct-position estimation architectures. By defi-
nition of measurement equations for each architecture, we

show that the derived approach can be applied to both two-
step and vector tracking architectures. In Section 5, we
overview the theory of factor graphs and the sum-product
algorithm. In the next section, an algorithm for Bayesian
filtering on the FG with general PDF representation is de-
rived. Using Gaussian PDF representation, update rules for
FGs modeling KF, EKF are derived, inspired by [18]. By
splitting the vectors into scalars, novel iterative algorithms
are introduced.

In Section 9, an explanation to the simulation and ex-
perimental philosophy is given as well as a complexity com-
parison of the employed methods. Section 10 delivers con-
vergence, precision and dynamic analysis using Monte Carlo
simulation methods for scalar (conventional) tracking ar-
chitecture. A case study of incorporation of the proposed
method into the vector tracking architecture is presented in
Section 11. Experimental results for the scalar (conven-
tional) architecure using a software receiver developed at
CTU in Prague are discussed in Section 12.

2. System Model
Conventional GNSS receiver estimates its PVT based

on a two-step approach. As the satellites are acquired,
tracked by the code and carrier tracking loops, the naviga-
tion data are demodulated, a set of pseudoranges {ρi}I

i=1 and
pseudorange rates {ρ̇i}I

i=1 are formed as the observables for
the PVT estimator. Symbol I denotes the number of visible
satellites. Pseudorange ρi is obtained as the time of recep-
tion tU minus the time of transmission tS,i multiplied by the
speed of light c

ρi = c · (tU − tS,i)

with both times measured in the local time scale introducing
a bias b between them such that the pseudorange measure-
ment can be modeled as

ρi = ‖xU −xS,i‖+b+wρ,i (3)

where xU = [xyz]T is the user position at the time recep-
tion tU and xS,i = [xS,i yS,i zS,i]

T is the satellite position at
the time of transmission tS,i, both vectors represented in an
earth-centred earth-fixed (ECEF) coordinate frame. Sym-
bol wρ,i denotes the measurement noise. Pseudorange rate ρ̇i
is obtained as the negative of the measured signal frequency
drift fs,i in meters per second

ρ̇i =−
fs,i

fc
· c.

Symbol fc denotes the carrier frequency. The pseudorange
rate ρi is related to the user velocity vU = [ẋU ẏU żU ]

T by the
following equation

ρ̇i =−1T
i · (vU −vS,i)+ ḃ+wρ̇,i

where vS,i = [ẋS,i ẏS,i żS,i]
T is the satellite velocity, ḃ is the

clock drift, wρ̇,i is the measurement noise and 1i is the unit
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line-of-sight vector between the receiver and the satellite

1i =

[
xU − xS,i

‖xU −xS,i‖
yU − yS,i

‖xU −xS,i‖
zU − zS,i

‖xU −xS,i‖

]T

.

The user velocity vU reffers to the time of reception tU and
the satellite velocity vS,i to the time of transmission tS,i. Both
vectors are related to an ECEF coordinate frame. Defining
the PVT vector γ =

[
xU bvU ḃ

]
as a vector of parameters to

estimated, the vector of pseudoranges and pseudorange rates
ξ = [ρ1 . . .ρI ρ̇1 . . . ρ̇I ]

T as a measurement vector, the follow-
ing equation yields an additive noise model for the PVT es-
timator

ξ = g(γ)+wξ (4)

where g is a nonlinear 8 → 2I dimensional function, and
wξ =

[
wρ,1 . . .wρ,I wρ̇,1 . . .wρ̇,I

]
is an additive noise vector.

Provided the system evolves in time, detoning with discrete
time index n, all the model quantities and function g become
time dependent

ξn = gn (γn)+wξ,n. (5)

Common estimators, such as iterative (W)LS and EKF,
linearize the measurement equation, since the geometry
changes relatively slowly.

3. Receiver Concepts
The fact that the tracking loops operate decoupled and

independently of the PVT estimator is a suboptimal solu-
tion. Vector tracking concept [14, 15, 21] uses the PVT esti-
mate or prediction to control the tracking channels which
increases the tracking sensitivity when some of the satel-
lites are blocked, lowers reacquisition time and increases
resistance to interference [22]. The necessity of the high
rate operation of the PVT estimator in this case can be sup-
pressed by using prefilters of the pseudoranges and pseudo-
range rates. The PVT estimator can then operate at much
lower rate and the control values for the tracking loops are
held constant between its successive epochs.

The most advanced direct positioning (DPE) approach,
so far intractable by current technology in real time, esti-
mates the user PVT directly from the received signal sam-
ples. It has been shown that the DPE has similar benefits to
the vector tracking concept [23] and is very powerful when
multipath mitigation or antenna array processing [24, 25].
The comparison of the GNSS receiver architectures is de-
picted in Fig. 1.

