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Abstract. In this paper, we propose a novel low-density
parity-check real-number code, based on compressed sens-
ing. A real-valued message is encoded by a coding matrix
(with more rows than columns) and transmitted over an er-
roneous channel, where sparse errors (impulsive noise) cor-
rupt the codeword. In the decoding procedure, we apply
a structured sparse (low-density) parity-check matrix, the
Permuted Block Diagonal matrix, to the corrupted output,
and the errors can be corrected by solving a compressed
sensing problem. A compressed sensing algorithm, Cross
Low-dimensional Pursuit, is used to decode the code by solv-
ing this compressed sensing problem. The proposed code has
high error correction performance and decoding efficiency.
The comparative experimental results demonstrate both ad-
vantages of our code. We also apply our code to cryptogra-
phy.
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cryptography.

1. Introduction
Error correcting codes are usually defined over finite

fields, e.g., the binary field F2. Those defined over the real
field, however, have been recognized as advantageous and
studied for about three decades [1]–[6]. The target problem
of decoding such codes is to recover an input real-valued
message encoded by a coding matrix (codebook) and cor-
rupted by gross errors, i.e., impulsive noise. At the begin-
ning, commonly used real-number codes are based on or-
thogonal transforms, e.g., DFT [1]. Unfortunately, the sta-
bility of those codes is very poor for some error patterns,
e.g., burst errors [4]. To improve the stability, Chen et al.
proposed a code based on random matrices [4] such that the
code is independent of error patterns. However, this code
was proposed for correcting erasures (errors at known po-
sitions). Therefore, it cannot deal with errors with unknown

positions. In recent years, highly robust codes based on com-
pressed sensing have emerged [5]. In a compressed sensing-
based code, high rate of errors can be corrected regardless of
the error pattern.

The core problem of decoding compressed sensing-
based real-number codes is to reconstruct the sparse er-
ror vector from a system of underdetermined equations [5],
which is the well-known sparse recovery (or compressed
sensing) problem. A common way to solve this problem is
to find the sparsest solution to the underdetermined system.
Unfortunately, directly searching for the sparsest solution in
high dimensions is computationally intractable. However,
many indirect methods are available for solving this prob-
lem. Commonly used methods include, but are not limited
to, `1 minimization (`1-min) algorithms [7]–[10], nonconvex
algorithms [11], [12], greedy algorithms [13]–[19], and spe-
cial algorithms that are based on certain matrices [20]–[22].
All of these algorithms have their own comparative advan-
tages of either high error correcting ability or low complex-
ity. However, their complexities are still relatively high since
these methods solve the problem in high dimensions, and
their correcting abilities are relatively low because they solve
the compressed sensing problem in indirect ways, e.g., min-
imizing the `1-norm, instead of the direct way. Here the di-
rect way means combinationally searching for the sparsest
solution from all subsets.

In this paper, we propose a novel compressed sensing-
based code whose decoding algorithm is based on a low-
density parity-check (LDPC) matrix: the Permuted Block
Diagonal (PBD) matrix that we first proposed in [23]. We
apply the PBD matrix to the corrupted output and use the
Cross Low-dimensional Pursuit (CLP) algorithm that we
first proposed in [24], [25], for reconstructing the error vec-
tor to recover the encoded message. During decoding, the
high-dimensional compressed sensing problem is converted
into groups of highly low dimensional problems. Thus, the
decoding method has a very low complexity compared to ex-
isting algorithms. CLP can, in fact, perform in linear time.
Furthermore, since in low dimensions, the compressed sens-
ing problem can be solved in direct ways, the method has
much higher error correcting ability than the existing algo-
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rithms including `1-min and nonconvex algorithms. The ex-
perimental results demonstrate the advantages of fast decod-
ing and powerful error correcting of our code. In addition,
we apply our code to cryptography and the proposed crypto-
graphic scheme is reliable since the corruption rate used in
the scheme is beyond the error correcting abilities of existing
algorithms.

