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Abstract. Gateway link is essential to connect HAPS 
platform to terrestrial based networks. This crucial link is 
incorporated in HAPS fixed service spectrum allocation in 
considerably high frequencies, renders the link for more 
attenuations by atmospheric gases, and rain effects, 
especially when the regional climate is not favorable. 
However, under the agenda item 1.20 of World Radio 
Conference-2012 (WRC-12) new HAPS allocation in the 
5850-7075 MHz band is proposed. Although spectrum 
features are incomparably reliable, on the contrary, Fixed 
Satellite Service (FSS) uplink transmissions will have 
signal levels much higher than those in HAPS systems and 
have the potential for causing interference at the HAPS 
gateway receiver. In this article a key aspect of co-channel 
interference phenomena is investigated to facilitate op-
timum frequency sharing in the band in question. By 
proposing mitigation techniques and statistical method this 
generic prediction model enhances the capability of the 
HAPS spectrum sharing and provides flexibility in 
spectrum planning for different fixed services. 
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1. Introduction 
There are approximately 160 geostationary satellites 

currently operating for Fixed Satellite Service (FSS) in the 
C band frequency (4 – 6 GHz). It is commercially utilized 
to deliver distance-learning, telemedicine, disaster 
recovery, TV transmission, meteorological and earth 
observation services, and military services. The basic 
application of the FSS is for a feeder link of systems, 
which serve earth stations at fixed locations. In parallel, 
High Altitude Platform Station (HAPS) is a new type of 
communication stations, posted in the stratosphere layer to 
deliver communications autonomously to satellite and 

terrestrial stations[1]-[2]. It is expected that HAPS will 
provide wide area coverage, high data rate services, and 
favorable link budget [3]-[5]. Frequency allocations for 
HAPS in the fixed service were considerably high and 
recognized to be more susceptible to attenuation due to rain 
in the range of: 47.9 – 48.2 GHz, 47.2 – 47.5 GHz in glo-
bal, and 31.0 – 31.3 GHz in the uplink, 27.5 – 28.35 GHz 
in the downlink for 40 countries worldwide [2]. There are 
some views that HAPS should use the high frequency 
bands of Ka and V bands, not only because they offer 
a large bandwidth, but because they are not congested. 
Ignoring the fact of spectrum efficiency of providing 
services widely to access and utilize the spectrum, which 
should be reflected into HAPS spectrum allocation, since 
some parts of the spectrum, are more reliable and useful 
than the others. Therefore, resolution 734 (Rev.WRC-07) 
invited the International Telecommunication Union (ITU) 
to identify two channels of 80 MHz each for gateway links 
for HAPS in the range from 5850 MHz to 7075 MHz [6].  

Backwards to the spectrum sharing strategy between 
HAPS and FSS systems [7]-[9], one can conclude that the 
studies were based on the Worst Case (WC) prediction 
model, which can be expressed under the Minimum 
Coupling Loss (MCL) approach [10]. No wonder that 
HAPS had tight sharing constrains in terms of geographical 
separation and power limits driven from pessimistic worst-
case scenario. This paper aims to improve the intersystem 
interference prediction model from the FSS earth station to 
the HAPS gateway station in the band 5850 – 7075 MHz, 
by providing a comprehensive theoretical and statistical 
model. In this article, the proposed model core idea is 
taking account of natural factors, possible mitigation 
schemes, and spectral power techniques [11] to enhance 
MCL approach in the initial stage of spectrum planning. 
A whole picture can then be treated as case-by-case and 
evaluated using Monte-Carlo approach [12] to judge HAPS 
frequency allocation. 

The paper is arranged as follows; Section 1 proposes 
MCL calculations and assessments. In Section 2, schemes 
to mitigate the FSS interference are investigated, declaring 
the effect of antenna elevation angle, antenna height, and 
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Mask Discriminations (MD). Simulated deterministic and 
statistic results are discussed in Section 3. Finally, in 
Section 4, the conclusion is delivered.  