4. Extended Kalman Filter
Let θn be a p-dimensional random vector parameter at

time n to be estimated with the following state-space model:

θn = an (θn−1)+Bnun (6)

where an is a p-dimensional function, un is an r-dimensional
vector being a Gaussian random variable uncorrelated over
time, named as driving noise, with zero mean and covariance
matrix Qn

E
[
un+muT

n
]
=

{
0 n 6= m,

Qn n = m
(7)

and Bn is a p× r matrix. Assume the initial value of the pa-
rameter is Gaussian θ−1 ∼ N (µθ, Cθ) and independent of
un for n≥ 0. If xn is an M×1 observation vector expressed
by the following additive Gaussian noise model at time n,
forming the measurement equation,

xn = hn (θn)+wn (8)

where hn denotes an M-dimensional function, wn is M× 1
zero mean Gaussian observation vector, wn∼N (0, Cn), un-
correlated over time with covariance matrix Cn

E
[
wn+mwT

n
]
=

{
0 n 6= m,

Cn n = m,
(9)

the sequential suboptimal MMSE estimator of θn based on
first order Taylor linearization, named as extended Kalman
filter, can be summarized by the following recursion [26]:
Prediction:

θ̃n = an
(
θ̂n−1

)
. (10)

Minimum Prediction MSE Matrix:

M̃n = AnMnAT
n +BnQnBT

n . (11)

Kalman Gain Matrix:

Kn = M̃nHT
n
(
HnM̃nHT

n +Cn
)−1

. (12)

Correction:

θ̂n = θ̃n +Kn
(
xn−hn

(
θ̃n
))

. (13)

Minimum MSE Matrix:

Mn = (I−KnHn)M̃n. (14)

The recursion is initialized with θ̂−1 = µθ, M̃−1 = Cθ. In
(11), (12), (14), we substitute

An =
∂an (θ)

∂θ

∣∣∣∣
θ̂n−1

, (15)

Hn =
∂hn (θ)

∂θ

∣∣∣∣
θ̃n

. (16)

5. Theory of Factor Graphs and the
Sum-Product Algorithm
In this section, we briefly define the factor graph and

describe the sum-product algorithm. Factor graph (FG) is
a bipartite graph that represents relations among variables of
a system [16,17]. The system is assumed to be described by
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Fig. 1. Receiver architectures: (upper left) conventional architecture, (upper right) vector tracking architecture, (lower left) vector tracking ar-
chitecture with prefilters, (lower right) direct positioning architecture. Lines denoted as dash operate at low rate (navigation update rate -
typically 0.1 s or 1 s), whereas solid lines operate at much higher rate.

a complicated global function that factors into simpler local
functions, each of which having arguments from a subset of
the system variables. The sum-product algorithm (SPA) is
a generic message-passing (MP) algorithm which operates
in a factor graph and attempts to compute various marginal
functions associated with the global function.

Here, we restrict factorization and marginalization to
multiplication and integration, respectively. The global and
local functions will be represented by the probability density
functions (PDF). Although the factor graph framework ap-
plies to more general problems, such constraint will make
our approach to PVT filtering more illustrative.

Let’s assume that global function p(X)≥ 0 of K system
variables X = {x1, . . . ,xK} where ∀k ∈ {1, . . . ,K} : xk ∈Ak :
Ak ⊂ R factors into a product of local functions {p j(X j) :
j ∈ J∧ p j(X j)≥ 0}

p(X) = ∏
j∈J

p j(X j)

for X j being a subset of the global function arguments X j ⊂X
and j denoting the index of the corresponding local function
in set J of such indices. Factor graph is a bipartite graph
that visualizes the factorization using three types of compo-
nents: variable nodes - each representing the system vari-
able xk, factor nodes - each representing the local function
p j(X j), and edges - connecting the variable nodes xk and
factor nodes p j(X j) if and only if xk ∈ X j. An example FG
where global function p(x1,x2,x3,x4) factors into local func-
tions pA(x1,x2,x3), pB(x3,x4) is in Fig. 2.

The marginal function pi(xi) is defined as a summa-
tion of the global function p(x1, . . . ,xK) over all arguments
except xi, denoted by ∼ xi,

pi(xi) ,
∫
∼xi

p(x1, . . . ,xK)dx1 . . .dxK

,
∫
∼xi

p(X)dX .

In the given example, e.g. the marginal function p3(x3)
would be computed as

p3(x3) =
∫

x1∈A1

∫
x2∈A2

∫
x4∈A4

p(x1,x2,x3,x4)dx1dx2dx4.

The key property that multiplication distributes over summa-
tion is adopted in a cycle-free FG to distributively compute
the resulting marginal function pi(xi) from marginalized lo-
cal functions

∫
∼xi

p j(X j)dX j, where ∩ j∈JX j = xi∨ /0,

pi(xi) =
∫
∼xi

p(X)dX

=
∫
∼xi

∏
j∈J

p j(X j)dX

= ∏
j∈J

(∫
∼xi

p j(X j)dX j

)
.

In the given example

p3(x3) =

(∫
x1∈A1

∫
x2∈A2

pA(x1,x2,x3)dx1dx2

)
·
(∫

x4∈A4

pB(x3,x4)dx4

)
. (17)

Computation of a single marginal function in a tree FG
is then a ”bottom-up” procedure that starts at the leaf ver-
tices. The leaf vertices send trivial identity functions to their
parents which wait for messages from all their children be-
fore they start calculation of the local marginal functions.
When the marginalization is completed in a vertex, it be-
comes a child and sends the results to its parents. The al-
gorithm continuous until the target marginal function is ob-
tained.