Note that the LDPC code proposed in this paper is quite
different from the well-known LDPC codes, whose recent
variations were also used in compressed sensing, e.g., [26].
First, the proposed code is defined over the real field, while
the well-known LDPC codes are defined over the finite field
of F2, a binary field containing elements of {0,1}. Second,
the constructions of the pairs of parity-check and coding
matrices are different. The parity-check matrix used in the
proposed code is the newly proposed PBD matrix, and the
ways of constructing the coding matrix (presented in Sec-
tion 3.1.2) are also different from those of the well-known
LDPC codes, e.g., Gaussian elimination. Third, the decod-
ing of the proposed code is distinct from that of the well-
known LDPC codes. We decode the code by solving a com-
pressed sensing problem. Therefore, the CLP algorithm for
solving the compressed sensing problem is different from
those for decoding the well-known LDPC codes, such as
the belief propagation algorithm, the message passing algo-
rithm, and the sum-product algorithm.

The remainder of this paper is organized as follows.
In Section 2, notations are defined and the background of
compressed sensing-based real-number codes is introduced.
In Section 3, a novel LDPC real-number code is proposed.
Experimental results are shown in Section 4 to verify the im-
provement of the proposed code. In Section 5, we apply the
proposed code to cryptography. Section 6 is the conclusion
and discussion of the dense small noise case. Some descrip-
tion of the proposition is briefly presented, since part of this
work has been published in preliminary form in the IEEE
International Conference on Acoustics, Speech, and Signal
Processing (IEEE ICASSP 2011), Prague, Czech Republic,
May 2011 [24].

2. Compressed Sensing-Based
Real-Number Codes
In this section, we introduce the compressed sensing-

based real-number codes. Before the introduction of these
codes, the notations used in this paper are defined.

2.1 Notations
In this paper, we use the following notations: ‖e‖0

denotes the `0-norm of vector e, counting the number of
nonzero entries of e. brc is the largest integer not greater
than real number r. WI denotes the submatrix (or subvector)
of W, consisting of the columns (or elements) in index set
I. |I| is referred to as the number of elements in set I. Wᵀ

is the transpose of matrix (or vector) W. W(p) denotes the
permuted matrix (or vector) generated from W and the per-
mutation vector p, where ∀i,W(p)i = Wp(i). p−1 is referred
to as the inverse permutation vector of p such that ∀ j = p(i),
p−1( j) = i.

2.2 Compressed Sensing
Compressed sensing is a new paradigm of data acquisi-

tion [27],[28]. In this new paradigm, a sparse signal is sensed
by a measurement matrix (with fewer rows than columns)
to both sample and compress it in a single operation, and
a small number of linear measurements are obtained. Fur-
thermore, the original sparse signal can be recovered from
these incomplete linear measurements when the measure-
ment matrix satisfies certain conditions and the original sig-
nal is sufficiently sparse.

Compressed sensing includes two stages: sensing and
reconstruction. In sensing, M linear measurements are ob-
tained using an M×N (M� N) matrix D to sample (multi-
ply) a sparse vector e:

s = De. (1)

In the reconstruction stage, the original sparse signal e needs
to be recovered from these incomplete linear measurements.
A common way to recover e is to find the sparsest solution
to (1) by solving the following optimization problem:

(P0) : min‖z‖0 subject to Dz = s. (2)

This optimization problem is well-known as an NP-hard
problem.

A concrete example is as follows:
32 16 28 5 31 15 4 9
22 11 17 29 27 1 18 20
6 30 14 21 26 23 24 10
3 7 8 25 19 2 13 12

× e =


20
29
54
20

 (3)

where e = [0 1 0 0 0 0 1 0]ᵀ. We try to recover e by directly
solving (2). Assuming that the number of nonzero elements
in e is known to be two, all the submatrices, consisting of
two columns, of D need to be searched. There are 28 sub-
matrices to be searched. As the dimension and the number of
nonzero elements increase, the number of such submatrices
grows exponentially.

Therefore, directly solving such a problem in high di-
mensions is computationally intractable. Many efficient al-
gorithms, which solve the problem in indirect ways, are pro-
posed to find sparse solutions. An alternative to (2) is:

(Pp) : min‖z‖pp subject to Dz = s (4)

where 0 < p≤ 1. When p = 1, (4) is convex and can be recast
as a Linear Program (LP). The corresponding algorithms are
called `1-min algorithms. When p < 1, (4) is non-convex,
and it can be approximated by an Iteratively Reweighted
Least Squares (IRLS) algorithm, e.g., [12]. The greedy al-
gorithms find sparse solutions in a different way: the co-
ordinates and amplitudes of non-zeros of e are determined
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step by step. The three families of algorithms do not rely on
specific matrices (D). There is another family of algorithms
that are based on sparse matrices in order to accelerate the
solving procedure, e.g., Sequential Sparse Matching Pursuit
(SSMP) [21].