2. Technical Compatibility 
The convergence of certain newer technologies, such 

as HAPS is making it difficult to decide whether it should 
be allocated in the reliable bands or alternative higher 
frequencies. Identification of the spectrum which HAPS 
gateway link will share with FSS is governed by the 
technical and operational specifications of both systems as 
tabulated in Tab. 1. The analysis will be based on the 
assumption that difference in antenna azimuth between the 
two earth stations is 180° that produces a WC scenario as 
shown in Fig. 1. 

 
Fig. 1. Intersystem interference scenario between FSS earth 

station and HAPS gateway. 

Subsequently, technical compatibility between FSS 
earth station and HAPS gateway is examined under the 
proposed Minimum Coupling Loss (MCL) approach, given 
by: 

 � � � ��� rThfiii GILGPMCL �����  (1) 

where Pi represents the interfering FSS earth station 
transmitted power, Gi(�), and Gr(�) are the antenna off-
axis gain in the interfering path for interferer and victim, 
respectively, Lft denotes the interferer transmission feeder 
loss, and ITh is the interference threshold for the HAPS 
gateway receiver, which is given by: 

 PRCITh ��  (2) 

where C  is the HAPS downlink carrier in dBW [11], PR 
represents the victim receiver threshold of carrier-to-
interference ration (C/I) of 27 dB for the 64-QAM link. 
From the above calculations, the resulted MCL value to 
ensure coexistence is 141.2 dB. Therefore, required 
separation distance translated from free space loss is given 
by: 
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Parameter Unit FSS ES HAPS 
Transmitted 

power dBW 35.56 -22:Airborne 

Channel BW MHz 36 11 

Antenna height m 15 21: Airborne 
15: gateway 

Antenna 
Elevation 

o 5 30 

Antenna gain dBi 39.9 30: Airborne 
47: Gateway 

Feeder loss dB 0.5 4.1 

Tab. 1. FSS and HAPS systems parameters. 

3. Mitigation Techniques 
Spectrum engineering methods to mitigate severity of 

interference is applied to the intersystem interference 
scenario between HAPS and FSS earth stations. Under 
previous MCL, the scenario of coexistence between FSS 
and HAPS earth stations were carried pessimistically. For 
instance, the assumptions were such as the use of 5˚ 
elevation angle for the FSS earth station, applying Free 
Space Loss (FSL) propagation model, and ignoring the 
channelization plan and modulation schemes in the 
evaluation of interference between the communication 
systems. With these assumptions, planning spectrum might 
not be actual; therefore, variety of practical scenarios 
impacts are evaluated in this section: 

3.1 FSS Elevation Angle 
Definitely, it is not the actual case for the whole FSS 

earth stations to have such a low elevation angle; therefore, 
different locations in the world have to consider their real 
elevation angle, or otherwise statistic analysis should be 
used for general judgment. The characterization of the 
antenna is established to fit a defined radiation pattern; this 
representation appears as an envelope plot; which stands 
for a function of relative radiation. For a clearer 
explanation, FSS antenna radiation pattern follows the 
formula [13]: 
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Expectedly, there will be an additional loss in antenna 
gain relative to the described radiation pattern due to the 
use of higher elevation angle. To depict the loss as an 
advantage to the MCL (G(5) – G(�)), Fig. 2 shows 
proportional relation between reduction in antenna gain 
(loss) and the increase in antenna elevation angle. When 
the reference envelop remains steady after 48˚, hence the 
maximum loss is fixed to 24.5 dB. Noting that for those 
countries with actual 5˚ elevation angle (probably located 
in higher latitudes) this technique can be applied 
horizontally, but not vertically. 
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Fig. 2. Additional loss due to higher FSS earth station 

elevation angle. 