In our example (Fig. 2), in order to get the resulting
marginal function p3(x3), variable nodes x1, x2 first send
simple identity messages λx1→A(x1), λx2→A(x2) to factor
node A, and so sends the variable node x4 message λx4→B(x4)
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to factor node B. The local marginals, the expressions in
parenthesis in (17), are evaluated and information about the
results is send in messages µA→x3(x3), µB→x3(x3) to variable
node x3. According to (17), the resulting marginal function
is a product of these local marginals, symbolically,

p3(x3) = µA→x3(x3) ·µB→x3(x3).

We use the term “symbolically”, since the massages passed
in a FG represent information about a PDF, not necessarily
the PDF itself. However, it is instructive to use these mes-
sages to denote the corresponding marginal PDFs.

The sum-product algorithm is a generalization of the
MP algorithm for efficient calculation of all the marginal
functions associated with the global function. Messages
from factor node to variable node are denoted with µ,
whereas messages from variable node to factor node with λ.

Let x denote a variable node, F a factor node, and n(x),
n(F) the sets of neighbors of variable node x and factor
node F , respectively. Symbol pF denotes a local function
corresponding to factor node F . The messages sent in a FG
are recursively computed according to the following algo-
rithm [16]:

Variable Node to Factor Node:

λx→F(x) = ∏
G∈n(x)\{F}

µG→x(x),

Factor Node to Variable Node:

µF→x(x) =
∫
∼x

pF(X) ∏
y∈n(F)\{x}

λy→F(y)dX

where X is a set of all arguments of pF . The marginalized
version of the global function with argument x is named be-
lief and is evaluated as

B(x) = ∏
G∈n(x)

µG→x(x).

In a tree factor graph, the beliefs truly represent the
marginals of the global function. However, when cycles ap-
pear in the graph, vertices infinitely wait for results from
each other. A solution to this problem might be to initial-
ize the messages and let the sum-product algorithm iterate
on the FG. The convergence is mostly difficult to prove.
Nonetheless, “appropriate” initial conditions usually suc-
ceed.

x1

A

x2

x3

B

x4

λx1→A(x1)

µA→x1 (x1)

µA→x3 (x3)

λx3→A(x3)

λx3→B(x3)

µB→x3 (x3)

λx2→A(x2) µA→x2 (x2) λx4→B(x4) µB→x4 (x4)

Fig. 2. Example FG with MP for global function
p(x1,x2,x3,x4) that factors into local functions
pA(x1,x2,x3), pB(x3,x4) in the following manner
p(x1,x2,x3,x4) = pA(x1,x2,x3) · pB(x3,x4). The direc-
tion of the messages is denoted with arrow.

6. Distributed Kalman Filter on the
FG
Let us assume that θn is a random vector parameter to

be estimated with the same state-space model and measure-
ment equation as in Section 4, but with both models linear.
Using Bayesian rule, posterior PDF p(θn|x1:n) can be de-
composed as

p(θn|x1:n)∝ (18)

p(xn|θn)
∫

p(θn|θn−1) p(θn−1|x1:n−1)dθn−1

which is depicted in the FG in Fig. 3.

p (θ0)

P0

θ0

p (θ1|θ0)

P1

θ1

p (θ2|θ1)

P2

p (x1|θ1)

L1

. . . θn

p (θn|θn−1)

Pn

p (xn|θn)

Ln

Fig. 3. Factor graph for Bayesian filtering.

The state-space model for the KF can be further de-
composed as

p(θn|θn−1) =
∫

p(θn|θn−1, un) p(un)dun (19)

where

p(θn|θn−1, un) =
p

∏
i=1

δ

(
θn,i−

p

∑
j=1

ai, jθn−1, j−
r

∑
j=1

bi, ju j

)
(20)

where ai, j = [A]i, j, bi, j = [B]i, j. Suppose Q to be diagonal
Q = diag

(
σ2

u1
, . . . , σ2

ur

)
so that

p(un) =
r

∏
i=1

Nui

(
0, σ

2
ui

)
. (21)

If matrix Q is not diagonal, singular value decomposition
(SVD) [26, 27] can be adopted to describe vector u as

u = Γη (22)

where η is r×1 Gaussian vector with zero mean and diago-
nal covariance matrix, Γ is r× r matrix that desirably corre-
lates the elements of vector η. Then, we would get

p(θn|θn−1) =
∫

p(θn|θn−1, ηn) p(ηn)dηn (23)

where

p(θn|θn−1, ηn) =
p

∏
i=1

δ

(
θn,i−

p

∑
j=1

ai, jθn−1, j−
r

∑
j=1

ci, jη j

)
(24)
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where ci, j = [BΓ]i, j. Suppose the variance of ith element of
vector η is σ2

ηi
, then

p(ηn) =
r

∏
i=1

Nηi

(
0, σ

2
ηi

)
. (25)

We can decompose the likelihood function in a similiar man-
ner

p(xn|θn) =
∫

p(xn|θn, wn) p(wn)dwn (26)

where

p(xn|θn, wn) =
M

∏
i=1

δ

(
xn,i−

M

∑
j=1

hi, jθn, j−wi

)
(27)

where hi, j = [H]i, j. If we suppose that wn has diagonal co-
variance matrix Cn = diag

(
σ2

w1
, . . . ,σ2

wM

)
, then

p(wn) =
M

∏
i=1

Nwi

(
0, σ

2
wi

)
. (28)

If wn is correlated over elements, the same procedure as for
the state-space model can be incorporated to describe wn as
a product of a matrix and a zero mean Gaussian noise vector
with diagonal covariance matrix.