2.3 Error Correction Based on Compressed
Sensing

Consider transmitting a message x ∈ RK by encoding
it with a full rank matrix F ∈ RN×K(N > K). Furthermore,
a small fraction of entries of the codeword are corrupted over
the transmitting channel. Thus, the corrupted output can be
written as:

y = Fx + e (5)

where e ∈ RN is a sparse error vector. The final objective is
to exactly recover x with knowledge of the corrupted output
y and coding matrix F.

To reconstruct x from y and F, one can first construct
a matrix D ∈RM×N(M = N−K) such that DF = 0. D is a ma-
trix whose rows span the null space of Fᵀ. The matrix D can
also be viewed as a parity-check matrix. Then one can apply
D to the corrupted output y and obtain:

s = Dy
= De. (6)

Note that reconstructing e is a sufficient condition for recon-
structing x, since

x = (FᵀF)−1Fᵀ(y− e). (7)

Specifically, when the columns of F are orthonormal,

x = Fᵀ(y− e). (8)

Therefore, the decoding problem is reduced to the problem
of reconstructing a sparse vector e from an underdetermined
system (6). Since (6) is the same as (1), it can be recon-
structed by solving a compressed sensing problem, where
the parity-check matrix and sparse error vector in decod-
ing correspond to the measurement matrix and sparse signal
in compressed sensing, respectively. The entire procedure
of error correction via compressed sensing is illustrated in
Fig. 1.

3. Proposed LDPC Real-Number
Code
In this section, we present our encoding and decoding

algorithms in 3.1 and 3.2, respectively.

1. Encoding

xF c e yc

2.Transmitting

3. Decoding

D
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… … …
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FT yx̂ ê

D
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(1) Parity check 

(2) Sparse errors reconstruction by solving a compressed sensing 

problem (finding the sparsest solution )

(3) Original message reconstruction

Encoding the original message x 

with F

A small fraction of entries of 

the codeword c are corrupted

Fig. 1. The procedure of error correction via compressed sens-
ing (columns of F are orthonormal).

3.1 Encoding
Our encoding procedure is as follows: first, a PBD ma-

trix D is generated as a parity-check matrix; then a coding
matrix F, whose columns span the null space of D, is cre-
ated; finally, a real-number input x is encoded by F. The
remainder of this subsection presents the construction of the
PBD matrix and the corresponding coding matrices.

3.1.1 Construction of Parity-Check Matrix

The PBD matrix used in this work is different from that
of [23] since it is non-binary. It can be generated as fol-
lows: first, we generate L matrices that are block diagonal:
W1 ∈R

M1×N, · · · , WL ∈R
ML×N, where M1 + · · ·+ML = M, and

Wi = diag(wi, · · · ,wi) (i ∈ {1, · · · ,L}). The block wi ∈ R
m×n

(m < n) is a low-dimensional full spark matrix, which is de-
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fined in [24]. A low-dimensional full spark matrix can be
constructed as follows:

(1) generate an m×n matrix, e.g., a random matrix;

(2) examine whether all of the submatrices, consisting of
m columns, have full rank; otherwise, repeat steps (1)
and (2).

Next, L different random permutations of set {1, · · · ,N},
namely p1, · · · ,pL, are generated. Finally, a PBD matrix
D ∈ RM×N is constructed by permuting the block diagonal
matrices with these permutations independently. Mathemat-
ically,

D =


W1(p1)

...
WL(pL)

 . (9)

To reduce the complexity of decoding, we suggest m be
small even numbers such as two or four [24].

3.1.2 Construction of Coding Matrix

There are several ways to construct a coding matrix F satis-
fying DF = 0. Here, we show three simple approaches:

Construction 1: QR decomposition

Let Q ∈ RN×N and R ∈ RN×M be the QR decomposition
matrices of Dᵀ. A coding matrix F with orthonormal
columns can be generated by choosing the columns of
Q with indices from M + 1 to N.