3.2 HAPS Gateway Antenna Height 
Second is taking advantage of local topology and use 

a minimum acceptable antenna height to minimize the 
Line-of-Sight (LOS) between the earth stations. Different 
antenna heights have the potential to affect the required 
physical isolation; lowering the antenna height will reduce 
the required physical isolation dramatically [14]. Mean-
while, the protection from local clutter can be estimated 
using: 
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where dk is the distance in km from a nominal clutter point, 
hv is the antenna height in meters (m) above the local 
ground level, and ha is the nominal clutter height in meters 
(m). Since deployment area for HAPS gateway is specified 
as an Urban Area Coverage (UAC), thus, UAC model is 
more convenient to predict the propagated interfering 
signal rather than deterministic FSL used in the MCL. The 
depicted UAC clutter loss in Fig. 3 summarizes the 
relationship between HAPS gateway antenna height and 
the corresponding clutter loss in dB. 

If the antenna height is above 20 m, the clutter loss 
remains constant and a zero advantage can be considered. 
However, when antenna height is small, the line of sight 
toward the victim receiver may not be clear, meaning that 
interference power level is less due to obstacles. This 
indicates that attenuation of the interfering signal is 
decreased when the antenna height increases; thus, the 
antenna explores a greater interference level when its 
height increases. 

3.3 Spectral Decoupling 
Due to the imperfect radio equipments, transmitter 

Out-of-Band (OoB) leaks to fall within the pass-band or 
selectivity of the victims receive filter [15]. Therefore, 
interferer transmitter Spectrum Emission Mask (SEM) and 
victim receiver Adjacent Channel Selectivity (ACS) are 
 

 
Fig. 3. Clutter loss effect for different antenna heights in 

UAC. 

significant to assess the intersystem interference esti-
mation. The proposed masks and the channels overlapping 
are presented in Fig. 4 when the difference in the inter-
mediate frequencies is set to zero (�f = 0). In this case, the 
spectral decoupling can be estimated as follows, 
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where BWFSS, and BWHAPS are the channel bandwidth of the 
FSS and HAPS carriers, respectively. This phenomena can 
be described as Mask Discrimination (MD) [16], or 
bandwidth correction factor [17]. The considered scenario 
of (�f = 0) upshots an advantage loss value of 5.15 dB 
from the FSS earth station power; the logic behind this 
value is the difference in channelization plans. In other 
words, 11 MHz victim receiver channel will not fully 
integrate with the transmitting interferer of a 36 MHz 
channel. Some power is wasted. 

 
Fig. 4. Spectral power decoupling between FSS and HAPS 

systems earth stations.  

4. Results and Discussions 
Corresponding to the MCL model proposed in 

Section 2, the results are organized to show deterministic 
results of FSS antenna off-axis angle, and HAPS gateway 
antenna height, followed by statistical results that are 
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derived using a random parameter generator for variables 
representing the mitigation schemes of HAPS antenna 
height and FSS elevation angle values. 

4.1 Deterministic Results 
Here, the pessimistic result of 42 km geographical 

isolation as estimated by the MCL approach (derived 
formulas (1) to (3)) is a subject of enhancement. As a result 
of setting coordination for sharing between HAPS and FSS 
ground stations, the required MCL geographical isolation 
is reduced; due to contribution of losses from elevation 
angle's effects, clutter loss effects, and MD, which are 
shown in the following plots. 

Fig. 5 and Fig. 6 are concerned in determining the 
required separation distances that justify the victim 
receiver’s PR threshold for the co-channel coexistence 
scenario. In this scenario, initial contribution loss is the 
MD of 5.15 dB, followed by advantages from the proposed 
mitigation techniques. Starting with the 0 dB losses, 
approximately a 22 km separation is required for 5˚ FSS 
elevation angle, and 20 m HAPS gateway antenna height, 
presenting a worst-case in coordination. This result shows 
the importance of considering the MD, which reduced the 
required distance to the half, approximately. Therefore, 
consideration of different systems channelization plans 
enhances the opportunity of achieving optimistic sharing 
constrains.  