The desired factor graph can be constructed as fol-
lows. The vector vertices are split into scalar vertices each of
which representing the corresponding vector element. The
FG of the state-space model, see Fig. 4 (right), is then con-
structed based on substituting (20), (21) into (19) resulting
in

p(θn|θn−1) =∫
. . .

∫ p

∏
i=1

δ

(
θn,i−

p

∑
j=1

ai, jθn−1, j−
r

∑
j=1

bi, ju j

)

·
r

∏
i=1

Nui

(
0, σ

2
ui

)
du1 . . .dur. (29)

Similarly, the FG representing the likelihood function, see
Fig. 4 (left), is constructed by substituting (27), (28) into
(26) resulting in

p(xn|θn) =
∫

. . .
∫ M

∏
i=1

δ

(
xn,i−

M

∑
j=1

hi, jθn, j−wi

)
Nwi

(
0, σ

2
wi

)
dw1 . . .dwM. (30)

The update rules for the factor and variable nodes are de-
picted in Fig. 5. To derive the update rules for multiple input
nodes, we resorted to a recursive evaluation of the update
rules for a pair of input nodes in [18].

The message passing algorithm starts at variable nodes
θ0,1,. . . , θ0,p where the messages sent to factor nodes
P1,1,. . . , P1,p comprise the mean and variance1 of the

initial distribution λθ0,i→P1, j (θ0,i) =
{

µ0,i, σ2
0,i

}
for i, j ∈

{1, . . . , p} where µ0,i = [µ0]i and σ2
0,i = [C0]i,i. The mes-

sages from variable nodes u0,i are also sent to the fac-

tor nodes P1,1,. . . , P1,p λu1,i→P1, j (u1,i) =
{

0, σ2
u,i

}
and up-

dates are calculated according to Fig. 5. The branches to
variable nodes θ1,1, . . . ,θ1,p are disconnected and the re-
sulting messages are sent back towards the variable nodes
θ0,1,. . . , θ0,p and the iterations start. When the last iter-
ation, the branches to the variable nodes θ1,1, . . . ,θ1,p are
connected, the messages are sent to them. The observed val-
ues are sent to the likelihood factor nodes λxn,i→Ln,i (xn,i) =
{xn,i, 0} for i ∈ {1, . . . , M} and so do the noise variable
nodes λwn,i→Ln,i (wn,i) =

{
0, σ2

i
}

. Next, the messages from
the previous state-space factor nodes P1,1,. . . , P1,p are sent
through variable nodes θ1,1, . . . ,θ1,p to the likelihood factor
nodes L1,1, . . . ,L1,p and the updates are therein calculated.
The results are then sent back to variable nodes θ1,1, . . . ,θ1,p
and then updated taking the unchanged messages from factor
nodes P0,1, . . . ,P0,p. The branches to the future factor nodes
P2,1,. . . , P2,p remain disconnected. The updated messages
are sent towards factor nodes L1,1, . . . ,L1,p and iterations are
started in this way. The iterations are finished after the last
updates at variable nodes θ1,1, . . . ,θ1,p for which the future
variable nodes P2,1,. . . , P2,p are now connected. The mes-
sages sent to these factor nodes represent the beliefs and the
means can be used to obtain the approximated MMSE esti-
mates. And so continuous the algorithm sequentially.

7. Distributed Extended Kalman Fil-
ter on the FG
The extended Kalman filter can be also approximated

on the scalar FG. Suppose that

a(θn) =

 a1 (θn,1, . . . , θn,p)
...

ap (θn,1, . . . , θn,p)

 (31)

and

h(θn) =

 h1 (θn,1, . . . , θn,p)
...

hM (θn,1, . . . , θn,p)

 . (32)

Let us next assume that hi, j = [H]i, j and ai, j = [A]i, j. The
conditional PDFs p(θn|θn−1, un), p(xn|θn, wn) both can be
approximated for the EKF as Gaussian

p(θn|θn−1, un) = (33)
p

∏
i=1

δ

(
θn,i−ai (θn−1,1, . . . , θn−1,p)−

r

∑
j=1

bi, ju j

)
,

p(xn|θn, wn) =
M

∏
i=1

δ(xn,i−hi (θn,1, . . . , θn,p)−wi) . (34)

The update rules of the scalar variable node remain un-
changed compared to the KF’s. However, the mean of the
factor node update will change and the variance will remain

1The initial cross-correlation between the parameter is not assumed. To regard it, one can resort to SVD decomposition.
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Fig. 4. FG for the likelihood function (left), state-space model of scalar KF (right).
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Fig. 5. Update rules for scalar vertices of KF - (left) variable node, (right) factor node.