Construction 2: Gram-Schmidt orthogonalization

First, a random matrix G ∈ RN×K with i.i.d. (indepen-
dent and identically distributed) random entries, e.g.,
the Gaussian random matrix, is generated. Let A = [Dᵀ
G]. A has full rank with high probability since G is
random. Then the columns of A are orthogonalized by
the Gram-Schmidt process. A coding matrix F with or-
thonormal columns can be generated by choosing the
columns of orthogonalized A with indices from M + 1
to N. Note that the Gram-Schmidt process can also be
used in QR decomposition. This method is similar to
Construction 1.

Construction 3: Projection operator

Let P be the projection operator over Dᵀ: P =

Dᵀ(DDᵀ)−1D. An N × K matrix G is generated such
that A, A = [Dᵀ G], has full rank. A coding matrix F
can be generated as follows: F = G−PG. G can be
generated by randomly choosing K columns of some
orthogonal transform, e.g., the Hadamard transform. In
this case, the matrix-vector multiplication Fx or Fᵀy
can be implemented implicitly: the operator G can be
implemented by using the corresponding fast transform
algorithm and the operator P can be implemented by

using some numerical method. Therefore, the memory
requirement is low and high-dimensional encoding and
decoding are possible.

Constructions 1 and 2 generate coding matrices whose
columns are orthonormal such that the encoded message can
be reconstructed by (8). One disadvantage of Construc-
tion 2 is that it is not unambiguous, since we do not know
which of the original signals were taken as the first. Con-
struction 3 generates a coding matrix whose columns are
non-orthogonal; thus, the encoded message must be recon-
structed by (7), which takes more computation than (8). The
advantage of Construction 3 is that the corresponding cod-
ing matrix can be implemented implicitly such that much
less memory is consumed compared to Constructions 1 and
2 and high-dimensional messages can be encoded and de-
coded.

3.2 Decoding
As introduced in the previous section, the main prob-

lem of decoding a compressed sensing-based code is to re-
cover the sparse error vector e from the underdetermined
system,

Dz = s (10)

where s = De. The conventional methods recover e in high
dimensions. However, when D is a PBD matrix, there is no
need to solve the high-dimensional problem directly. The
PBD matrix converts the high-dimensional system of equa-
tions into L subsystems; in each subsystem, the correspond-
ing matrix is block diagonal. Thus, each subsystem can be
considered as a group of highly low dimensional systems
corresponding to the blocks; entries can be recovered by
solving these highly low dimensional systems. Moreover,
the entries solved from each subsystem can be substituted
into the other subsystems to solve more entries.

Consider the small example of (3) again. If we use
a PBD matrix as the matrix D, the linear system becomes

0 0 6 0 0 4 8 3
0 0 5 0 0 7 2 1
6 3 0 4 8 0 0 0
5 1 0 7 2 0 0 0

× e =


8
2
3
1

 . (11)

It is equivalent to the following two low-dimensional sys-
tems:

[
6 4 8 3
5 7 2 1

]
×


e3
e6
e7
e8

 =
[

8
2

]
(12)

and

[
6 3 4 8
5 1 7 2

]
×


e1
e2
e4
e5

 =
[

3
1

]
. (13)
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We can find the sparsest solution to each system di-
rectly since the dimension is very low. The solutions are
[e3 e6 e7 e8]ᵀ = [0 0 1 0]ᵀ and [e1 e2 e4 e5]ᵀ = [0 1 0 0]ᵀ. In
this way, all the elements in e can be recovered.

The presentation of the algorithm is organized as fol-
lows: first, we describe the entire procedure of the algo-
rithm; next, we describe the details of recovering entries
from highly low dimensional systems.

3.2.1 Whole Decoding Procedure

For the PBD matrix, using D to multiply e can be con-
sidered as the following procedure. The vector e is per-
muted by the L inverse permutations p−1

1 , · · · ,p−1
L indepen-

dently, and then multiplied by the L block diagonal matrices:
W1, · · · ,WL. Mathematically,

De=


W1e(p−1

1 )
...

WLe(p−1
L )

=s. (14)

Thus, the entries of e can be solved from the following L
systems separately:

W1z = s1,

... (15)
WLz = sL,

where si (i ∈ {1, · · · ,L}) denotes the i-th segment of s. In
each system, since matrix Wi is block diagonal, the high-
dimensional system can be divided into a group of highly
low-dimensional systems. Therefore, part of the entries can
be easily solved in low dimensions. Furthermore, we can
repeat solving these systems step by step: in each step, the
entries that have already been solved can be substituted into
these systems one by one to solve more entries. This is
the cross solving procedure [24]. We named this algorithm
Cross Low-dimensional Pursuit. The entire procedure of the
algorithm is shown in Fig. 2. The CLP algorithm has linear
complexity; its complexity is much lower than those of exist-
ing algorithms.The complexity analysis can be found in [24].