 
Fig. 5. Separation distance for different elevation angles. 

Increasing the offset from the main beam of the FSS 
as shown in Fig. 5, moves the radiation pattern peak away 
from the interference path towards the HAPS gateway; 
thus lower latitude locations gain a natural advantage of 
high elevation angle. Additional loss of 15 dB and 21 dB is 
created after 20˚ and 35˚ elevation angle, results in a 4 km 
and 2 km physical isolation, respectively. By the 48˚ 
elevation angle or even higher, FSS attains its far sidelobe 
level; and thus a steady loss of 24.5 dB reduces the 
separation distance to 1.4 km only. 

When the HAPS antenna height increases as shown in 
Fig. 6, interference from the FSS gateway rises to its 
higher levels due to the line-of-sight clarity between the 
transmitter and victim receiver; thus showing an increase in 
required geographical isolation. With 15 m and 10 m 

antenna heights, 15 km and 3.4 km are necessary, 
correspondingly, whereas the mandatory physical isolation 
for the antenna height of 5 m reduces to be 2.3 km only.  

 
Fig. 6. Separation distance for different antenna heights. 

4.2 Statistical Results 
Although fixed point-to-point service can be directly 

judged by deterministic methods used in Section 4.1, but 
by statistically altering selected variable attributes, systems 
sharing capabilities can be improved. Accordingly, Monte-
Carlo approach is applied for different FSS antenna 
elevation, and HAPS gateway antenna height [18]. During 
the sampling, stations remain fixed and geographically 
separated by 5 km. In Fig. 7, Monte-Carlo simulation 
remarkably distinguished the FSS antenna elevation 
technique by attaining low interference probability. 

 
Fig. 7. Statistical simulation for different antenna elevation 

and height. 

The process starts by choosing attributes limitation. 
For instance, the FSS elevation angle and HAPS gateway 
antenna height random sampling attributes are from 5˚ to 
90˚, and 0 m to 30 m limitations, respectively. In fact, the 
interference probability gives an approximation of unsatis-
factory trials over the total number of trials. For a fastest 
numerical calculation, Monte-Carlo variable is chosen to 
distribute uniformly, for a number of samples of (N), then 
each sample of order (i = 1, 2, …, N) should have the same 
probability of P(xi) = 1/N. Therefore, interference proba-
bility of all the unwanted range is equivalent to �P(xi). The 
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cumulative in probability increases as the number of trials 
increase. Giving that �P(xi)/ P(xi) = i should define the 
number of the last unwanted trial if the range starts from 
xmin, otherwise i defines the first number of the unwanted 
trial until xmax. 

To transform the 59 % interference probability to an 
unwanted range of antenna heights, a trial number of 
i = 29.5 is returned. Subsequently, it defines x = 17.4 m, 
and since the unwanted range is up to 30 m antenna height, 
consequently, the unwanted range falls within (30 – 17.4 = 
12.6) m until 30 m antenna height. In parallel, antenna 
elevation produces 16.3 % CDF; which returns the trial 
number i = 8.15 yield an attribute of 18° antenna 
isolations. This can be translated by an unwanted range of 
parameters from 5° until 18° for the antenna elevation 
technique. Hence, the statistical results conclude that 
choosing mitigation parameters using MC allows the two 
communication systems to coexist; by avoiding the 
unwanted range of parameters and thus avoiding 
interference.  

5. Conclusion 
Spectrum sharing between HAPS gateway link and 

FSS in the band 5850 – 7075 MHz needs essential 
coordination rules. The methodology proposed is based on 
enhancing the MCL approach, which justified the technical 
compatibility between FSS and HAPS systems earth 
stations. The different coordination possibilities and 
interference mitigation techniques have shown the 
capabilities to compensate for the large required separation 
distance under MCL.  
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