unchanged. Assume the situation in Fig. 5 (right). Next, as-
sume the PDF (= factor function) pF (θ|θ1, . . . , θK) will have
the following form

pF (θ|θ1, . . . , θK) = δ(aθ− f (θ1, . . . , θK)) (35)

≈ δ

(
a
(
θ− θ̆

)
−

K

∑
k=1

ak
(
θk− θ̆k

))

where f is K-dimensional function and θ̆, θ̆1, . . . , θ̆K are con-
stant linearizing points such that

θ̆ = f
(
θ̆1, . . . , θ̆K

)
. (36)

The updated mean will have the following form

µ = θ̆+

(
K

∑
k=1

ak
(
µk− θ̆k

))
/a. (37)

In the scalar EKF, the linearization will generally take place
in both state-space and likelihood factor nodes. The lin-
earizing points for the state-space model nodes will be the
estimated parameters from the previous time θ̂n−1,i where
i ∈ {1, . . . , p}. The linearizing points for the likelihood
nodes will be the means of the output messages from the
state-space model nodes. This complies with the vector EKF
where predictions are used to linearize the nonlinear obser-
vation function h.

The complexity of the scalar EKF is slightly higher
than that of the scalar KF due to the necessity of evaluation
of the Jacobians A, H if they depend on time. The number

of flops might be increased if functions a, h are complicated.
The linearizing point can be updated after every iteration to
improve the convergence which requires the evaluations of
the Jacobians.

8. Complexity Comparison
The advantage of the scalar Kalman filter is that the

update rules operate on scalars and simple arithmetic opera-
tions unlike the vector case. The complexity of the algorithm
is quadratic in the number of states and linear in the number
of observations. This is not true for the vector KF where the
complexity is cubic in states and cubic or quadratic in ob-
servations depending on the form of the KF. However, the
sum-product algorithm in the scalar case does not yield truly
the MMSE estimates of the parameter θn, since the cycles
are present in the graph. The complexity then will be a mul-
tiple of the number of iterations and the accuracy with con-
vergence will have to be investigated for every single imple-
mentation of the scalar Kalman filter.

The number of flops required to calculate a recursion is

OsKF = NIter., Ss.
(
5p2 +5pr+ p

)
+ (NIter., Ss.−1)

(
4p2 +4pr

)
+ NIter., Lh. (9pM+6M) (38)

where p is the size of the state-space vector θn, M is the
size of the observation vector xn, r is the size of the driv-
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ing noise vector un, NIter., Lh. is the number of the iterations
among the likelihood factor nodes and the state variable
nodes, NIter., Ss. is the number of the iterations among the
state factor nodes and the state variable nodes. In Fig. 6,
the number of flops depending on the number of visible
SVs is depicted for the EKF and the first three iterations
on the scalar EKF (NIter., Ss. = 1). The EKF is assumed
to be in information form [26] which changes the calcula-
tion of the inverse in 12 into a quadratic-dependent form
on I using matrix inversion lemma. Note that the number
of flops is lower for the scalar filter with a single itera-
tion, for two iterations both curves are close to each other,
and for three iterations the EKF has lower number of flops.
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Fig. 6. Complexity comparison of the PVT filtering algorithms.
Symbol O(I) denotes the number of floating point oper-
ations (flops) depending on the number of SVs denoted
as I.

9. Simulations and Experiments
In this section, we investigate convergence and accu-

racy of the EKF and the proposed algorithm. In practice, the
user sometimes manueveres with higher dynamics than re-
flected by the model, therefore we also investigate the cases
where the state-space model is designed for much lower dy-
namics than the user moves with.

During the simulation results, we will notice that a sin-
gle iteration can offer similar accuracy to the EKF in low
dynamic scenarios, but the performance improves with iter-
ations as the dynamics increase and the EKF can be outper-
formed. Hence, the FG-based filter offers compromises in
accuracy and complexity.

Firstly, we deliver a simple simulation where the con-
vergence and accuracy in a scalar tracking architecture is
investigated using Monte Carlo methods, being the subject
of Section 10. In Section 11, the filters are incorporated
into a vector tracking architecture. The former simulation
assumes Gaussian uncorrelated measurements of pseudo-
ranges and pseudorange rate, whereas the latter produces

measurements that are correlated and biased by randomly
generated values depending on the satellite elevations. Sec-
tion 12 presents few case studies of the experiment with
a real-time receiver - WNav [3], working in the scalar track-
ing architecture.

10. Simulation - Scalar Tracking Archi-
tecture
In this simulation, we investigate convergence and ac-

curacy of the EKF and the FG-based scalar iterative EKF
algorithm. The model we adopt is basic, see next section.
The pseudoranges and pseudorange rates are Gaussian and
uncorrelated without any biases. The goal is to evaluate
the performance characteristics in a simple manner and over
a large number of realizations. In the first subsection, we
introduce the simulation scenario, in the next two subsec-
tions the convergence and accuracy results are discussed and
finally summarized in the last subsection.