3.2.2 Low-Dimensional Recovery

As previously presented, a block diagonal matrix con-
verts a high-dimensional system of equations into groups of
highly low-dimensional systems; we recover the entries from
the low-dimensional systems. Here we present the method
to recover entries from low-dimensional systems. Suppose
that a low-dimensional vector f is measured by a matrix
w: wf = u, where w ∈ Rm×n has full rank (m ≥ n) or full
spark (m < n). We wish to recover f from the following low-
dimensional system:

Dz = s

1 1
Wz = s

2 2
W z = s

L L
W z = s

( 1) ( 1)
;

k k
I

− −
e

( ) ( )
;

k k
Ie

⋯

u u
D z = s

( )k=e e
⌢

e

⌢

Low-

dimensional 

recovery

Low-

dimensional 

recovery

Low-

dimensional 

recovery

If                          and  ( ) ( 1)k k
I I

−> ( )k
I N<

If  
( )k
I N=

If                          and  ( ) ( 1)k k
I I

−= ( )k
I N<

Pseudoinversion

Substitution Substitution Substitution

Fig. 2. Procedure of the CLP algorithm. e(k) and I(k) denote the
subvector of recovered entries and their corresponding
indices set in the k-th step of the cross solving procedure,
respectively.

wz = u (16)

where u = wf. When m ≥ n, the system can be easily solved:
f̂ = (wᵀw)−1wᵀu when m > n or f̂ = w−1u when m = n.

When m < n, (16) is an underdetermined system. In
this case, we find the sparsest solution as follows:

(mP0) : min‖z‖0 s.t. wz = u. (17)

Different from the original high-dimensional optimization
problem of (2), the dimension of this problem is very low.
Thus, directly searching for the sparsest solution is possi-
ble. We solve it in a direct and natural way to find a bm

2 c-
sparse solution: exhaustive searches over all subsets of bm

2 c

columns of w. We call it Exhaustive Subset Searching (ESS).
The details of ESS can be found in [24].

3.2.3 Practical Examples

Two examples of our code are shown in Fig. 4 and
Fig. 3. In the first example, the original signal Blocks [29]
of length 512 was encoded by a 1024× 512 coding matrix
which was generated by Construction 1 (QR decomposi-
tion), and corrupted by a randomly generated sparse vec-
tor (Gaussian distribution) with a corruption rate of 18%∗.
The locations and values of the nonzeros of the sparse
vector are determined as follows (in MATLAB): run the
randperm(1024) function, and choose the first 18% indices
as the locations of nonzeros; run the randn(184,1), and take
the output as the values of nonzeros. Finally, the original
Blocks signal was exactly recovered by the CLP algorithm.

∗Similar to other algorithms, the bound of corruption rate that can be handled by the proposed decoding algorithm depends on the ratio of K
N . In the next

section, it will be shown that the bounds corresponding to the ratios of 7
8 and 3

4 are about 4% and 8%, respectively (Fig. 6 and Fig. 7). In the two examples,
we choose 18% as the corruption rate, since it can be handled by the proposed code when the ratio of K

N is 1
2 .
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(a) Image: Mandrill (b) The codeword (c) Sparse errors (d) Exact reconstruction by CLP

Fig. 3. An example of the proposed code with the image Mandrill (the sparse errors have 18% nonzeros in each column).
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(b) The codeword.
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(c) Sparse errors (18% nonzeros).
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(d) Exact reconstruction by CLP.

Fig. 4. An example of the proposed code with the signal Blocks.

The second example is the 512× 512 image Mandrill.
We encoded each column of it with the same 1024×512 cod-
ing matrix which was generated by Construction 2 (Gram-
Schmitt orthogonalization), and corrupted 18% entries of
each column of the codeword by Gaussian distributed sparse
errors. Finally, it was exactly recovered by the CLP algo-
rithm.