10.1 Simulation Scenarios
We consider from 16 to 64 visible SVs randomly dis-

tributed over the open sky, scenarios with low dynamics
(a = 0.1 m/s2) and scenarios with moderate dynamics (a =
1 m/s2). The user moves in a circle on the surface of the
Earth with radius 1 km, velocity 10 m/s for low dynamics
and 33 m/s for moderate dynamics. The estimates were up-
dated every ten times per second TN = 0.1 s.

The standard deviation of the generated pseudorange
measurements was σρ = 1 m, and σρ̇ = 0.05 m/s of the pseu-
dorange rate measurements. These quantities were generated
as uncorrelated Gaussian random variables with mean equal
to the noiseless values with respect to the geometry and clock
offsets. The standard deviation of the elements of the driving
noise vector was assumed constant - either σu = 0.01 m/s for
high filtering or σu = 0.1 m/s for low filtering. We repeated
each simulation 1000 times and simulated over 1000 s. The
convergence and accuracy were examined for various num-
ber of iterations NIter. , NIter. Lh. , NIter. Ss. = 1.

To evaluate the performance characteristics, we define
the total position error (TPE) of the position and clock bias
estimation as

TPE =
1

NL

N

∑
n=1

L

∑
l=1

√∥∥∥x̂(l)U,n−x(l)U,n

∥∥∥2 +(b̂(l)n −b(l)n )2 (39)

where n is the time index, N is the number of observations in
time, l is the index of the realization, L is the number of real-
izations. Similarly, we define the total velocity error (TVE)
as

TVE =
1

NL

N

∑
n=1

L

∑
l=1

√∥∥∥v̂(l)U,n−v(l)U,n

∥∥∥2
+( ˆ̇b(l)n − ḃ(l)n )2. (40)

We claim that the divergence is reached if TPE>100 m or
TVE>2 m/s.
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10.2 Convergence
The convergence histograms of the EKF and FG-based

scalar iterative EKF algorithms are depicted in Fig. 7. In
Fig. 7(a), the driving noise std. equals the change of the ve-
locity vector in magnitude over an epoch. In this case, we
can infer that the convergence probability is strictly depen-
dent on the number of visible SVs and is always worse for
the FG-based EKF filter than for the standard EKF filter. In
Fig. 7(b), the same scenario is assumed for a larger number
of SVs. For the number of visible SVs equal to sixteen and
more, no divergence has been observed in 1000 repetitions.
This fact substantiates us to employ the iterative filtering for
large data vectors. Luckily, we see that the convergence is
relatively fast and can be reached within few iterations.

In the experiment in Fig. 7(c), we increase the user ve-
locity and produce the user acceleration of 1 m/s. The driv-
ing noise is left unchanged so that the velocity changes ap-
proximately ten times faster than the state-space model as-
sumes. We observe that the FG-based filter and the EKF can
still withstand such unmodeled dynamics and converge sim-
ilarly as in the previous case. However, this is not the case
in Fig. 7(d) where the driving noise variance is increased to
0.1 m/s to account for the change in velocity. The lack of
averaging of the iterative algorithm causes divergence even
for a large number of SVs of the FG filter, the EKF remains
stable. We deduce that if the dynamics increase significantly,
we had better not model it. If the modeled dynamics is ac-
ceptably low at high dynamics, iterations generally improve
convergence probability.

10.3 Accuracy
In Fig. 9, we illustrate the accuracy of the algorithms.

The TPEs are in the left column, whereas the TVEs are in
the right column. Each row corresponds to the same sce-
nario. In Fig. 9(a-b), the same low dynamics matched model
is considered. In this case, the FG-based filter outperforms
the EKF if the number of SVs is larger than 16 and even for
a single iteration. The explanation for this surprising fact is
that the EKF is a suboptimal approximation of the KF based
on first order Taylor linearization. The FG-based filter lin-
earizes the variables in a scalar, but different, manner and
the performance of both filters may generally differ depend-
ing on different factors.

If we increase the acceleration as in Fig. 9(c-d), the FG-
based filter outperforms the EKF in accuracy for larger num-
ber of SVs or for more than one iteration. In this case, the
performance is improved over iterations due to the fact that
a linearizing point is calculated for each iteration. The lin-
earization fails for a large position difference between the
predicted (also linearizing) value and the true value. Here,
we iteratively shift towards the true value with iterations,
whereas the EKF does this only once at an epoch.

If we model the higher dynamics and remain stable as
in Fig. 9(e-f), the EKF performs better and the iterations do

not improve the accuracy, but the difference in accuracy be-
tween the two filters decays with larger number of the SVs.

10.4 Summary
To summarize the simulation results, we recall that one

should use the FG-based filter for PVT estimation if and only
if the number of visible SVs is larger than 16 to ensure the
convergence. If the user is expected to move from time to
time with higher dynamics, it is better not to model it and
rather increase the number of iterations. The accuracy can
be improved in this case compared to the EKF.