4. Numerical Results
In this section, we conducted two experiments to inves-

tigate the practical error correcting ability and implementa-
tion time of CLP. Both experiments were performed in MAT-
LAB 7.5 on a dual-core 2.66 GHz desktop computer. For
CLP, we set L = 4 and m = 2. The main procedures of con-
structing the parity-check matrix and the decoding algorithm
are shown in Fig. 5, where the main relevant MATLAB func-
tions or operators are attached in brackets.

In the first experiment, we compare the error correcting
ability of CLP with four well-known approaches: `1-min,
IRLS (for solving the nonconvex optimization problem: (Pp)
with p < 1), Subspace Pursuit (SP) [19], and SSMP [21].
The concrete solver for `1-min is PDCO [30], and the con-
crete IRLS algorithm is proposed by Daubechies et al. [12],
where p gradually varies from 1 to 0.5. `1-min and IRLS
algorithms were reported to have high sparse solution abili-
ties (corresponding to high error correcting abilities). SP is
a greedy algorithm and has lower complexity than the for-
mer approaches. SSMP is based on a binary sparse matrix
and has sub-linear complexity; its complexity is the lowest
among those of the four algorithms.

The program of `1-min is from the SparseLab pack-
age [31], and those of SP and SSMP are provided by the
authors [32], [33]. We produced the program of IRLS. To
ensure the reliability of the program, we have reproduced
the results reported in [12] using our program. For `1-min,
IRLS, and SP, we used Gaussian random matrices with nor-
malized columns as parity-check matrices. The parity-check
matrix for SSMP was “countmin8”. We chose these matri-
ces for the corresponding algorithms since they perform best
with these matrices.

Our experiment, which is similar to [5], is as follows:
(1) generate the pairs of parity-check matrices and coding
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Sub-system 1 Sub-system 2
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Fig. 5. The main procedures of constructing the parity-check
matrix and the decoding algorithm (L = 2; Contents in
brackets are the relevant MATLAB functions and opera-
tors).

matrices D,F by Construction 1 described in 3.1.2; (2) gen-
erate a random signal x and make Fx; (3) generate a sparse
error vector e with ρ percentage of randomly located ±1∗ and
make Fx + e; (4) decode the corrupted output by using D and
the corresponding algorithms; (5) gradually increase ρ, and
for each ρ, repeat steps (2)-(4) for 100 times to compute the
percentage of exact recovery ( ‖x̂−x‖2

‖x‖2
≤ 10−5).

The second experiment was to investigate the practical
efficiency of the decoding algorithm of the proposed code.
We set N

M = 4 ( K
N = 3

4 ), and N varies from 29 to 217. A log-
log plot shown in Fig. 8 describes the average computational
time of CLP, compared to those of the `1-min, IRLS, and
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Fig. 7. Exact decoding rate versus fraction of corruption with
K = 1536, N = 2048 ( K

N = 3
4 ).

SP algorithms. Compared to the figure (Fig. 2) in [24],
the problem size is much larger, and the comparative al-
gorithms are slightly different, comparing IRLS instead of
OMP. We can observe that CLP performed much faster than
the other algorithms. In the experiment, we did not compare
the SSMP algorithm, since its core program is produced in
C language. Therefore, it is unfair to compare the four algo-
rithms, whose programs are produced in MATLAB, with it.
However, our algorithm has lower complexity than SSMP,
since CLP has linear complexity. A normal plot shown in
Fig. 9 verified the linear complexity of the CLP algorithm,
while it was reported that the complexity of SSMP is sub-
linear [21].

The obtained results are shown in Fig. 6 and Fig. 7. It
can be seen that CLP has the highest error correcting ability
and performed much better than the other algorithms. Com-
paring the two algorithms that both use sparse parity-check
matrices, CLP and SSMP, it can be seen that CLP corrected
a much higher rate of errors.

∗We use such a type of errors for experiments, since it is a challenging case for compressed sensing algorithms and is often used for comparative study.
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Fig. 8. Comparison of practical computational time ( K
N = 3

4 ).

From the two experiments, we can observe that our
decoding algorithm outperforms comparative algorithms in
both decoding efficiency and correcting ability. All of
the comparative algorithms reconstruct the error vector in
high dimensions. However, the decoding method converts
the high-dimensional problem into groups of highly low-
dimensional problems. This makes the method much more
efficient than the comparative algorithms. Furthermore, the
comparative algorithms do not find the sparsest solution to
the underdetermined system directly (solving (2)) since it is
computationally intractable in high dimensions. They solve
this problem by some other indirect methods which are com-
putationally efficient in high dimensions; however, these in-
direct methods make a discount in performance compared
to direct methods. For the decoding method of the pro-
posed code, since the highly low-dimensional underdeter-
mined systems can be solved directly (solving (17) by the
ESS method), the performance of the algorithm is much
higher than those methods to which it was compared.