11. Simulation - Vector Tracking
Architecture
In this section, we demonstrate the functionality of the

proposed algorithm in the vector tracking architecture. We
present a case study where we compare the scalar tracking
architecture using the EKF with the vector tracking architec-
ture with the EKF or the FG-based scalar iterative EKF. This
time correlation among the pseudoranges will be introduced
and the biases in the measurement caused by atmospheric
effects will be added. We demonstrate that the FG-based fil-
ter can withstand these anomalies even in the vector tracking
architecture. The first subsection shortly explains the em-
ployed simulation methodology. In the second subsection,
the simulation results are discussed and the last subsection
highlights the key implementation aspects.

11.1 Simulation Methodology
The simulation setup is documented in Tab. 2. Two

user scenarios were investigated: low dynamics (LD) sce-
nario, and moderate dynamics (MD) scenario. In either sce-
nario, the user moves in a circle with constant circular orbit
speed. The TPE and TVE were calculated over time. For
the first part of the simulation, we assume that the user is in
an open-sky scenario, whereas in the second part C/N0 of
all visible SVs is swept from 50 dB-Hz down to 10 dB-Hz.
Random atmospheric delay errors were artificially added to
the propagation times with distribution depending on the el-
evation angle of the SV. Example values of these errors for
the simulation in Fig. 9(a,b) are in Tab. 1. Oscillator phase
noise was added to the code delay and the carrier phase. Fi-
nite bandwidth of 10 MHz was introduced. The phase noise
values L( f0), L( f1) at frequencies f0, f1, respectively, for
the carrier phase are in Tab. 2. No multipath, interference,
jamming and fading effects were examined.

The simulation complexity has been reduced by avoid-
ing the bit-true multiplication and accumulation (MAC) be-
tween the received IF signal samples and the generated repli-
cas. The signals at the output branches of the correlators
were generated instead [28–30].
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El. 32 42 9 10 21 6 33 40 6
AE 1.1 -0.3 -3.7 0.9 -0.1 -2.3 1.3 -2.0 -2.5

Tab. 1. Examples of atmospheric errors (AE) [m] with eleva-
tions of the SVs (El.) [◦], for simulation in Figs. 9 (a, b).

Testing Signal GPS L1 C/A
Predetection Integration Time NbNcTc = 20 ms
Navigation Update Time TN = 0.1 s
IF Filter Bandwidth BW = 10 MHz
Code Delay Detector Normalized Power
Carrier Phase Detector Atan2
C/N0 Estimator Squaring [15]
Prefilter Sequential WLS
User Velocity, Radius, Accel. (LD) 2 m/s, 100 m, 0.04 G
Velocity Driv. Noise Std. (LD) σẋ = σẏ = σż = 1 m/s
Clk. Drift Driv. Noise Std. (LD) σḃ = 10−2 m/s
User Velocity, Radius, Accel. (MD) 30 m/s, 100 m, 1 G
Velocity Driv. Noise Std. (MD) σẋ = σẏ = σż = 20 m/s
Clk. Drift Driv. Noise Std. (MD) σḃ = 10−3 m/s
Number of Visible SVs I = 9
Init. Lattitude, Longitude, Altitude 0◦, 0◦, 0 m
Phase Noise L(1Hz) =−30 dBc/Hz

L(10Hz) =−50 dBc/Hz
DLL (Order, Bandwidth) 1. order, Bn = 0.1 Hz
FLL (Order, Bandwidth) 2. order, Bn = 10 Hz

Tab. 2. Simulation setup for the vector tracking architecture.

11.2 Results
The simulation results documenting the open-sky sce-

nario are in Figs. 9, 10. Figs. 9(a-d) depict the situation for
LD, whereas Figs. 10(a-d) depict MD. TPE and TVE are
plotted for a single iteration (NIter. = 1) and for three itera-
tions (NIter. = 3). The proposed FG-based algorithm incor-
porated to the vector tracking architecture (FG-VDLL/FG-
VFLL) is compared with the EKF of the scalar tracking ar-
chitecture (DLL/FLL) and with the EKF of the vector track-
ing architecture (VDLL/VFLL). All algorithms adopt iden-
tical motion model. Second order FLL aids first order DLL
in the scalar tracking loops.

It is clear from Figs. 9(a,b), 10(a,b) that a single it-
eration on the FG results in comparable position and ve-
locity filtering errors as for the EKF vector tracking loop
in an open-sky scenario at low dynamics. An increased
number of iterations slightly improves the performance at
low dynamics, compare Figs. 9(a,c) and Figs. 9 (b,d). At
moderate dynamics, both VDLL/VFLL and FG-VDLL/FG-
VFLL perform similarly for NIter. = 3, see Fig. 10(c,d). For
NIter. = 1, conclusions about precision are difficult to make,
see Figs. 10(a,b). The reason is that our motion model does
not regard user acceleration. However, the figures document
that the proposed method might be able to withstand such
unmodeled anomalies, likewise the EKF method. The im-
proper choice of the motion model here causes that the scalar
architecture outperforms the vector one for velocity estima-
tion at moderate dynamics, see Figs. 10(b,d). This could be
claimed as a disadvantage of the vector tracking architecture.

In Figs. 11(a,b), we sweep C/N0 for all the tracked
SVs, see Fig. 11(c), and observe the stability of the proposed
FG-based algorithm in comparison with the EKF-based one.