5. Application to Cryptography
Possible cryptographic applications of compressed

sensing or compressed sensing-based real-number codes
have been studied [34]–[36]. Unfortunately, these crypto-
graphic schemes are unreliable since they can prevent only
ciphertext-only attacks. When the codebook (the coding
matrix) is known, the encrypted message can be easily de-
ciphered [35]. In the cryptographic scheme proposed by
Ashino et al., a plaintext x is encoded by a linear code F
and a sparse vector e is added to corrupt the codeword Fx
by the sender. Then, the codebook F (or the secret key for
generating F) and the ciphertext y = Fx + e are sent to the
receiver. Furthermore, on the receiver side, the recipient re-
covers the plaintext by means of `1-min. The problem is
that, when F and y are received by the attacker, he can eas-
ily decipher the message by using `1-min or other existing
algorithms. Therefore, the scheme is unreliable.

In this section, we demonstrate a highly reliable cryp-
tographic scheme using the proposed code. Suppose that
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Fig. 9. Practical computational time of CLP versus problem size
( K

N = 3
4 ).

person A (the receiver) wants to get some secret data x (de-
noted as a vector) from person B (the sender). Our scheme
can be described as follows: person A generates a PBD ma-
trix D and a corresponding codebook F in one of the ways
presented in Subsection 3.1; person A sends F to person B;
person B encodes the message x with F and corrupts the
codeword with a sparse error vector y = Fx + e, where the
corruption rate ρ is within the error correcting ability of CLP
and beyond those of existing algorithms, e.g., ρ = 4% when
K
N = 7

8 (see Fig. 6); person B sends y to person A; person
A recovers x by the CLP algorithm with the parity-check
matrix D. Note that the cipher can prevent attacks from the
adversary even with knowledge of the codebook. This is be-
cause although the attacker can receive the codebook F, it
is impossible to recover the parity-check matrix D.∗ Thus,
the attacker cannot use CLP to decode the data and only
traditional methods are available. However, the corruption
rate is beyond the error correcting abilities of existing algo-
rithms.

6. Conclusion and the Dense Small
Noise Case
In this paper, we proposed an LDPC code over the real

field based on compressed sensing. A LDPC matrix and
a fast decoding algorithm were used. The proposed code has
two important advantages over existing compressed sensing-
based codes: high error correcting ability and decoding ef-
ficiency. We also conducted experiments to verify the pro-
posed code. In addition, we applied the proposed code to
cryptography; the proposed cryptographic scheme is reli-
able.

We discussed the decoding problem when sparse errors
were added. In some other cases of interest, there are not
only sparse errors that affect part of entries, but also small
errors that affect all entries. Mathematically,

∗Given a matrix F, there are infinite matrices D̂ satisfying D̂F = 0.
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y = Fx + e + c (18)

where e is a sparse vector of gross errors and c is a vector of
small errors affecting all of the entries. In such a case, ex-
act recovery is impossible and an approximation is desired.
Therefore, CLP cannot be used for decoding. However, x
can be approximated by traditional algorithms. For example,
modify (4) with p = 1 to the following optimization problem
to include a dense small noise allowance:

(P(1,ε)) : min‖z‖1 subject to ‖Dz− s‖2 ≤ ε (19)

where D is the corresponding PBD matrix that satisfies
DF = 0 and ε is a small parameter. Details of formula-
tion of this optimization problem can be found in [37]. It
can be cast as a convex quadratic program that can be solved
by many standard approaches such as interior-point algo-
rithms [7] and active-set methods. When e is sufficiently
spare, a good approximation can be obtained by solving
(19). Consequently, a good approximation of x can be ob-
tained in the same way as without c. Note that PBD matrices
can accelerate the decoding procedure and reduce memory
consumption since they are highly sparse. A sparse matrix
is very efficient to apply the matrix-vector multiplication
and the memory consumption is low. For various algorithms
either convex optimization or greedy methods, the resource
requirement of matrix-vector multiplication is critical to
their speeds and memory consumption.
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