Moderate dynamics and a single iteration are considered. It
is apparent from the figures that the FG-VDLL/FG-VFLL
loop looses lock at approximately 2 dB lower C/N0 than the
VDLL/VFLL loop. Fig. 11(d) depicts the C/N0 estimate er-
rors of the FG-VDLL/FG-VFLL channels.

11.3 Implementation Aspects
Likewise for the EKF architecture, it is clear that pre-

cision and stability of the loop is highly dependent on the
choice of the motion model, predetection integration time
and the navigation update time. When a proper motion
model is selected, the performance can be improved with in-
creased number of iterations on the FG. But with low num-
ber of iterations, the navigation processor might be able to
operate at higher update rate which would foster the overall
performance.

In our simulation, we did not model any delay between
the SV channels and the navigation processor. It represents
the situation of a SDR receiver (ipexSR [2], WNav - only
PC processing [3]). On the other, the performance might
be worse for traditional receiver architectures (WNav - lo-
cal tracking channels in FPGA, the navigation processor in
PC [3]) where such a delay occurs.

12. Experiment - Scalar Tracking
Architecture
In this section, we demonstrate the functionality of the

proposed FG-based scalar iterative EKF algorithm in a scalar
tracking architecture using a GNSS receiver developed at
CTU in Prague [3] and high-fidelity GPS L1 Spirent sim-
ulator GSS6560. The first subsection explains the employed
methodology, next the results are discussed.

12.1 Methodology
We assume that the user moves in a circle with con-

stant circular orbit speed in an open-sky scenario. Firstly, we
place the user to 14 static points on the Earth, see Fig. 13, at
a given time and investigate the filtering performance. Sec-
ondly, two dynamic scenarios (a = 1 m/s2, a = 10 m/s2) with
radius 10 km, 1 km and velocity 100 m/s are supposed. The
number of visible SVs has always been 11. The measure-
ments were taken for 1 hour. The navigation update time
was TN = 0.1 s. Second order DLL, PLL were used with
equivalent loop noise bandwidth 0.5 Hz, 30.0 Hz, respec-
tively. The driving noise std. was always 0.01 m/s which
mismatches the motion model, but still filters out. The FG-
based filter ran with three iterations.

12.2 Results
In Fig. 12, we plot the results obtained by the WNav

receiver. The left column depicts TPEs and the right col-
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Fig. 9. Vector tracking - simulation results - LD. (a - upper left) TPE, NIter. = 1, (b - upper right) TVE, NIter. = 1, (c - lower left) TPE, NIter. = 3,
(d - lower right) TVE, NIter. = 3.
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Fig. 10. Vector tracking - simulation results - MD. (a - upper left) TPE, NIter. = 1, (b - upper right) TVE, NIter. = 1, (c - lower left) TPE, NIter. = 3,
(d - lower right) TVE, NIter. = 3.
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Fig. 11. Vector tracking - simulation results - C/N0 sweep. (a - upper left) TPE at C/N0 sweep, (b - upper right) TVE at C/N0 sweep, (c - lower
left) swept C/N0 of all visible SVs, (d - lower right) C/N0 estimate error for all visible SVs. Figures (a-d) refer to MD, NIter. = 1.
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Fig. 12. Experimental results - accuracy. Total position errors (TPE) are in the left column, total velocity errors (TVE) are in the right column.
(a - upper left), (b - upper right) averaged errors of static scenarios, (c - middle left), (d - middle right) dynamic scenario a = 1 m/s2, (e -
lower left), (f - lower right) detail on dynamic scenario a = 10 m/s2.
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umn depicts TVEs. Figs. 12(a-b) are averaged versions of
the TPEs and TVEs for the FG-based and the EKF filters
applied to the static user. The accuracy of both filters is
comparable. However, convergence was observed only in
10/14 cases. The reason is as discussed in Section 10 - low
number of the SVs causes divergence.

In Figs. 12(c-d), the user moves with acceleration a =
1 m/s2, in Figs. 12(e-f) with acceleration a = 10 m/s2 which
is not far from the model of the filter. The important fact
is that the FG-based filter remains stable and its accuracy is
comparable to the EKF’s.

13. Conclusion
In this paper, a novel PVT estimation/filtering method

for GNSS receiver has been introduced. The method itera-
tively and distibutively estimates the PVT in a factor graph
where each update is calculated using only simple arithmetic
operations, thus opening possibilities for implementation in
hardware logic.

Fig. 13. User positions on the Earth - static experiment (14 po-
sitions).

It was demonstrated by Monte Carlo simulations that
the method converges for the number of tracked satellites
larger than 16, and can withstand higher unmodeled dynam-
ics by increasing the number of iterations. The accuracy of
the method is comparable to the accuracy of the EKF at three
iterations. At higher dynamics, the proposed method can
outperform the EKF if the number of iterations is increased.
The method experience comparable number of flops as the
EKF in the information form.

It was shown by a case simulation that the proposed
method can be coupled with the tracking loops in the vector
tracking loop as the EKF and deliver similar performance.
By implementation of the method into a real-time receiver
developed at CTU in Prague, we showed in several experi-
ments that the method has the potential to withstand channel
anomalies.
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